— ГЕОЛОГИЯ —

УДК 551.24:552.32(571.66)

КАМПАНСКИЙ ЭТАП ГРАНИТООБРАЗОВАНИЯ НА ЮГЕ СРЕДИННОГО ХРЕБТА КАМЧАТКИ: НОВЫЕ U-Pb-SHRIMP-ДАННЫЕ

© 2010 г. М. В. Лучицкая, А. В. Соловьев

Представлено академиком Ю.М. Пущаровским 21.04.2009 г.

Поступило 30.04.2009 г.

Континентальная кора Камчатки является новообразованной, так как большая часть ее гранитно-метаморфического слоя сформировалась в конце позднего мела-палеогене. Процессы гранитообразования и метаморфизма широко проявлены в пределах Малкинского поднятия Срединного хребта Камчатки, являющегося хорошим объектом для изучения процессов формирования континентальной коры в мезо-кайнозое. Изучение этих процессов на принципиально новом уровне стало возможно лишь с появлением новых прецизионных методик геохронологии, таких как U-Pb-SHRIMP-датирование циркона. Именно использование таких методик позволило в последние годы выделить два этапа гранитообразования и становления новообразованной континентальной коры Камчатки: позднемеловой (80-77 млн. лет) и раннеэоценовый (52 млн. лет) [1, 2]. Раннеэоценовый этап гранитообразования и метаморфизма, совпадающий с временем коллизии Ачайваям-Валагинской энсиматической островной дуги с Камчатской окраиной Евразии, хорошо обоснован [1, 3]. Однако выделение кампанского этапа опиралось на весьма ограниченное количество данных и вызывало много споров о природе этого явления. Предполагалось, что позднемеловой этап связан с аккреционной обстановкой на Камчатской окраине Евразии [2]. Для подтверждения масштабности проявления кампанского гранитного магматизма на юге Срединного хребта в 2004-2005 гг. были проведены детальные тематические исследовании. В результате этих работ удалось обосновать значение кампанского этапа гранитообразования для формирования континентальной коры.

Согласно работам последних лет, структура Малкинского поднятия Срединного хребта рассматривается как покровно-складчатая [1, 4, 5]. В состав автохтона включены образования колпаковской серии, прорванные гнейсовидными кру-

Геологический институт

Российской Академии наук, Москва

тогоровскими гранитами и перекрытые отложениями камчатской серии, хейванской и хозгонской свит. Аллохтон сложен отложениями андриановской, химкинской, ирунейской и кирганикской свит. К неоавтохтону в Срединном хребте относятся нижнеэоценовые отложения барабской свиты, несогласно перекрывающие как метаморфические комплексы, так и меловые отложения ирунейской свиты [1].

Гранитоиды Малкинского поднятия Срединного хребта представлены двумя типами: гнейсовидными и равномернозернистыми [1, 2], структурная позиция которых принципиально различна. Считается, что гнейсовидные граниты прорывают только образования колпаковской серии и их формирование произошло в кампане, в то время как равномернозернистые граниты имеют раннеэоценовый возраст и прорывают как комплексы автохтона, так и нижних частей аллохтона. Таким образом, была сделана попытка использовать текстурные особенности гранитоидов в качестве критерия для разделения их по возрастам: гнейсовидные – кампанские, равномернозернистые – раннезоценовые. Имеющиеся на тот момент геохронологические данные подтверждали это [1, 2]. Однако полученные новые данные показали, что имеются исключения.

Цирконы для геохронологических исследований были выделены и изучены как из гнейсовидных (438/1 и 439/1), так и из равномернозернистых (427/1) гранитоидов. Пробы 438/1 и 439/1 отобраны в правом борту р. Поперечная (54°27,405'с.ш., 945 М 54°26,194'с.ш., 157°09,850′ в.д., И 157°09,650'в.д., 993 м соответственно) (рис. 1). Первая представлена биотитовыми гнейсовидными гранитами, вторая – слабогнейсовидными двуслюдяными гранитами с гранатом. Проба 427/1 отобрана из среднезернистых двуслюдяных гранитов в районе р. Правая Колпакова (54°32,472'с.ш., 157°24,272'в.д., 1303 м), которые прорывают сланцы и гнейсы автохтона и содержат их ксенолиты.

