УДК 550.42

К ПРОБЛЕМЕ КОЛИЧЕСТВЕННОЙ ОЦЕНКИ СОСТАВА ФЛЮИДА В УСЛОВИЯХ МЕТАМОРФИЗМА (ВЕРИФИКАЦИЯ РЕЗУЛЬТАТОВ ФИЗИКО-ХИМИЧЕСКОГО МОДЕЛИРОВАНИЯ РЕАКЦИЙ ВОДА–МИНЕРАЛ–ПОРОДА)

В. О. Худоложкин

Дальневосточный геологический институт ДВО РАН, г. Владивосток Поступила в редакцию 6 октября 2005 г.

Излагаются результаты сравнения физико-химического количественного расчета состава реакционного флюида (на основе ПК "Winsel") с экспериментальными данными в системах вода–электролит (NaCl, HCl, NaOH, KOH)–минерал (кварц, корунд, микроклин, плагиоклаз) и вода–электролит–порода (гранит, пелит) при Т 400–800°С и Р 1–10 кбар. Установлены ограничения по Р, Т и составу электролитов, при которых соблюдается согласие расчетов растворимости минералов и пород с данными из экспериментов.

Ключевые слова: растворимость, верификация, физико-химическое моделирование, состав метаморфического флюида.

введение

Флюиды мантийных и коровых пород концентрируют различные элементы в широком диапазоне Р и Т и переносят их на значительные расстояния. Они активно взаимодействуют с горными породами и в условиях геохимических барьеров за счет выпадения из них минералов формируют месторождения. Современные петрологические работы выявили структурные и композиционные доказательства подвижного поведения значительных масс вещества (в частности, щелочей и кремнезема) при фильтрации насыщенных кремне-щелочных растворов в условиях градиентов Р-Т и химических потенциалов элементов [22, 25, 30, 38, 39]. При проведении экспериментальных и теоретических исследований реакций водапорода с развитием мощных компьютерных технологий и баз термодинамических данных флюид представляется как электролит, равновесный породе, включающий в себя всю гамму заряженных и нейтральных водных компонентов. Газовая составляющая флюида в минералах исследована наиболее подробно и, возможно, точно [14]. Но солевой состав его остается в большой степени неопределенным даже при применении прецизионных локальных инструментальных методов [7, 32, 36]. В число компонентов флюида (из газово-жидких включений) включен обширный перечень петрогенных элементов: К, Na, Si, Al, Ca, Mg, Fe и др., однако уверенные количественные петрологические оценки содержаний главных и, тем более, микрокомпонентов флюида при высоких Р-Т в литературе представлены крайне редко. Ясно, что взаимодействие вода-порода в природных условиях или в эксперименте сложнее, чем описывается аппаратами равновесной термодинамики (например, программными комплексами (ПК) "Winsel" [9, 10] или "Гиббс" [27]), поэтому практически каждый автор (пользователь ПК) делает попытки показать, хотя бы качественно, реальность получаемых параметров модельных систем.

Термодинамический расчет имеет большое достоинство, т.к. в механизм взаимодействия вода-порода (W-R), кроме твердых фаз (в большинстве ПК без учета неилеальности твердых растворов), включен обширный спектр водных частиц различных форм существования элементов и их комплексов. Все это позволяет получить совершенно новую генетическую информацию, не доступную при использовании других методов [2]. Достигнуты несомненные успехи в расчетах и уточнении термодинамических параметров минералов, констант комплексообразования и диссоциации (в основном по экспериментальным данным растворимости). Для повышенных Р-Т проблема верификации возникла сразу же при создании и использовании модификаций эмпирического метода Дебая-Хюккеля [13, 21] и в приближенных термодинамических расчетах констант диссоци-

ации (по уравнениям Хельгесона) [24]. В химической литературе накоплен значительный экспериментальный материал о растворимости в водных растворах различных по химической природе минералов при 25-800 °С и давлениях до 5 кбар и более. Однако эти данные отражают лишь небольшую часть широкого круга соединений, интересующих геохимиков и петрологов. В связи с этим, на современном этапе термодинамических расчетов взаимодействия водапорода верификация необходима, т.к. без решения этой проблемы невозможно дальнейшее уверенное моделирование и далее прогноз сложных геохимических процессов в природных мультисистемах. В противном случае моделирование может давать лишь формальные решения, далекие от реальности. Достижение адекватности расчетов является сложной проблемой, решение ее "требует не только высоких профессиональных знаний в области физико-химии, но и достаточного минимума геохимической и петрологической информации о моделируемом объекте" [9].

В настоящей работе предлагаются результаты количественного сравнения расчетного и экспериментального составов реакционного водного флюида в системах вода-минерал с участием кварца, (К, Na, Са)-полевых шпатов и корунда. Спектр минералов для исследования определен наличием и достоверностью экспериментальных данных по их растворимости в диапазоне Р 1-6 кбар, Т 400°-800°С. Сравнение проведено также для мегасистем вода-гранит и вода-пелит. Наибольший интерес представляют концентрации водных компонентов Si, Al, K, Na и Ca при указанных параметрах. Поставленная задача включает в себя также "испытание работы" ПК "Winsel" в сравнении с "Гиббс" и SUPCRT92 (см. ниже). В работе используется ПК "Winsel", основанный на минимизации термодинамических потенциалов при множестве ограничений, задаваемых системой уравнений баланса масс [10]. Уникальный алгоритм и обширные базы согласованных термодинамических параметров минералов и компонентов водного раствора описаны в [5, 9, 10]. Методические вопросы моделирования процессов флюид-порода изложены во многих исследованиях [5, 16, 23].

ПРОБЛЕМА ВЕРИФИКАЦИИ ТЕРМОДИНАМИ ЧЕ СКИХ РАСЧЕТО В РЕАКЦИЙ ВОДА-ПОРОДА

В предлагаемой работе верификация результатов физико-химического моделирования разделена на два этапа: для реакций вода-минерал (псевдобинарная система) и вода-порода (мультисистема). Предпосылкой тому служит установленная в экспериментах значительная затрудненность предсказания поведения компонентов в многокомпонентных системах на основе экспериментальных данных для простых систем [17]. Расчет равновесий вода-минерал иллюстрирует вывод о предельном накоплении породообразующих и летучих элементов в реакционных флюидах. Модели этих реакций могут быть верифицированы наиболее полно и точно из-за наибольшего количества экспериментальных данных. Кроме того, они полезны для выявления и исправления не вполне корректных термодинамических параметров водных частиц и минералов (см. ниже).

На современном этапе развития термодинамических методов расчета реакций W/R эта проблема будет решаться авторами еще продолжительное время. Причин для этого множество. В части расчетов задача усложнена использованием эмпирических уравнений Дебая-Хюккеля, упрощенных и модифицированных [4, 18, 19, 24], использующих огромное (но не всегда достаточное и согласованное) количество термохимических параметров участвующих в реакции минералов и водных частиц. Достоверность результатов можно рассматривать лишь как обусловленную полнотой и погрешностью используемой системы коэффициентов активности и уровнем развития теории строения и свойств растворов [6]. Принципиально слабым аспектом теоретических расчетов для высоких параметров Р, Т, выполняемых с помощью стандартных термодинамических параметровпотенциалов минералов и водных частиц, до сих пор остаутся оценка отклонений параметров реальных систем от расчетных, получаемых с помощью эмпирических коэффициентов активности в теории (vpaвнениях) Хельгесона. Это обстоятельство отдаляет расчетный "эксперимент" от лабораторного и от природы. В то же время, многие авторы отмечают благоприятный момент - вклады от погрешностей термодинамических параметров компонентов при расчетах исследуемых мультисистем в значительной мере взаимопогашаются, позволяя получить результаты, близкие к реальным (Карпов И.К., личное сообщение).

