= ГЕОХИМИЯ ===

УДК 553.064/.065(265.53)

НОВЫЕ ДАННЫЕ О РАСПРЕДЕЛЕНИИ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ И ИТТРИЯ В ГИДРОТЕРМАЛЬНО-ОСАДОЧНЫХ Fe-Mn-КОРКАХ ЯПОНСКОГО МОРЯ ПО РЕЗУЛЬТАТАМ ФАЗОВОГО АНАЛИЗА

© 2014 г. П. Е. Михайлик, академик А. И. Ханчук, Е. В. Михайлик, Н. В. Зарубина, М. Г. Блохин

Поступило 01.08.2013 г.

DOI: 10.7868/S0869565214030219

В процессе длительного роста Fe—Mn-корок рудные фазы сорбируют из морской воды значительное количество химических элементов. Кроме того, происходят процессы замещения и соосаждения металлов с главными оксидами. Для выявления корреляционных связей металлов с минеральными фазами корок используются статистические методы. Однако для элементов, которые обогащены более чем в одной фазе, такие связи статистически выявить проблематично.

Fe-Мп-корки с подводных вулканов Японского моря по текстурно-структурным признакам и ряду минералого-геохимических критериев характеризуются как гидротермально-осадочные [1]. Однако распределение нормализованных по сланцу или хондриту [2] РЗЭ и Ү (РЗИ) в некоторых образцах свидетельствует о гидрогенной примеси (наличие положительной цериевой $(Ce/Ce^* > 1)$ и отрицательной иттриевой (Y/Ho < 28)аномалий), что, в свою очередь, затрудняет суждение о генезисе. Причем это наблюдается в образцах Fe-Mn-корок с одной станции драгирования (табл. 1). Для выявления причины такого распределения нами впервые для гидротермальноосадочных Fe-Mn-корок изучено распределение РЗИ в минеральных фазах.

Материалом для исследования послужили образцы Fe—Mn-корок, драгированные в 36-м рейсе НИС "Первенец" с подводной возвышенности Беляевского (Центральная котловина Японского моря, ст. 2069/2 (41°26.0' с.ш., 134°59.6' в.д., глубина 2500–2200 м)) Е.П. Леликовым и В.Т. Съединым (ТОИ ДВО РАН) и переданные нам для изучения. Образцы 2069/2-2, 2069/2-15-1 представляют верхние слои корок, обр. 2069/2-П7 — Мпрудную брекчию, которая является их субстратом. Особенности вещественного состава изученных Fe—Мп-корок рассмотрены в [1].

Данные рентгенофазового и электронно-микроскопического исследований показывают, что образцы сложены тодорокитом, бёрнесситом, пиролюзитом и в редких случаях — небольшим количеством вернадита [1, 3].

Распределение РЗИ и основных элементов в минеральных фазах Fe-Mn-корок (I – легкорастворимая биогенная, II – марганцевая, III – железистая, IV – остаточная алюмосиликатная) установлено методом селективного выщелачивания [4] в лаборатории аналитической химии ДВГИ ДВО РАН.

Результаты распределения РЗИ и главных макроэлементов в четырех фазах представлены в табл. 1, а в табл. 2 дано процентное соотношение между фазами.

І фаза (легко выщелачиваемые катионы и карбонаты) содержит 1.07, 0.41, 0.92% Са для проб 2069/2-2, 2069/2-П17, 2069/2-15-1 соответственно, табл. 1, что составляет 64.05, 70.01, 61.18% относительно их валового содержания. Количество Мп, Fe, Si, Al от общего содержания в (табл. 2). Среди РЗИ максимальные концентрации установлены для Y 0.48–1.26 (табл. 1), не превышающие 11.22% (рис. 16; табл. 2). Минимальными значениями среди РЗИ относительно суммарного содержания характеризуется Се 0.07–0.42% (рис. 1, табл. 2). Сумма РЗИ для фазы I в исследуемых образцах 1.29–2.42 г/т (табл. 1).