Рис. 1. Схема геологического строения района р. Колпакова Срединного хребта Камчатки по [10, 11] с изменениями авторов. 1 – четвертичные отложения; 2 – вулканогенные и осадочно-вулканогенные отложения кирганикской свиты (маастрихт–палеоцен); 3-5 – сантон-кампанские кремнисто-вулканогенные отложения и их метаморфизованные аналоги: 3 – ирунейской свиты, 4 – химкинской свиты, 5 – андриановской свиты; 6-8 – верхнемеловые—палеоценовые терригенные отложения и их метаморфизованные осой свиты; 4 – химкинской свиты, 5 – андриановской свиты; 6-8 – верхнемеловые—палеоценовые терригенные отложения и их метаморфические аналоги: 6 – хозгонской свиты, 7 – хейванской и стопольниковской свит, 8 – камчатской серии (шихтинской свиты); 9 – нижне- и верхнемеловые метаморфические образования колпаковской серии; 10 – верхнеюрские—нижнемеловые (?) вулканогенные образования квахонской серии; 11 – эоценовые равномернозернистые гранитоиды; 12 – верхнемеловые гнейсовидные граниты и гранито-гнейсы крутогоровского комплекса; 13 – верхнемеловые (кампан—маастрихт) интрузии пироксен-габбро-сиенитового состава; 14 – надвиги: a – главные (между автохтоном и аллохтоном), 6 – второстепенные; 15 – субвертикальные разрывы: a, δ – главные: a – картируемые, δ – предполагаемые, e – второстепенные; 16 – предполагаемые разрывы; 17 – участки отбора проб (I – верховья р. Поперечная, правый приток р. Колпакова, II – среднее течение р. Правая Колпакова).

Аналитические методы. U–Pb-датирование цирконов осуществлялось Д.И. Матуковым и С.Л. Пресняковым на ионном микрозонде SHRIMP-II в Центре изотопных исследований ВСЕГЕИ.

Отобранные вручную зерна цирконов имплантировались в эпоксидную смолу вместе с зернами стандартных цирконов TEMORA и 91500, затем пришлифовались и полировались. Для выбора участков (точек) датирования на поверхности зерен использовались оптические (в проходящем и отраженном свете) и катодолюминесцентные изображения, отражающие внутреннюю структуру и зональность цирконов.

Измерения U–Pb-отношений на SHRIMP-II проводили по методике, описанной в [6]. Интенсивность первичного пучка молекулярных отрицательно заряженных ионов кислорода составляла 2 нА, диаметр пятна (кратера) 15 мкм. Обработку полученных данных осуществляли с использованием программы SQUID [7]. U–Pbотношения нормализовались на значение 0.0668, приписанное стандартному циркону TEMORA, что соответствует возрасту этого циркона 416.75 млн. лет [8]. Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1σ , погрешности вычисленных конкордантных возрастов и пересечений с конкордией приводятся на уровне 2σ . Построение графиков с конкордией проводилось с использованием программы ISOPLOT/EX [9].

U–Pb-S H R I M P - данные. Цирконы из гнейсовидных гранитоидов (пробы 438/1, 439/1) представлены идиоморфными коротко- и удлиненно-призматическими кристаллами размером от 80 до 400 мкм. Катодолюминесцентные изображения кристаллов циркона показывают наличие зональности, параллельной кристаллографическим ограничениям, и отсутствие ксеногенных ядер (рис. 2, 3), что указывает на магматическое

Рис. 2. График конкордии для U–Pb-SHRIMP-данных по цирконам из гнейсовидных гранитов (обр. 438/1) Малкинского поднятия Срединного хребта Камчатки и катодолюминесцентные изображения цирконов. Здесь и на рис. 3, 4 светлые кружки показывают точку измерения, цифры – возраст.

происхождение популяции цирконов. Средневзвешенное значение возраста в пробе 438/1 по 7 точкам составляет 83.1 \pm 2.0 млн. лет (рис. 2, табл. 1) и в пробе 439/1 по 10 точкам 76.2 \pm \pm 1.5 млн. лет (рис. 3, табл. 1).

Цирконы из среднезернистых двуслюдяных гранитов (обр. 427/1) представлены идиоморфными коротко- и удлиненно-призматическими кристаллами размером от 100 до 250 мкм. Катодолюминесцентные изображения кристаллов циркона, так же как и в случае гнейсовидных гранитов, свидетельствуют о магматической зональности и отсутствии ксеногенных ядер (рис. 4). Средневзвешенное значение возраста по 8 точкам составляет 81.0 \pm 1.8 млн. лет, СКВО = 0.86 (рис. 4, табл. 1). Кроме того, в единичном кристалле циркона были получены два значения возраста, составляющие 54.0 \pm 1.4 и 58.5 \pm 1.6 млн. лет. Появление этого зерна в пробе, скорее всего, связано с контаминацией при выделении цирконов из породы.