В части эксперимента задача усложнена, главным образом, нео пределенностью в достижении равновесного состояния реакции. Во многих экспериментальных работах приводимые авгорами аналитические характеристики твердых и жидких продуктов реакций (рН и Еһ раствора, количества и состав фаз) неполны и неточны, что усложняет задачу верификации. В экспериментах при высоких Р, Т часто, кроме недиагностируемых аморфных фаз, возникают неравновесные слабоокристаллизованные метастабильные формы твердых фаз (например, слоистые силикаты, гидроксиды, гели кремния и др.), растворимость которых выше равновесных, – отсюда изначальная причина более высоких концентраций компонентов в экспериментальном флюиде.

Свою долю в несоответствие расчетов с результатами экспериментов вносит невоспроизводимость экспериментов. В основном она происходит из-за вариаций в условиях эксперимента, в составе и структурно-механических свойствах исходного материала (гомогенности, упорядоченности), в составе исходного электролита и пр. Иллюстрацией влияния параметров эксперимента на воспроизводимость величины растворимости минералов может служить конгруэнтная (!) растворимость кварца, особенно при высоких Р, Т (см. список литературных источников из книги [15] и нашу статью [26]). В качестве примера в табл. 1 представлена растворимость альбита в экспериментальных неравновесных условиях, при различных скоростях протекания электролита через реактор (см. табл. ЗВ в [31]). Отчетливо видно, что малые скорости рождают более щелочные флюиды, в растворе становится значительно больше алюминия и щелочей, при этом концентрация кремнезема падает, вероятно, из-за более полной кристаллизации вторичных фаз.

Растворимость минералов исследуется динамическим методом, иначе, пропусканием электролита при определенных Р-Т через реактор с образцом. Катионный состав реакционного электролита после его выпаривания измеряется методами количественного химического анализа. Состав раствора на выходе из реактора зависит от количества и свойств вторичных минералов, покрывающих (экранирующих) исходные. Например, эксперименты по растворимости полевых шпатов сопровождаются кристаллизацией вторичных минералов (бёмит, парагонит, мусковит, анальцим, нефелин (?), аморфная фаза и др.), что свидетельствует о сложном, неравновесном нонкон-

Таблица 1. Компонентный состав реакционного флюида (в ppm) в системе вода–альбит в зависимости от скорости протекания электролита через реактор, по данным [31].

Т°С	P, bar	ml/час	SiO ₂	Al_2O_3	Na+K	pH ₂₅
500	1500	200	2820	93	51+0	8.1
500	1500	120	2076	141	83+0.8	8.3
500	1500	50	1110	259	157+1.8	10.07
500	2250	170	6900	27	17+0	7.6
500	2250	160	4007	151	149+1.4	8.3
500	2000	50	1605	397	230+6.5	10.25
600	2000	130	4236	97	99+1.1	8.4
600	2000	110	4675	197	176+3.6	9.0
600	2000	80	2576	251	209+5.3	9.6
600	2000	50	2065	281	230+5.3	10.25

груэнтном растворении исследуемого минерала [31]. Выходящий из реактора раствор сильно пересыщен, и из него неизбежно выпадают в осадок наименее растворимые фазы на всем пути экспериментального тренда понижения P-T.

При моделировании систем вода-порода, отношение вода/порода (W/R) представляет собой чрезвычайно важный параметр. Влияние его на состав флюида в широком диапазоне Р-Т оценивалось в [18, 20] при моделировании взаимодействия воды с породами разного состава (от кислых до ультраосновных), включая нонвариантные точки, соответствующие реальным природным минеральным ассоциациям. Авторы [20, 21] показывают, что параметр W/R может меняться от 1000 (дно океана) до 0.001, он равен 100-25 для кислых и ~10 для основных пород. Для щелочных и ультраосновных пород нонвариантные равнове сия (до Т 800°С) получены при W/R = 0.02. Усредненное соотношение масс W/R для земной коры равно 1/50. Верифицирующими параметрами обычно служат упрощенный фазовый состав парагенетической ассоциации и, редко, состав реакционного флюида из экспериментов вода-порода [11, 12, 45, 47, 50].

Следует отметить важный момент – без введения в расчет термодинамики твердых растворов минералов ассоциации практически невозможно создание модельного парагенезиса, адекватного реальному [1]. Естественно, при их несоответствии расчетный состав реакционного раствора искажается.

При построении моделей реакций вода-порода возникает вопрос о составе "внешнего" метаморфизующего флюида [1, 8]. Происхождение его может быть различным: ювенильным, поверхностным или захороненным вместе с протопородой. Расчет состава флюида, равновесного породе, в случае W>R значительно усложняется из-за отсутствия какой либо информации о его количестве и составе. Из [20] известно, что введение в исходный состав породы даже кларковых концентраций С, F, Cl и S "обогащает" ими реакционный флюид от десятков до сотен и более молей (на 1 кг воды) и заметно изменяет его катионный состав. Проблема состава метаморфизующего флюида решается более определенно в случае полного буферирования флюида породой (при W<<R). В этом случае P-T и состав породы (минералов ассоциации) полностью определяют равновесный (расчетный) флюид, независимо от состава внешнего [1, 23]. Попытка оценки состава исходного раствора при метасоматическом замешении пород предпринята в [8]. Моделирование проводилось методом подбора состава простейшего раствора, содержащего галоиды NaCl, KCl, HCl и KHCO₃. Расчеты верифицированы "рождением" расчетных минеральных ассоциаций зон метасоматической колонки, близких к реальным.

Коротко остановимся на результатах верификации физико-химических расчетов, проведенных некоторыми авторами [2, 3, 8, 13]. Объектами исследования являлись поверхностные и термальные воды, наземные и подводные гидротермы. Количественное соответствие расчетных характеристик подземных вод реальным из различных гидрогеохимических систем получено лишь в случае достижения последними химического равновесия. В работе [21] сделан плавный вывод – требуется адекватность модели и изучаемого объекта как необходимое условие количественного соответствия результатов моделирования реальным параметрам природных систем. Утверждается, что количественное соответствие для неравновесных систем может быть получено лишь на основе алгоритмов, дополненных элементами физико-химической гидродинамики и кинетики (с учетом принципиального влияния степени "открытости-закрытости" системы), и что проблема верификации решается успешно для более высокотемпературных систем с минимальными соотношениями W/R.

В работах [2, 8, 13, 20] установлено, что не существует прямой связи между составом породы и составом равновесного с ней водного раствора. Оказалось, что состав пород вносит вполне определенную специфику в продуцирование состава равновесного раствора и формирует область (тип) природных поверхностных и термальных вод. Реальные величины концентраций компонентов обычно ниже расчетных (предельных, равновесных). Это происходит благодаря различным скоростям (времени движения) термальных вод в породах и тому, что частные реакции взаимодействия водных компонентов с минералами породы могут быть неравновесными в различной степени. Более высокотемпературные термальные воды обнаруживают близость (и даже совпадение) расчетных и реальных содержаний водных компонентов, что связывается с большими скоростями обмена вода-порода. Наиболее основательным решением проблемы верификации расчетов реакций W-R служат немногочисленные экспериментальные и, одновременно, ЭВМ-моделирования взаимодействия вода-порода [11, 12, 45, 48].