II фаза представлена элементами, ассоциирующимися с марганцевыми минералами. Большая часть Mn (85.77, 75.84 и 74.92% для 2069/2-2, 2069/2-П7, 2069/2-15-1 соответственно), а также

Дальневосточный геологический институт

Дальневосточного отделения

Российской Академии наук, Владивосток

НОВЫЕ ДАННЫЕ О РАСПРЕДЕЛЕНИИ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

		Обј	o. 2069/	/2-2			Обр	. 2069/2	2-П7		Обр. 2069/2-15-1					
	Фаза І	Фаза II	Фаза III	Фаза IV	Σ	Фаза І	Фаза II	Фаза III	Фаза IV	Σ	Фаза І	Фаза II	Фаза III	Фаза IV	Σ	
	(%)						(%)			(%)						
Ca	1.07	0.52	0.02	0.06	1.67	0.41	0.15	0.02	0.01	0.58	0.92	0.57	0.01	0.01	1.51	
Mn	0.03	38.02	6.26	0.02	44.33	0.12	37.39	11.75	0.04	49.30	0.03	39.25	13.03	0.09	52.40	
Fe	0.001	0.04	1.29	0.82	2.16	0.001	0.19	2.26	1.28	3.74	0.002	0.14	1.77	0.65	2.56	
Si	0.03	0.01	0.01	5.49	5.54	0.01	0.004	0.01	1.57	1.59	0.02	0.003	0.002	0.63	0.65	
Al	0.001	0.03	0.12	1.17	1.33	0.001	0.03	0.04	0.36	0.43	0.001	0.03	0.03	0.24	0.31	
	(г/т)							(г/т)	1	1	(г/т)					
Y	0.88	0.23	5.30	1.41	7.82	0.48	0.24	3.12	1.34	5.19	1.26	0.13	5.98	4.70	12.07	
La	0.17	0.72	4.87	2.35	8.11	0.09	1.10	3.78	1.21	6.18	0.22	0.70	6.58	2.92	10.42	
Ce	0.02	0.36	7.70	4.72	12.79	0.13	2.05	20.61	8.45	31.24	0.01	0.29	8.66	4.98	13.94	
Pr	0.03	0.02	0.86	0.58	1.49	0.03	0.05	0.94	0.53	1.55	0.05	0.02	1.14	0.78	1.99	
Nd	0.19	0.08	3.51	2.16	5.94	0.20	0.18	3.60	2.22	6.21	0.29	0.09	4.62	3.41	8.42	
Sm	0.05	0.02	0.65	0.41	1.14	0.07	0.09	0.75	0.59	1.50	0.09	0.04	0.85	0.74	1.72	
Eu	0.01	<	0.15	0.08	0.24	0.01	<	0.17	0.13	0.31	0.02	<	0.20	0.17	0.39	
Gd	0.08	0.03	0.85	0.33	1.28	0.08	0.10	0.98	0.50	1.65	0.13	<	1.13	0.80	2.06	
Tb	0.01	0.001	0.13	0.05	0.19	0.01	0.002	0.14	0.09	0.24	0.02	0.001	0.16	0.13	0.32	
Dy	0.08	0.01	0.77	0.29	1.15	0.08	0.01	0.78	0.54	1.41	0.13	0.01	0.99	0.86	1.99	
Но	0.02	0.002	0.17	0.06	0.24	0.02	0.003	0.16	0.10	0.28	0.03	0.001	0.22	0.19	0.44	
Er	0.05	0.004	0.49	0.17	0.71	0.04	0.01	0.44	0.30	0.79	0.09	0.01	0.62	0.61	1.32	
Tm	0.01	<	0.07	0.02	0.10	0.01	0.002	0.06	0.05	0.12	0.01	<	0.08	0.10	0.19	
Yb	0.03	0.003	0.39	0.16	0.59	0.03	0.003	0.36	0.35	0.75	0.06	<	0.48	0.67	1.21	
Lu	0.01	<	0.06	0.02	0.09	0.01	<	0.05	0.05	0.11	0.01	<	0.07	0.11	0.19	
ΣРЗИ	1.62	1.48	25.95	12.81	41.87	1.29	3.85	35.93	16.47	57.54	2.42	1.28	31.79	21.17	56.67	
Ce/Ce*	0.04	0.43	0.84	0.95	0.83	0.8	1.50	2.52	2.18	2.28	0.02	0.35	0.71	0.71	0.67	
Y/Ho	49	94	32	25	32	30	84	20	13	19	41	88	28	25	28	
Eu/Eu*	0.88	0.00	0.91	1.03	0.93	0.97	0.00	0.90	1.12	0.93	0.89	0.00	0.92	1.03	0.95	

Таблица 1. Содержание Ca, Mn, Fe, Si, Al, РЗИ и величины Ce/Ce*, Y/Ho, Eu/Eu* в четырех минеральных фазах гидротермально-осадочных Fe–Mn-корках подводной возвышенности Беляевского

Примечание. < - Ниже предела обнаружения.