Полученные U–Pb-датировки цирконов позволяют предполагать, что внедрение и кристаллизация гранитоидов происходили в интервале

Рис. 3. График конкордии для U–Pb-SHRIMP-данных по цирконам из гнейсовидных гранитов (обр. 439/1) Малкинского поднятия Срединного хребта Камчатки.

времени от 76.2 ± 1.5 до 83.1 ± 2.0 млн. лет, что соответствует позднемеловому (кампанскому) этапу гранитообразования. Поскольку и гнейсовидные, и равномернозернистые имеют одинаковый возраст в пределах точности метода, то становится очевидным, что текстурный критерий отнесения гранитоидов к тому или иному возрасту в данном районе не является универсальным.

Анализ изложенных выше данных и сопоставление с ранее полученными датировками цирконов из гранитоидов других районов Малкинского поднятия Срединного хребта, а также распределение U—Pb-SHRIMP-данных по площади показывают, что в северных районах поднятия преобладают граниты раннеэоценового возраста (52 ± 2 млн. лет), а в южных — граниты позднемелового возраста (76—82 млн. лет).

В ы в о д ы 1. U–Pb-SHRIMP-датирование цирконов из гранитоидов Малкинского поднятия Срединного хребта Камчатки позволило обосновать возраст их внедрения и кристаллизации в интервале времени от 76.2 ± 1.5 до 83.1 ± 2.0 млн. лет.

ЛУЧИЦКАЯ, СОЛОВЬЕВ

№ точки	²⁰⁶ Рb _{обыч} , %	U, г/т	Th, r/т	Th/U	Некорректированные		²⁰⁴ Рb корректи- рованные
					²³⁸ U/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Рb/ ²³⁸ U- возраст
438-1.1.1	2.27	267	55	0.21	73.42 ± 2.3	0.0594 ± 0.0020	85.0 ± 3.0
-1.2.1	1.93	220	33	0.15	70.02 ± 2.3	0.0556 ± 0.0019	90.0 ± 3.0
-1.3.1	0.86	213	39	0.19	74.68 ± 2.4	0.0550 ± 0.0019	85.0 ± 3.0
-1.4.1	0.05	244	36	0.15	74.78 ± 2.5	0.0534 ± 0.0021	85.0 ± 3.0
-1.5.1	1.38	768	62	0.08	90.77 ± 2.9	0.0597 ± 0.0014	70.0 ± 2.0
-1.5.2	1.62	177	36	0.21	69.47 ± 2.3	0.0562 ± 0.0025	91.0 ± 3.0
-1.6.1	1.37	127	22	0.18	74.63 ± 2.7	0.0656 ± 0.0035	85.0 ± 3.0
-1.6.2	0.38	346	25	0.08	77.59 ± 2.5	0.0548 ± 0.0020	82.0 ± 3.0
-1.6.3	2.04	279	28	0.1	78.21 ± 2.6	0.0562 ± 0.0022	80.0 ± 3.0
-1.7.1	0.06	4542	406	0.09	80.86 ± 2.5	0.0473 ± 0.0005	79.0 ± 2.0
439-1_1.1	0.4	434	157	0.37	83.3 ± 1.9	0.0487 ± 0.0012	76.6 ± 1.8
-1_2.1	2.67	827	27	0.03	84.4 ± 1.9	0.0779 ± 0.0025	73.9 ± 1.7
-1_3.1	1.92	775	181	0.24	82.2 ± 1.9	0.0684 ± 0.0011	76.5 ± 1.8
-1_4.1	0.33	2053	275	0.14	79.7 ± 1.8	0.05267 ± 0.0006	80.2 ± 1.8
-1_5.1	0.79	446	115	0.27	88.0 ± 2.0	0.0536 ± 0.0012	72.3 ± 1.7
-1_6.1	0.38	256	73	0.29	79.3 ± 1.8	0.0517 ± 0.0016	80.4 ± 1.9
-1_7.1	0.02	2568	178	0.07	86.7 ± 1.9	0.04739 ± 0.0005	73.9 ± 1.6
-1_8.1	0.88	440	63	0.15	85.4 ± 2.0	0.0557 ± 0.0013	74.4 ± 1.7
-1_9.1	0.2	542	246	0.47	82.2 ± 1.9	0.0508 ± 0.0011	77.8 ± 1.8
-1_10.1	0.58	409	111	0.28	81.5 ± 1.9	0.0522 ± 0.0013	78.1 ± 1.8
427_1.1.1	0.52	964	39	0.04	79.2 ± 2.1	0.0526 ± 0.0017	80.4 ± 2.1
_1.2.1	0.3	2485	314	0.13	118.6 ± 3.1	0.0514 ± 0.0011	54.0 ± 2.1
_1.2.2	0.09	708	136	0.2	109.6 ± 3.0	0.0534 ± 0.0039	58.5 ± 2.1
_1.3.1	0.38	307	133	0.45	76.5 ± 2.1	0.0633 ± 0.0070	83.3 ± 2.1
_1.4.1	0.23	1603	110	0.07	93.7 ± 2.4	0.0488 ± 0.0012	68.2 ± 2.1
_1.5.1	2.56	334	52	0.16	76.9 ± 2.2	0.0743 ± 0.0074	81.1 ± 2.1
_1.6.1	2.64	525	143	0.28	80.0 ± 2.2	0.0673 ± 0.0022	78.0 ± 2.1
_1.7.1	0.74	382	133	0.36	75.9 ± 2.1	0.0585 ± 0.0051	83.7 ± 2.1
_1.8.1	2.5	333	73	0.23	79.0 ± 2.2	0.0566 ± 0.0024	79.1 ± 2.1
_1.9.1	2.35	267	171	0.66	76.4 ± 2.2	0.0557 ± 0.0025	81.9 ± 2.1