СОСТАВ ФЛЮИДНОЙ ФАЗЫ ПО РЕЗУЛЬТАТАМ ЭКСПЕРИМЕНТАЛЬНОГО И ТЕРМОДИНАМИЧЕСКОГО МОДЕЛИРОВАНИЯ

Некоторые результаты из экспериментальных работ по растворимости некоторых породообразую-

щих минералов представлены в таблицах (см. ниже). Наиболее изучены кварц и полевые шпаты, эпизодически – оксиды и сульфиды, сведений же о растворимости главных минералов метаморфических пород (роговых обманок, пироксенов и др.) в литературе не обнаружено.

Растворимость кремнезема. Значительные массы кремнезема транспортируются флюидом при региональном метаморфизме [30], оке аническими гидротермальными системами [38] и субдукционными комплексами [39], что требует наиболее полноценной количественной информации о растворимости кремнезема на различных уровнях метаморфизма, метасоматоза и рудных процессов. Верификация конгруэнтной растворимости кремнезема в бинарной системе вода–кварц при T < 560 °C и P < 5 кбар проводилась в работах [26, 49, 50], в которых показана достаточная близость расчетной растворимости экс-

Рис. 1. Растворимость кварца по результатам физико-химического моделирования в сравнении сэкспериментом.

■ – из [44], (★) – из [29]; сплошные линии – эксперимент, пунктир – расчет ПК "Winsel". Стрелки указывают величину и направление отклонений расчетных величин от экспериментальных. периментальной. На рисунке 1 приводим новые результаты сравнения расчетных и экспериментальных (по [2, 37, 44]) данных по растворимости кварца в чистой воде при давлениях до 10 кбар и температурах до 900 °С. Расчеты растворимости кварца осуществляются при участии однозарядного H₂SiO₄⁻ и нейтрального комплекса (водной частицы) SiO₂* или Н₄SiO₄* [49]. Водный флюид, равновесный кварцу, содержит чрезвычайно высокие концентрации, до сотен ммоль SiO₂ (здесь и далее моляльность и ppm на 1 кг воды), при этом адекватность расчетов в пределах $\pm 10 \div 30$ ммоль достигается до 500–900 °C при Р менее 6 кбар. При повышении давления расчетные величины растворимости становятся сильно завышенными. Результаты согласуются с выводом авторов [35, 36] о том, что термодинамические параметры водных комплексов удовлетворительно "работают" до 500-600 °С и 5-6 кбар (по их данным, неопределенность ΔG при 500 °/2 кб равна ± 700 кал/моль, при 1000° / 5 кбар – ±1500 кал/моль). Причиной несогласия с экспериментом расчетов конгруэнтного растворения кремнезема при высоких Р, Т многие авторы считают способность катиона образовывать разнообразные ассоциаты в зависимости от состава раствора, температуры и, особенно, от величины давления [15]. В связи с этим, в [33] выполнен эксперимент по растворимости кварца в чистой воде при температуре до 1300 °С и давлении до 20 кбар. Эксперимент и расчеты, в сочетании с результатами раман-спектроскопического исследования (in situ) структуры реакционного флюида-расплава, свидетельствуют в пользу цепочной полимеризации водно-кремниевых частиц на 20÷25 % уже при температурах около 400 °C. Следует отметить, что изотермы растворимости кварца линейны (рис. 1) вплоть до Т 800 °С и Р 10 кбар. Это, вероятно, связано с возможностью описать его растворимость с помощью принципиально новой (или более полной) модели реакционного раствора.

Растворимость кремнезема сильно зависит от состава электролита. Из анализа газово-жидких включений [7, 34] известно, что водные флюиды, равнове сные силикатным породам земной коры, насыщены солями. Из модельных расчетов [20] известно также, что количество NaCl во флюидах, равновесных породам земной коры, находится в пределах 10–100 моль/кг (!), при этом концентрация кремнезема – в пределах 50–90 ммоль/кг (400–500! для дунита). В связи с этим, нами были проведены расчеты растворимости кварца в электролитах H₂O-NaCl при 600–800 °C и 2–10 кбар, опираясь на закалочные эксперименты [44]. Результаты представлены в табл. 2.

No	Т °С∕Р кб	NaCl_моль/кг	Эксп [Winsel]
512	1 0/1 100		моль/кг
1	600/4.35	H ₂ O	219 - [213]
2	_" _	0.287	135-[173]
3	_`` _	0.368	95 - [126]
4	700/2	H ₂ O	139-[163]
5	_`` _	0.062	215-[160]
6	_" _	0.157	209 - [151]
7	_" _	0.368	145 - [123]
8	_" _	0.516	78 - [86]
9	700/4.35	H ₂ O	377-[336]
10	_" _	0.085	364 - [318]
11	_" _	0.162	336 - [277]
12	_" _	0.249	272 - 239
13	_" _	0.338	203 - [203]
14	_" _	0.502	118-[161]
15	750/4.35	H_2O	458 - [462]
16	_" _	0.232	368 - [362]
17	_" _	0.594	112 - [223]
18	500/10	H ₂ O	172 - [421]
19	_" _	0.112	119 - [376]
20	_`` _	0.22	77 - [308]
21	600/10	H ₂ O	353 - [642]
22	_`` _	0.163	201 - [557]
23	_" _	0.33	125 - [413]
24	800/10	H_2O	1248 - [1370]
25	_" _	0.062	993 - [1296]
26	_" _	0.104	908 - [1181]
27	_" _	0.2	652 - [1004]
28	_" _	0.301	497 - [855]

Таблица 2. Сравнение расчетной и экспериментальной [44] растворимости кварца в чистой воде и в электролитах H₂O-NaCl.

При содержании NaCl в растворе (менее 0.2–0.3 моль/кг) расчетная растворимость кварца для давлений 2–4.35 кбар близка к экспериментальной, отклоняясь от нее в пределах до 10–15 %. Но при концентрации NaCl выше 0.9 моль/кг расчетная растворимость кварца падает, а при ~2–4 моль/кг уменьшается практически до нуля. При повышении давления до 10 кбар расчетная растворимость значительно завышена (так же, как в чистой воде, см. рис. 1).

В экспериментах [46] при (500–700°/2 кбар) в щелочных электролитах H_2O -(K, Na)OH (в диапазоне 0÷0.260 моль/кг калия или натрия) растворимость кварца растет линейно от 0.112 до 0.420 моль/кг. Расчетная растворимость при этих P-T практически не зависит от концентрации и вида щелочи и равна ~110 ммоль/кг. Учитывая удовлетворительную сходимость расчетов растворимости кварца в чистой воде с данными эксперимента, этот факт очевидно свидетельствует о неполноте используемых баз данных в части водных частиц (из ассоциатов кремнезема с катионами щелочей в реакциях участвует лишь единственная частица NaHSiO₃*).

Таким образом, из наших расчетов следует, что при высоких Р-Т модели растворения в системах вода–NaCl–KOH–NaOH–кварц явно недостаточны для корректного расчета, как для чистой воды, так и для концентрированных щелочных электролитов.