30.92% (2069/2-2), 26.09% (2069/2-П7), 37.54% (2069/2-15-1) от общего Са переходит во вторую вытяжку. Fe, Si, Al находятся в подчиненном количестве, сопоставимом со значениями для I фазы. В данной вытяжке содержится наименьшее количество РЗИ с максимальным накоплением лантана до 17.86% (2069/2-П7), для двух других проб его содержание 8.89% (2069/2-2) и 6.70% (2069/2-15-1) (табл. 2, рис. 1). Содержания Eu, Lu во всех образцах и Gd, Tm, Yb в обр. 2069/2-15-1

ДОКЛАДЫ АКАДЕМИИ НАУК том 454 № 3 2014

		Обј	p. 2069/	/2-2			Обр	. 2069/2	2-П7		Обр. 2069/2-15-1					
	Фаза І	Фаза II	Фаза III	Фаза IV	Σ	Фаза І	Фаза II	Фаза III	Фаза IV	Σ	Фаза І	Фаза II	Фаза III	Фаза IV	Σ	
Ca	64.05	30.92	1.35	3.66	100	70.01	26.09	2.59	1.31	100	61.18	37.54	0.68	0.61	100	
Mn	0.06	85.77	14.12	0.06	100	0.24	75.84	23.83	0.08	100	0.05	74.92	24.86	0.17	100	
Fe	0.06	2.07	59.79	38.08	100	0.04	5.03	60.58	34.36	100	0.07	5.42	69.03	25.48	100	
Si	0.59	0.12	0.27	99.02	100	0.75	0.23	0.59	98.43	100	2.73	0.48	0.37	96.43	100	
Al	0.10	2.58	8.79	88.53	100	0.16	7.72	9.43	82.70	100	0.27	11.09	9.69	78.94	100	
Y	11.22	2.97	67.73	18.09	100	9.32	4.67	60.11	25.90	100	10.41	1.08	49.58	38.93	100	
La	2.09	8.89	60.03	28.99	100	1.46	17.86	61.07	19.62	100	2.07	6.70	63.18	28.04	100	
Ce	0.13	2.79	60.22	36.86	100	0.42	6.57	65.95	27.06	100	0.07	2.10	62.13	35.70	100	
Pr	2.29	1.35	57.59	38.77	100	2.23	3.20	60.45	34.11	100	2.44	1.05	57.34	39.17	100	
Nd	3.14	1.28	59.21	36.37	100	3.24	2.96	58.03	35.77	100	3.48	1.04	54.93	40.55	100	
Sm	4.78	2.13	57.05	36.04	100	4.43	6.27	50.01	39.28	100	5.24	2.25	49.33	43.19	100	
Eu	5.17	0	61.27	33.56	100	4.74	0	53.71	41.55	100	5.49	0	50.42	44.09	100	
Gd	5.89	2.09	66.22	25.79	100	4.62	5.82	59.12	30.44	100	6.28	0	54.83	38.89	100	
Tb	6.27	0.47	65.89	27.37	100	5.25	0.75	56.38	37.62	100	6.55	0.21	51.43	41.81	100	
Dy	6.63	1.14	66.93	25.30	100	5.40	0.97	55.12	38.51	100	6.62	0.40	49.64	43.33	100	
Но	7.29	1.02	68.70	22.99	100	5.76	1.04	57.06	36.14	100	6.95	0.34	49.31	43.41	100	
Er	6.86	0.62	69.15	23.37	100	5.54	0.91	55.95	37.60	100	6.51	0.44	46.93	46.13	100	
Tm	5.76	0	68.59	25.65	100	4.59	1.32	52.43	41.66	100	5.28	0	43.98	50.74	100	
Yb	5.55	0.53	66.53	27.39	100	4.38	0.46	48.15	47.01	100	5.14	0	39.71	55.16	100	
Lu	6.41	0	66.10	27.49	100	5.18	0	48.84	45.98	100	5.86	0	38.28	55.86	100	

Таблица 2. Процентное соотношение Ca, Mn, Fe, Si, Al, РЗИ в четырех минеральных фазах гидротермально-осадочных Fe–Mn-корках подводной возвышенности Беляевского

находятся ниже предела обнаружения. Сумма РЗИ фазы II граничит в пределах 1.28–3.85% (табл. 1).