Таблица 1. Результаты U–Pb-SHRIMP-исследований цирконов из гранитоидов Малкинского поднятия Срединного хребта

ДОКЛАДЫ АКАДЕМИИ НАУК том 430 № 3 2010

Рис. 4. График конкордии для U–Pb-SHRIMP-данных по цирконам из среднезернистых двуслюдяных гранитов (обр. 427/1) Малкинского поднятия Срединного хребта Камчатки.

Таким образом, надежно подтвержден позднемеловой (кампанский) этап гранитообразования и становления новообразованной континентальной коры Камчатки. 2. Анализ возраста гранитоидов по площади показывает, что в северных районах Малкинского поднятия преобладают граниты с возрастом 52 ± 2 млн. лет, маркирующие этап коллизии Ачайваям-Валагинской энсиматической островной дуги с Камчатской окраиной Евразии в раннеэоценовое время, а в южных районах — граниты позднемелового возраста (76–82 млн. лет), внедрение которых, вероятно, происходило в аккреционной обстановке на Камчатской окраине Евразии.

Работа выполнена при финансовой поддержке РФФИ (грант 07–05–00255), ФЦНТП "Ведущие научные школы" (НШ-3172.2008.5), гранта Президента РФ МД-2721.2008.5, Программ фундаментальных исследований ОНЗ РАН № 4 и № 6, Фонда содействия отечественной науке.

СПИСОК ЛИТЕРАТУРЫ

1. Соловьев А.В. Изучение тектонических процессов в областях конвергенции литосферных плит метода-

ми трекового датирования и структурного анализа. Тр. ГИН. М.: Наука, 2008. В. 577. 319 с.

- 2. Лучицкая М.В., Соловьев А.В., Хоуриган Дж.К. // Геотектоника. 2008. № 4. С. 49-69.
- 3. Hourigan J.K., Brandon M.T., Soloviev A.V. et al. // Amer. J. Sci. 2009. V. 309. P. 333–396.
- 4. Рихтер А.В. // Геотектоника. 1995. № 1. С. 71-78.
- 5. Кирмасов А.Б., Соловьев А.В., Хоуриган Дж.К. // Геотектоника. 2004. № 4. С. 64–90.
- 6. Williams I.S. // Rev. Econ. Geol. 1998. V. 7. P. 1-35.

- 7. *Ludwig K.R.* SQUID 1.00. A User's Manual // Berkeley Geochronol. Center Spec. Publ. 2000. № 2.
- Black L.P., Kamo S.L., Allen C.M. et al. // Chem. Geol. 2003. V. 200. P. 155–170.
- Wetherill G.W. // Trans. Amer. Geophys. Union. 1956. V. 3–7. P. 320–326.
- Карта полезных ископаемых Камчатской области 1:500000 / Под ред. А.Ф. Литвинова, М.Г. Патока, Б.А. Марковского. СПб.: ВСЕГЕИ, 1999.
- 11. Шапиро М.Н., Соловьев А.В., Хоуриган Дж.К. // Геотектоника. 2008. № 6. С. 70–92.