Растворимость корунда. Оценка концентрации алюминия в природных флюидах при высоких Р-Т важна, как одного из главных породообразующих элементов. Наше моделирование опиралось на экспериментальные результаты из работ по растворимости корунда в чистой воде в диапазоне 272–600 °С и 0.5–2.2 кбар [46, 47, 51]. По данным авгоров [47, 51], она находится в пределах ± 0.4 величины -lg m_{Al}. Результаты наших расчетов близки к экспериментальным и показывают, что концентрация алюминия в чистой воде

Таблица 3. Верификация расчетов растворимости корунда в чистой воде по экспериментам [51].

Τ°, C	P, kb	-lg m _{Al} ,exp.	-lg m _{Al} , paсч.
272	2	3.59	4.12
400	0.5	3.502	5.15
400	1	3.123	4.77
400	2	3.121	4.52
450	1	3.24	3.41
455	3.12	4.05	4.39
500	1	3.391	4.98
500	2	3.173	4.62
600	1	4.062	5.37
600	2	3.077	4.77

очень мала, составляет ~10^{-3 ÷-5} моль/кг, и очень слабо зависит от Р, Т (табл. 3).

Моделирование растворимости корунда в зависимости от состава щелочного электролита Н₂О-КОН и Н₂О-NaOH выполнено в сравнении с экспериментами из [51]. Растворимость корунда по мере роста концентрации щелочи до ~1 моль/кг линейно возрастает до ~0.8 моль Al (Т 500÷700 °С при 2 кбар) и почти не зависит от замены в растворе катионов калия на натрий. В модельных растворах участвуют комплексы алюминия: NaAl(OH)₄*, HAlO₂*, NaAlO₂*, AlO₂⁻, KAlO₂^{*}. Согласно таблицы 4, расчетные значения А1 совпадают с экспериментальными [46, 51] с точностью до ±0,02 ммоль (исправлено значение ∆G(КОН*), см. ниже). Получен необычный результат – изобарная растворимость корунда в шелочных электролитах в диапазоне 400-700 °С практически не изменяется (так же мало, как в чистой воде [47]). Из модели следует, что это происходит (при повышении температуры) из-за взаимной компенсации роста концентрации водных комплексов NaAlO₂* и одновременного уменьшения суммы концентраций AlO₂- и NaAl(OH),*. Расчетная изобарная растворимость корунда в КОН-электролитах не зависит от температуры из-за постоянства концентрации комплекса AlO₂.

Моделирование оказалось полезно для критического анализа $\Delta G(KOH^*)$ из разных баз данных (табл. 5). Из расчетов следует, что при концентрации КОН до 0.1 моля растворимость корунда возрастает

Таблица 4. Верификация расчетов растворимости корунда в электролите H₂O-(K,Na)OH по экспериментальным данным из [46].

T °,C	P,kb	KOH mol	mAl, эксп.	mAl, paсч.	$pH_{p, \mathrm{r}}$	T°,C	P, kb	NaOH, mol	mAl, эксп.	mAl, paсч.	$pH_{p, \tau}$
300	2	0,203	-	0,085*	8,17	300	2,62	0,1091	-	0,096	7,93
400	_ '' _	0,203	_	0,072	7,91	400	2,62	0,1091	_	0,100	7,68
500	_ '' _	0,203	_	0,056	7,84	500	2,62	0,1091	_	0,104	7,57
600	2	0,203	0,183	0,200	8,10	700	2,62	0,1091	0,104	0,104	7,62
_ `` _	_ '' _	1,01	0,895	0,905	8,25	_'' _	2,41	0,3041	0,273	0,290	7,91
700	2.62	0.2087	0.192	0.204	8.09	_'' _	2.38	0.5962	0.525	0.546	8.08
_ '' _	2.65	0.4679	0.458	0.470	8.27	_" _	2.34	0.9431	0.814	0.799	8.21
- " -	2.62	0.6958	0.656	0.690	8.36	_" _	2.62	0.00	-	$1.9 \cdot 10^{-5}$	4.73

Примечание. *) – расчеты, не сопровождающиеся экспериментом, выполнены для и ллюстрации зависимости растворимости корунда от температуры и от давления.

Таблица 5. Влияние выбора значения изобарно-изотермического потенциала Гиббса водной частицы КОН* на адекватность расчета растворимости корунда в электролите H,O-(K,Na)OH, 400° / 2kb.

KOH,	Al, mol,	Al, mol,	pH _{P,T}	рН ₂₅ исх. р-ра	КОН,	Al, mol,	Al, mol,	$pH_{P,T}$	pH ₂₅ исх р-ра
mol	эксп.	расч.	реак	расч	mol	эксп.	расч.	реак	расч
	G(KO	H*)=-112104	4, т.д. база S	Spr.		G(K)	OH*)=-104500), т.д. база Spr.9	8
0.01	0.007	0.004	6.64	10.42	0.01	0.007	0.0093	6.64	11.95
0.04	0.027	0.012	7.00	10.72	0.04	0.027	0.037	7.00	12.5
0.08	0.058	0.019	7.17	10.90	0.08	0.058	0.076	7.17	12.83
0.1	0.069	0.022	7.22	10.92	0.1	0.069	0.097	7.22	12.92

от ~10⁻⁴ до 0.097 моль/кг и заметно зависит от величины ΔG (КОН*). Измененное значение ΔG , равное 108404 кал/моль, позволяет получить совпадение концентрации Al в пределах ± 0.01 моль (расчетные значения растворимости не приводятся). В пользу нового значения ΔG (КОН*) свидетельствует лучшее согласие расчетных рН₂₅ и экспериментальных из химических справочников (во всем диапазоне концентраций системы H₂O-КОН). С помощью подбора ΔG водных комплексов алюминия и корунда согласия с экспериментом не достигается. Из расчетов можно сделать вывод о довольно надежной термодинамической информации о корунде и водных комплексах алюминия, что не согласуется с критическими высказываниями о ней многих авторов (например, [9]).

Нонконгруэнтное растворение полевых шпатов. Полевые шпаты как главные породообразующие минералы при взаимодействии с водой являются основным источником катионного состава поверхностных вод и глубинных флюидов. В экспериментальных работах по растворимости полевых шпатов, на которые опирается наша верификация, к сожалению, очень мало сведений о вторичных минералах (не окристаллизованы или их слишком мало). При гидратации альбита в [31] наблюдались значительные (± 30 % и более) отклонения экспериментальных соотношений компонентов реакционного флюида (SiO₂ / Na и SiO₂ / Al₂O₃) от стехиометрических. По мнению автора, это указывает на различия в величинах скоростей выхода компонентов альбита во флюид в процессе растворения. Другими словами, в процесс растворения этих минералов вмешиваются кинетические факторы, усложняющие модель растворения [43] и отдаляющие результаты моделирования процесса в равновесном приближении от эксперимента.