III фаза (элементы, ассоциирующиеся с оксигидроксидами Fe) характеризуется высвобождением Fe – 59.79% (2069/2-2), 60.58% (2069/2-П7), 69.03% (2069/2-15-1). Однако в вытяжку переходит достаточно большое количество марганца – до 24.86% (табл. 2). Содержание Si, Al, как и в первых двух фазах, ничтожно мало. В эту фазу переходит основное количество РЗИ. Сумма РЗИ составляет 25.95 г/т (2069/2-2), 35.93 г/т (2069/2-П7), 31.79 г/т (2069/2-15-1). Максимальное накопление среди РЗИ установлено для Er 69.15%, а минимальное для Lu – 38.28% (табл. 2; рис. 1) от их общего количества.

IV фаза (элементы, входящие в состав остаточного алюмосиликатного каркаса) содержит основное количество Si и Al: 99.02 и 88.53% – 2069/2-2; 98.43 и 82.70% – 2069/2-П7; 96.43 и 78.94% – 2069/2-15-1 (табл. 2). Концентрация Fe 25.48–38.08% от валового содержания. Более того, отмечается высокое содержание РЗИ, сумма которых достигает 12.81 г/т для образца 2069/2-2, 16.47 г/т (2069/2-2)-П7 и 21.17 г/т (2069/2-15-1).

Отличительная особенность накопления РЗИ в Fe–Mn-корках подводной возвышенности Беляевского – отсутствие Eu, Lu в Mn-фазе (табл. 1). Основная часть Еи содержится в железистой (50.42-61.27% от общего количества) и алюмосиликатной (33.56-44.09%) составляющих (табл. 2). Lu также приурочен к этим фазам. В гидрогенных Fe-Mn-корках [5] количество Еu, Lu в Mn-фазе высоко, содержание Eu изменяется от 14.92 до 24.39% от валового, а Lu – от 16.43 до 22.92%. Максимальное количество этих элементов сосредоточено в фазе III (до 80%), а в алюмосиликатной (фаза IV) – от сотых долей до первых (Eu 0.08–1.74%; Lu 0.04–0.94%) процентов [5].

Данные по валовому содержанию РЗИ исследуемых Fe-Mn-корок свидетельствуют о наличии отрицательной Еи-аномалии (табл. 1), а это не характерно для гидротермальных образований. Этот факт отмечен для япономорских гидротермальных Fe-Mn-корок [3] и объясняется как следствие деплетированности гидротермального флюида европием, обусловленного "значительной продолжительностью вулканогенно-гидротермального процесса". Однако наши исследования минеральных фаз показали, что наличие отрицательной Еи-аномалии, вероятно, связано со скоростью роста, а не истощенностью флюида европием. Отсутствие в фазе II Tm, Yb также, скорее всего, обусловлено высокой скоростью роста гидротермально-осадочных Fe-Mn-корок, так как в гидрогенных Fe-Mn-корках гайотов [5] эти элементы присутствуют в марганцевой фазе в количестве 15.16-24.62% от их общего содержания.

Данные табл. 2 свидетельствуют о том, что около 90% всех РЗИ содержится в железистой и алюмосиликатной фазах. Причем в фазе III распределение РЗИ в анализируемых нами гидротермально-осадочных и изученных [5] гидрогенных Fe–Mn-корках близко (рис. 2). Это позволяет предположить, что на состав РЗИ в гидротермально-осадочных корках оказывает существенное влияние гидрогенная составляющая. Так, график распределения РЗИ в обр. 2069/2-П7 повторяет их распределение в гидрогенных корках гайотов (рис. 2). Таким образом, затруднительно оценить вклад гидротермального Fe в накопление РЗИ, так как концентрация его настолько мала, что она обезличивается в общей рудной массе. Состав РЗИ, сорбированных на оксигидроксидах Fe гидротермального генезиса, повторяет в целом состав придонной океанской воды и существенно отличается от состава РЗИ промежуточных вод, где происходит образование гидрогенных фаз [6]. Следовательно, состав РЗИ оксигидроксидных фаз отражает источники оксигидроксидов Fe, участвующих в формировании Fe-Мп-корок.