В таблице 6 представлены составы реакционного раствора в системе альбит–вода, как иллюстрация количественных оценок отклонений термодинамического расчета от экспериментальных данных. Модельный флюид содержит следующие водные частицы: <u>Na[±]</u>, HSiO₃⁻, Al³⁺, <u>AlO₂</u>⁻, AlOH⁺², AlO⁺, Al(OH)⁺², нейтральные NaHSiO₃⁺, <u>NaOH</u>^{*}, <u>SiO₂</u>^{*}, HAlO₂^{*}, Al(OH)₃^{*}, <u>NaAlO₄</u>^{*}, <u>NaAl(OH)₄</u>^{*}, <u>KOH</u>^{*}, KAlO₂^{*}, (подчеркнуты компоненты, дающие главный вклад в общую растворимость). В реакции модельного растворения полевых шпатов в качестве возможных вторичных минералов участвуют: бёмит, диаспор,

№	Минерал, Т°С/Р кб	Вторичные минералы, эксп.	(Na+K)-Al-Si, эксп., ppm; (Na-Al-Si) эксп., mmol; [Na-Al-Si] Winsel mmol	Источник
	1 С/1,ко	H-O A nl	26(1.16) 57(1.12) 225(3.74) *)	
1	$Ab^{350/0,34}$	$\Pi_2 O, A \Pi,$ $M_{11} > Pro$	50(1.10)-57(1.12)-225(5.74) *)	[41]
		Wiu >I Ig	$\begin{bmatrix} 2.1 - 0.7 - 0.8 \end{bmatrix}$ 01(1.48) 125(1.22) 542(0.04)	
2	$Ab^{500/1}$	-	91(1.46)-153(1.55)-545(9.04)	[40]
			[2.0-2.1-1/]	
3	$Ab^{500/2}$	-	3 13(10.1)-507(9.94)-18 54(30.86)	[40]
			[8.8-7.7-28.3]	
4	$Ab^{500/1}$	-	/0(5.5)-120(2.4/)-5/4(9.55)	[31]
			[5.7-2.1-17]	
5	$Ab^{500/2}$	-	230(10.0)- $39/(7.78)$ - $1605(26.71)$	[31]
6	$Ab^{400/1}$	-	89(3.9)-127(2.49)-490(8.15)	[31]
			[4.1-1.9-15.5]	L J
7	$Ab^{400/2}$	-	1/0(/.4)-230(4.51)-101/(16.93)	[31]
,			[6.6-2.4-19.9]	[01]
8	$Ab^{400/3.5}$	-	280(12.2)-324(6.35)-1805(30.04)	[31]
U	110		[11.4-2.9-34.3]	[01]
9	Ah ^{500/3.5}	_	545(23.7)-738(14.47)-3201(53.28)	[31]
	110		[15.5-9.05-48.4]	[31]
10	$h^{600/1}$	_	40(1.74)-36(0.71)-550(9.15)	[31]
10	AU	-	[1.7-0.87-14.7]	[51]
11	Δ h ^{600/2}	_	230(10)-281(5.51)-2065(34.37)	[31]
11	110	_	[14.3-10.2-43.1]	[51]
12	Ab 600/2.5		319(13.87)-400(7.84)-2760(45.94)	[21]
12	AU	-	[17.5-13.5-52.2]	[31]
13	Ab 295/0.17	Bmt, Prg,	32(1.03)-38(0.74)-172(2.86)	[40]
15	AU	allophan?	[1.75-0.45-5.6]	[40]

Таблина 6. Раство	римость а льбита по экс	периментальным (литературным) ланным и по і	расчетам (ПК Winsel).
I doning a of I de I bo		ic photon i avibit bini	on i opary public	/ Automotion in no	pac terani (

Примечание. * – значения без скобок – экспериментальные концентрации водных компонентов в ppm, в круглых скобках – экспериментальные в mmol., в квадратных – результаты ПК "Winsel", mmol. Ми – мусковит, Prg – парагонит, Bmt – бёмит?, Anl – анальцим.

Рис. 2. Изобары растворимости компонентов Na (a), Si (б), Al (в) в системе альбит-вода в сравнении с экспериментом из [31].

Сплошные линии – эксперимент (• – экспериментальные точки), пунктир – расчет ПК "Winsel". Стрелки указывают величину и направление отклонений расчетных величин от экспериментальных.

гиббсит, корунд, парагонит, анальцим, цоизит, нефелин, каолин, анортит, микроклин. Для контроля расчетов растворимости альбита использованы экспериментальные результаты из [31], в которых аналитические ошибки для Al и Na в растворе – около 10 %, для Si – 5 %. Выход в раствор алюминия в экспериментах вплоть до 2.5-3.5 кбар имеет куполообразную зависимость с максимумом при 450-500 °C. Уменьшение концентрации алюминия при приближении к критической линии воды связано с выпадением слаборастворимых гидроксидов алюминия и алюмосиликатов. Расчетная растворимость альбита в чистой воде в виде изобар концентраций Si, Al и Na представлена пунктиром на рисунках 2 (а, б, в), причем, из модели исключены водные комплексы \underline{NaAlO}_4^* , $\underline{NaAl(OH)}_4^*$. Включение их в состав раствора при повышении температуры от 400 °С до 600 °С увеличивает концентрацию алюминия относительно эксперимента на 15-40 %, соответственно. При этом концентрации кремнезема и щелочей (до 3 кбар) в растворе остаются близкими к экспериментальным. "Выключение" частиц не правомерно, тем более, что без их использования невозможно было бы получить сходимость величин расчетной и экспериментальной растворимости корунда (см. выше). Попытки же улучшить сходимость величин концентраций компонентов раствора расчетных с экспериментальными во всем диапазоне

Р-Т с помощью изменения (подбора) ΔG водных частиц, а также исходных и вторичных минералов, сопровождающих гидролиз полевых шпатов, успехом не увенчались. Поэтому можно сделать вывод о необходимости дополнительных исследований при формировании модели вода–альбит, но, возможно, при проведении экспериментов.

Таким образом, расчетные концентрации компонентов Na, Si, Al в реакционном растворе заметно отличаются от экспериментальных. Но в первом приближении сходимость величин концентраций кремне зема, натрия и даже алюминия при давлениях менее 3 кбар (при 400–600 °C) может быть принята приемлемой для оценки ожидаемых концентраций макрокомпонентов альбита в природном процессе.

Растворимость микроклина в чистой воде близка растворимости альбита, выход компонентов в раствор представлен в таблице 7. Растворимость альбита и микроклина свидетельствует в пользу близкой подвижности катионов калия и натрия, что подтверждается в работе [22]. В ней было показано, что состав образующегося твердого раствора полевого шпата в реакционных каймах и микропрожилках чарнокитовой породы наследует К/Na-соотношение породы и внешнего углекисло-солевого флюида.

Растворимость анортита в чистой воде при 700 °С / 2 кбар исследовалась в работе [28]. Установ-

Mo	Минерал, Т, °	Вторичн.	$(N_0+K_{A1}S_i)$ and mm: $(N_0,A1S_i)$ and mmol: $[N_0,A1S_i]S_0$	Иотонник
JNO	С/Р, кб	минералы, эксп.	(Na+K-AI-SI), $SKCII., ppIII, (Na-AI-SI)$ $SKCII., IIIIIIOI, [Na-AI-SI]$ $SCI, IIIIIOI$	источник
1	Mc ^{295/ 017}	Bmt, Mu,	11(0.23)-21(0.42)-121(2.01) [1.27-0.36-3.72]	[42]
2	Mc ^{350C / 0.34}	Mu>Bm	46(0.74)-45(0.44)-178(2.96) [1.13-0.79-5.01]	[41]
3	Mc ^{500C/1}	- " -	123(1.3)-128(1.25)-511(8.5) [4.27-3.73-12.83]	[40]
4	Mc ^{500C/2}	_ `` _	392(4.16)-396(3.88)-1691(28.14) [7.48-5.65-22.31]	[40]
5	$Mc_{0.75}Ab_{0.15}^{295/0.170}$	Mu	11(0.36)+14(0.3)-21(0.82)-121(2.01)[(1.31+1.1)-0.7-4.5]	[42]

Таблица 7. Компонентный состав флюида в равновесии микроклина с чистой водой по экспериментальным данным и расчетам (ПК Winsel).

Примечание. Ми – мусковит, Втt – бёмит?, Вt – бёмит.

Таблица 8. Результаты расчетов растворимости анортита в хлоридных растворах (компонентный состав реакционного флюида [48], концентрации в моль/кг.).

Mo T°C	т°С	Cl m, p-p	m,Ca,	m,Ca,		ΠK "Winsel"					
JND	пс	исходн.	эксп.	рп _{exp}	m,Ca	pН	Si	Al**)			
1	600	0.4946	0.2239	1.45	0.2292	4.05	0.106	7.9·10 ⁻⁵			
2	_ `` _	0.1212	0.05246	1.85	0.0553	4.04	0.110	8.0·10 ⁻⁵			
3	_ `` _	0.01267	0.00521	2.67	0.0051	4.06	0.112	8.1·10 ⁻⁵			
4	_ `` _	1.451	0.6841	1.00	0.6905	4.41	0.102	$7.4 \cdot 10^{-5}$			
5	500	1.225	0.6121	1.99	0.6077	4.55	0.016	$7.4 \cdot 10^{-5}$			
6	_ '' _	0.00635	0.00315	4.27	0.0030	4.15	0.069	$4.2 \cdot 10^{-5}$			
7	_ `` _	0.1149	0.05455	3.18	0.0530	4.34	0.066	$4.1 \cdot 10^{-5}$			
8	_ '' _	0.02841	0.01406	3.57	0.0141	3.93	0.068	$4.2 \cdot 10^{-5}$			
9	400	0.504	0.246	4.49	0.2502	4.38	0.024	$1.2 \cdot 10^{-5}$			
10	_ `` _	0.2935	0.1443	4.14	0.1451	4.34	0.030	1.5.10-5			
11	_ '' _	0.0131	0.00655	5.03	0.0066	4.47	0.037	$1.8 \cdot 10^{-5}$			
12	_ '' _	0.1101	0.05463	4.41	0.0517	4.47	0.037	$1.8 \cdot 10^{-5}$			
13		0.00	-	-	$3.4 \cdot 10^{-5}$	5.46	0.038	5.8·10 ⁻⁵			

Примечание. **) – основная форма алюминия в растворе – HAlO₂*; Ca²⁺, CaCl*, CaCl⁺, CaCl²⁺ – формы водных частиц Са в последовательности убывания концентрации.

лено, что суммарная растворимость его составляет 0.09±0.03 % вес., т.е. в три раза ниже растворимости альбита (0.30±0.03). (По нашим расчетам, полная растворимость при этих параметрах составляет 0.30 % для альбита и 0.08 % для анортита). Установлено, что в чистой воде процесс растворения твердого раствора альбит-анортит происходит за счет выхода в раствор лишь К-, Na-компонентов (растворимость лабрадорита составляет 0.29(±0.03) %). Минал же анортита, несмотря на полную перекристаллизацию твердого раствора (включая кислородный каркас, изначально допированный изотопом ¹⁸О), выпадает в нерастворимый осадок. Выход Са в водный раствор из анортита, вероятно, подавляется компонентами альбита, но, как следует из эксперимента [48], значительно увеличивается при введении в электролит галоген-ионов. В этой работе растворимость анортита исследована в хлоридных растворах Н₂О-(HCl, CaCl,) при 400, 500 и 600 °C/2 кбар. Концентрация кальция измерена в реакционном растворе системы Н₂О-анортит-андалузит-кварц (минералы взяты в мольном соотношении 3/2/2, $W/R = 4 \div 7$). Результаты экспериментов и наших расчетов представлены в таблице 8. В последней строке для сравнения приведен расчет взаимодействия ассоциации с чистой водой.

Из таблицы видно, что расчетные концентрации Са в модельном реакционном растворе значительны и практически совпадают с экспериментальными. Это объясняется достоверностью термодинамической информации об участвующих в реакции твердых и жидких компонентов и тем, что процесс растворения анортита в модели и в эксперименте буферирован андалузитом и кварцем как вторичными минералами. Расхождения в значениях pH обусловлены тем, что pH исходного раствора в эксперименте задавался суммой HCl и CaCl₂, соотношение которых авторами не приводится (как и кремнезема и алюминия).

На основе проведенного моделирования перейдем к верификации термодинамических расчетов состава равновесного реакционного флюида в некоторых системах вода-порода.

Гранит-вода. Результаты нашего моделирования процесса грейзенизации гранита кислыми раство-

mUCl	n	$mA1 \cdot 10^{-3}$		$mK \cdot 10^{-3}$		▶ 10 ⁻³	mCa	· 10 ⁻³	mFe $\cdot 10^{-3}$		р	pН	
1111C1 112125	11		IIIX	IIIX 10		ini tu 10		10	mitt	10		Sel	
H ₂ O	Эксп.	*Sel., **[12]	Эксп.	Sel, [12]	Эксп.	Sel, [12]	Эксп.	Sel, [12]	Эксп.	Sel, [12]	Эксп.	[12]	
0.05	-	0.77	-	9.2	-	42	-	10-2	-	10-5	-	6.32	
0.05	1.68	0.006	27	11.2	29	36.2	0.9	1.29	2.2	1.44	6.15	6.32	
0.1	-	0.63	-	20	-	96	-	10-1	-	10-5	-	6.16	
0.1	0.87	0.005	41	21.5	47	67.4	1.87	5.52	4.6	1.44	5.96	6.16	
0.2	-	0.41	-	59	-	133	-	10	-	10-4	-	3.74	
0.2	0.12	0.004	46	29.2	80	133	6.77	10.5	14	1.55	4.19	4.972	
0.3	-	0.15	-	160	-	135	-	9.5	-	10-1	-	2.98	
0.5	0.22	0.003	62	90.7	95	131	9	10.5	16	12.3	3.35	3.62	
0.4	-	0.3	-	250	-	130	-	10.4	-	10-1	-	2.64	
0.4	0.2	0.004	96	90.7	96	131	9.31	10.5	17	25.3	2.8	2.98	
0.5	-	0.70	-	90	-	130	-	9.6	-	10-1	-	2.43	
0.5	0.5	0.005	96	90.7	96	131	11	10.5	17	25.3	2.57	2.66	

Таблица. 9. Компонентный состав (в моль/кг) равновесного флюида в системе гранит–(H₂O+HCl), 500 °,1 кb по результатам эксперимента [12] и физико-химического моделирования, W/R=10.

Примечание. *) – результаты расчета: *Sel. - ПК "Winsel", **)- результаты модели рования авторов, ПК "Гиббс" [12].

рами в сравнении с экспериментальными данными и данными теоретических оценок (ПК "Гиббс") авторов [11, 12] представлены в таблице 9. Различия в расчетах отражают влияние на состав реакционного флюида вариаций в наборе участвующих в модели минералов и водных компонентов (также их параметров).