Неоспоримый интерес вызывает распределение РЗИ в остаточной алюмосиликатной фазе, в которой сосредоточена почти треть от общего содержания (табл. 2). Состав РЗИ алюмосиликатной части определяется эндогенной и экзогенной составляющей. Речной сток (3%) и абразия бере-

Рис. 1. Распределение РЗИ в минеральных фазах Fe-Мп-корок подводной возвышенности Беляевского: а – обр. 2069/2-2; б – обр. 2069/2-П7; в – обр. 2069/2-15-1; г – соотношение минеральных фаз в объеме пробы.

I - I фаза (легко выщелачиваемые катионы и карбонаты); 2 - II фаза (оксиды Mn); 3 - III фаза (оксигидроксиды Fe); 4 - IV фаза (остаточная алюмосиликатная).

Рис. 2. Распределение сланец-нормализованных (PAAS) [2] РЗИ в III фазе гидротермально-осадочных Fe–Mn-корок подводной возвышенности Беляевского и гидрогенных Fe–Mn-корок приэкваториальной части Тихого океана: *1* – обр. 2069/2-2; *2* – обр. 2069/2-П7; *3* – обр. 2069/2-15-1; *4* – гидрогенные Fe–Mn-корки [5].

Рис. 3. Распределение хондрит-нормализованных РЗИ IV фазы. А – Fe–Mn-корки подводной возвышенности Беляевского (среднее из трех образцов); Б – средние величины суммарного содержания в базальтах подводной возвышенности Беляевского (данные авторов) континентальной пирокластики [8] и эоловой пыли азиатских пустынь [10].

гов (0.7%) [7] в нашей работе не рассматриваются в связи со значительным удалением подводной возвышенности Беляевского от континента. Результаты по распределению РЗИ в алюмосиликатной фазе Fe—Mn-корок показывают, что их состав сформирован эдафогенным веществом базальтов возвышенности Беляевского, континентальной пирокластикой [8] и эоловой пылью азиатских пустынь [9, 10], рис. 3.

Таким образом, приведенные данные по распределению РЗИ в минеральных фазах гидротермально-осадочных Fe—Mn-корок подводной возвышенности Беляевского позволяют сделать следующие выводы:

 – РЗИ гидротермально-осадочных Fe–Mn-корок Японского моря сорбируются в первую очередь оксигидроксидами Fe; концентрация РЗИ в остаточной алюмосиликатной фазе является вторым по значимости фактором, определяющим их состав;

 Мп-фаза, составляющая более 80% объема гидротермально-осадочных Fe–Mn-корок, занимает подчиненное место в накоплении РЗИ;

– реальный график распределения РЗИ в гидротермально-осадочных Fe–Mn-корках задуговых бассейнов отражается в сумме РЗИ железистой и алюмосиликатной фаз.

Работа выполнена при финансовой поддержке Президиума ДВО РАН (проект 12-І-П23-01).

СПИСОК ЛИТЕРАТУРЫ

1. *Михайлик П.Е.* Состав, строение и условия формирования железомарганцевых корок Японского и Охотского морей. Автореф. дис. канд. геол.-минерал. наук. Владивосток, 2009. 22 с.

326

- McLennan S.M. // Rev. Mineral. 1989. V. 21. P. 169– 200.
- 3. Батурин Г.Н. // ДАН. 2012. Т. 445. № 2. С. 179–184.
- 4. Koschinsky A., Halbach P. // Geochim. et cosmochim. acta. 1995. V. 59. P. 5113–5132.
- 5. Bau M., Koschinsky A. // Geochem. J. 2009. V. 43. P. 37-47.
- Стрекопытов С.В., Дубинин А.В., Волков И.И. // Литология и полез. ископаемые. 1999. № 2. С. 133– 145.
- 7. Дубинин А.В. Геохимия редкоземельных элементов в океане. М.: Наука, 2006. 360 с.
- 8. Сахно В.Г. Новейший и современный вулканизм Юга Дальнего Востока. Владивосток: Дальнаука, 2008. 128 с.
- 9. *Jahn B., Gallet S., Han J.* // Chem. Geol. 2001. V. 178. P. 71–94.
- Greaves V.S., Elderfield H., Sholkovitz E.R. // Marine Chem. 1999. V. 68. P. 31–37.