Из таблицы видно, что полученные нами концентрации макрокомпонентов флюида (также рН) близки (за исключением Al) к экспериментальным и к рассчитанным авторами эксперимента. Концентрации Al по нашим расчетам ближе к экспериментальным из-за включения в список водных частиц комплекса AlO₂⁻ и водных комплексов щелочей с алюминием. Наибольшие расхождения наблюдаются для микрокомпонентов Са и Fe. Сходимость расчетов и эксперимента для этих элементов значительно хуже из-за неполного соответствия используемых моделей и механизма реального растворения. Верификация по фазовому составу парагенезиса, как часто это происходит, к сожалению, оказалась невозможна по причине неполноты и лишь качественной оценки его в эксперименте. В связи с этим следует отметить, что в большинстве петрологических работ последних десятилетий утерян важнейший для использования с позиций термодинамики параметр породы – количественное соотношение минералов в парагенезисе.

Пелит-вода. Верификация опирается на эксперименты растворения пелитовой ассоциации альбит-микроклин-андалузит-кварц при 650 °С/2 кбар в кислых (pH от 3.5 до 1.2) хлоридных растворах H_2O -(KCl, NaCl, HCl), с содержанием Cl от 0.01 до 3, Na до 2.05, K до 0.74 моль/кг, W/R = 2.5 ÷5 [45]. Измеренные концентрации Al и Si в пределах точности эксперимента оказались практически постоянны и равны 0.5 и 190 ммоль/кг, соответственно. Наше моделирование данного эксперимента показало полное буферирование состава раствора исследуемой ассоциацией (отсутствие вторичных минералов, так же как в эксперименте [48]). Расчетные концентрации Al и Si в реакционном растворе практически не изменяются во всем диапазоне хлоридности исходного раствора и близки к экспериментальным (0.5 и 201 ммоль/кг, соответственно). Термодинамические оценки (использован SUPCRT92) состава реакционного флюида авторов эксперимента [45] вполне согласуются с нашими результатами.

выводы

1. Результаты термодинамических расчетов состава реакционного флюида в исследованных системах вода-полевой шпат и вода-кварц, в целом, близки экспериментальным данным. В то же время, обнаружены области Р-Т и концентраций щелочей калия и натрия, в которых соответствие расчетов эксперименту значительно нарушается. Это объясняется ограниченностью моделей, неполнотой и неточностью термодинамической информации об участвующих в растворении водных компонентах. Сравнение расчетных и экспериментальных данных о составе реакционного флюида в системах вода-электролиткварц и вода-альбит при высоких Р-Т позволяет оценить величину и направление отклонений расчетных концентраций от экспериментальных.

2. Верификация термодинамических расчетов взаимодействия вода-минерал-порода при исполь-

зовании ПК "Winsel" в большинстве случаев убеждает в их адекватности экспериментам, природе и результатам, получаемым с помощью других ПК. Это дает дополнительную уверенность (для пользователей ПК) в расчетах состава раствора, равновесного исследуемому минеральному объекту. Становится ясно, что с помощью современных ПК, подобных "Winsel", можно получить огромное количество принципиально новой и важной количественной информации, недоступной для получения ее никакими другими методами.

Из проведенного анализа следует, что на современном этапе невозможно ожидать совершенно полного совпадения результатов физико-химического моделирования и природных (экспериментальных) данных во всех системах вода-минерал-порода. Работа показывает необходимость дальнейших усилий в разработке физико-химических моделей природных систем, особенно при высоких Р-Т. Но, учитывая интенсивность развития теории физико-химического моделирования и пополнения термодинамических баз данных, можно надеяться на успешное решение проблемы в недалеком будущем.

СПИСОК ЛИТЕРАТУРЫ

- Авченко О.В. Физико-химическое моделирование минеральных ассоциаций в метаморфических породах // Докл. РАН. 2005. Т. 401, № 3. С. 1–6.
- 2. Борисов М.В., Рыженко Б.Н., Крайнов С.Р. Влияние кислотно-основных свойств горных пород на состав равновесного водного раствора // Геохимия. 1984. № 5. С. 705–713.
- Борисов М.В. Геохимические и термодинамические модели жильного гидротермального рудообразования, М.: Науч. мир, 2000. 356 с.
- Брызгалин О.В. Оценка коэффициентов активности некоторых групп электролитов в широком диапазоне концентраций и Р-Т-условий // Геохимия. 1994. № 6. С. 836–849.
- 5. Бычинский В.А., Исаев В.П., Тупицин А.А. Физико-химическое моделирование в нефтегазовой геохимии. Ч. 1 и 2, Иркутск, 2004. 270 с.
- 6. Васильев В.П. Термодина мические свойства растворов электролитов, М., 1982. 320 с.
- Доломанова Е.И., Лосева Т.И., Цепин А.И. Химический состав осадков в газово-жидких включениях по данным рентгеноспектрального микроанализа. // Термобароге охимия минералообразования. Ростов: Изд-во Ростовского ун-та, 1976. 167 с.
- Иванов И.П., Борисов М.В. Оценка состава исходного раствора при метасоматическом замещении пород // Геохимия. 1980. № 12. С. 1797–1806.
- Карпов И.К. Физико-химическое моделирование на ЭВМ в геохимии. Новосибирск: Наука, Сиб. отд-ние, 1981. 245 с.
- Карпов И.К., Чудненко К.В., Бычинский В.А. Краткая инструкция к программному продукту Селектор-С. 1997. Иркутск, 1997. 102 с.
- Коваленко Н.И., Рыженко Б.Н., Велюханова Т.К. и др. Экспериментальное и ЭВМ-моделирование грейзенизации в

системе гранит-SnO₂-H₂O-HF-NaF // Геохимия. 1994. № 8-9. С. 1255–1274.

- Коваленко Н.И., Рыженко Б.Н., Барсуков В.Л. Экспериментальное и ЭВМ-моделирование процес са грейзенизации в системе гранит-SnO₂-H₂O-HCl // Геохимия. 1996. № 6. С. 538–550.
- 13. Крайнов С.Р., Рыженю Б.Н., Шваров Ю.В. Возможности и ограничения физико-химического моделирования на ЭВМ взаимодействий вода-порода при решении вопросов формирования химического с остава подземных вод // Геохимия. 1983. № 9. С. 1342–1358.
- 14. Летников Ф.А. и др. Флюидный режим метаморфизма. Новосибирск: Наука, Сиб. отд-ние, 1980. 193 с.
- Мицук Б.М., Горогоцкая Л.И. Физико-химические превращения кремнезема в условиях метаморфизма. Киев: Наук. Думка, 1980. 233 с.
- 16. Пампура В.Д. Физико-химическая модель процесса гидротермальных изменений пород в областях активного вулканизма // Физико-химические модели петрогенеза и рудообразования. Новосибирск: Наука, Сиб. отд-ние, 1984. С. 72–83.
- 17. Равич М.И. Водно-солевые системы при повышенных температурах и давлениях, М.: Наука, 1974. 151 с.
- 18. Рыженко Б.Н. Термодинамика равновесий в гидротермальных растворах, М.: Наука, 1981. 190 с.
- Рыженко Б.Н., Малинин С.Д., Плясунов А.В. Состояние изученности форм существования элементов в гидротермальных системах // Петрология. 1997. Т. 5, № 1. С. 51–62.
- 20. Рыженко Б.Н., Барсуков В.Л. и др. Флюиды земной коры; химические свойства (состав, pH, Eh) и определяющие их факторы: Доклад на международном симпозиуме "Физию-химические проблемы эндогенных геологических процессов", посвященном 100-летию акад. Д.С. Коржинского, Москва – Черноголовка, 13–15 сентя бря 1999 г.
- Рыженко Б.Н., Крайнов С.Р., Шваров Ю.В., Физико-химические факторы формирования состава природных вод (верификация модели вода-порода) // Геохимия. 2003. № 6. С. 630-640.
- Сафонов О.Г. Реакционные структуры и подвижность щелочей при метаморфизме и гранитизации: Автореф. дис... канд. геол.-минер. наук. М., 1997. 32 с.
- 23. Сутурин А.Н. Методические вопросы моделирования метасоматических процессов (на примере нефритообразования) // Физико-химические модели в геохимии. Новосибирск: Наука, Сиб. отд-ние, 1988. С. 4–37.
- 24. Хельгесон Г. Комплексообразование в гидротермальных растворах. М.: Мир, 1967. 183 с.
- 25. Ходоревская Л.И. Экспериментальные исследования фильтрации флюидов через амфиболиты при высоких параметрах // Вестн. отд-ния наук РАН, 2003. № 1(21).
- 26. Худоложкин В.О., Авченко О.В., Исследование форм существования растворенных частиц в системе вода-кремнезем в докритических и сверхкритических условиях методом термодинамического моделирования // Тихоокеан. геология. 2002. Т. 21, № 4. С. 92–102.
- 27. Шваров Ю.В. Общий критерий равновесия в изобарноизотермической модели химической системы // Геохимия. 1981. № 7. С. 981–988.
- 28. Adams J.B. Differential solution of plagioclase in supercritical water // Amer. Miner. 1968. V. 53. P. 1603–1612.
- Anderson G.M., Burnham C.W. The solubility of quartz in supercritical water // Amer. J. Sci., 1965. V. 236, N 6. P. 494–511.

- Ague J.J. Mass transfer during Barrovian metamorphism of pelites, south-central Connecticut. I., Evidence for changes in composition and volume // Amer. J. Science, 1994. V. 294. P. 989–1057.
- Curie K.I. On the solubility of albite in supersritical water in the range 400–600 °C and 750-3500 bar // Amer. J. Sci. 1968.
 V. 266. P. 321–341.
- Enler R., Hellner E. Hudrothermale und rentgenographische Untersuchungen an gesteinbildenden mineralen // Geochim. et Cosmochim. Acta, 1958. V. 13. P. 220–231.
- 33. Gerya T.V., Maresch Walther V. et al. Thermodynamic modeling of solubility and speciation of silica in H₂O-SiO₂ fluids up to 1300°C and 200 kbar based on the chain reaction formalism // European Journal of Mineralogy. 2005. V. 17, N 2. P. 269–283.
- 34. Heinrich, C.A., C.G. Ryan, T.P. Mernaugh, P.J. Eadington, Segregation of Ore Metals betweeen Magmatic Brine and Vapor: a Fluid Inclusion Study using PIXE Microanalysis // Economic Geology, 1993. V. 87. P. 1566–1583.
- 35. Helgeson H.C., Kirkham D.H., Flowers G.C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: Summary of the thermodynamic / electrostatic properties of the solvent // Amer. J. Sci., 1974. V. 10. P. 1089–1198.
- 36. Helgeson H.C., Kirkham D.H., Flowers G.C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients and apparent molar and standard and relative partial molar properties to 600°C and 5 kb // Amer. J. Sci., 1981. V. 281. P. 1249–1516.
- Kennedy G.C. A portion of the system silica-water // Economic Geology, 1950. V. 45. N 7. P. 629–653.
- Lowell R.P., Van Cappellen P., Germanovich L.N., Silica precipitation in fracture and evolution of permeability in hydrothermal upflow zones // Science. 1993. V. 260. P. 192–194.
- 39. Manning C.E. Coupled reaction and flow in subduction zones: Silica metasomatism in the mantle wedge // In Fluid flow and transport in rocks (ed. Jamtveit B. and Yardley W.D.), 1997. P. 139–148.
- Morey G.W., Hesselgesser The solubility of some minerals in superheated steam at high pressure // Econom. Geol., 1951. V. 46, N 8. P. 821–835.

- 41. Morey G.W., Chen W.T. The action of hot water on some feldspars //Amer. Miner., 1955. V. 40, N 11-12. P. 996-1000.
- Morey G. W., Fournier R.O. The decomposition of microcline, albite and nepheline in hot water // Amer. Miner., 1961. V. 46, P. 688-699.
- Murphy W.M., Helgeson H.C. Surface exchange and the hydrolysis of feldspar // Geochim. Cosmochim. Acta, 1989. V.53, N 2, P. 559.
- 44. Newton R.C., Manning C.E. Quartz solubility in H₂O-NaCl and H₂O-CO₂ solutions at deep crust – upper mantle pressures and temperatures: 20-15 kbar and 500-900°C // Geochim. Cosmochim. Acta, 2000. V.64. N 17. P. 2993–3005.
- 45. Pak T.M., Hauzenberger C.A., Baumgartner L.P. Solubility of the assemblage albite+K-feldspar+andalusite+quartz in supercritical aqueous chloride solutions at 650°C and 2 kbar // Chemical Geology, 2003. V. 200. P. 377–393.
- 46. Pascal M.L., Anderson G.M. Speciation of Al, Si and K in supercritical solutions: Experimental study and interpretation // Geochim. Cosmochim. Acta, 1989. V. 53, N 8. P. 1843–55.
- Ragnarsdottir K.V., Walther J.V. Experimental determination of corundum solubility in pure water between 400-700°C and 1-3 kbar // Geochim. Cosmochim. Acta, 1985. V. 49, N 10. P. 2109–2117.
- 48. Rossele G.T., Baumgartner L.P. Experimental determination of anorthite solubility and calcium speciation in supercritical chloride solutions at 2kb from 400 to 600°C // Geochim. Cosmochim. Acta, 1995. V. 59, N 8. P. 1539–1549.
- 49. Stefansson A. Dissolution of primery minerals of basalt in natural waters. I. Calculation of mineral solubilities from 0° to 350 °C // Chemical Geology, 2001. V. 172. P. 225–246.
- 50. Walther J.V., Helgeson H.C. Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures // Amer. Journ. Sci., 1977. V. 277. P.1315–1351.
- 51. Walther J.V. Experimental determination and interpretation of the solubility of corundum in H2O between 350 and 600 °C from 0.5 to 2.2 kbar // Geochim. Cosmochim. Acta // 1997. V. 61, N 23. P. 4955–4964.

Рекомендована к печати О.В. Авченко

V. O. Khudolozhkin

The problem of quantitative evaluation of fluid composition under metamorphism (verification of physical-chemical modeling of water – mineral – rock reactions)

The paper offers results of comparison of physical-chemical quantitative calculation of the reaction fluid's composition (based on the "Winsel" software package) with experimental data for the systems water– electrolyte (NaCl, HCl, NaOH, KOH) – mineral (quartz, corundum, microcline, plagioclase) – rock (granite, pelite) at T 400°-800°C and P 1-10 kbar. P-T and fluid composition constraints have been established which ensure agreement of calculations of rock and mineral dissolution and experimental data.

Key words: Solubility, verification, physical-chemical modeling, composition of metamorphic fluid.