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In the article, within the framework of the dynamic theory of elasticity, a mathematical model of the impact 

of seismic blast waves on rock mass is presented, including a working. The increase in the volume of mining op-
erations in complex mining and geological conditions, taking into account the influence of the explosion energy, is 
closely connected with the analysis of the main parameters of the stress-strain state of the rock massif including a 
working. The latter leads to the need to determine the safe parameters of drilling and blasting operations that en-
sure the operational state of mining. The main danger in detonation of an explosive charge near an active working 
is a seismic explosive wave which characteristics are determined by the properties of soil and parameters of drill-
ing and blasting operations. The determination of stress fields and displacement velocities in rock mass requires 
the use of a modern mathematical apparatus for its solution. For numerical solution of the given boundary value 
problem by the method of finite differences, an original calculation-difference scheme is constructed. The applica-
tion of the splitting method for solving a two-dimensional boundary value problem is reduced to the solution of 
spatially one-dimensional differential equations. For the obtained numerical algorithm, an effective computational 
software has been developed. Numerical solutions of the model problem are given for the case when the shape of 
the working has a form of an ellipse. 
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Introduction. Stresses that arise in the working area during the seismic explosion waves impact on 

it depend on many factors, but, first of all, on the explosive agent (EA) charge power, the distance to 
the working, the detonation velocity, the mixture of explosive charge, etc. [5, 6, 10]. To determine the 
impact of the impact of a seismic explosion wave on a working, it is necessary to conduct a large 
number of full-scale tests, which is not always possible from the economic and technical point of 
view. Therefore, in order to evaluate the explosive effect on rock mass, the article uses a numerical 
simulation of the interaction of a longitu-
dinal wave propagating in an elastic me-
dium with a working [12]. 

Statement of the problem. To 
create a mathematical model of seismic 
explosion waves impact on a mine 
working the paper uses the equations 
of dynamic theory of elasticity of 
Mises [3, 9] written in the form of cur-
vilinear coordinates (Fig.1).  

The figure shows two coordinate 
systems with the following notations 
being used: 

1) O1ζη – rectangular coordinate sys-
tem; the origin of coordinates O1 – mass 
center of a mine working; axis O1ζ is 
parallel to displacement velocity of un-
disturbed wave front; 
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Fig.1. Introduced coordinate systems  
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2) M1xy – curvilinear coordinate system; x – distance (MM1) from point M to a neat line of 
mining working; y – a length of G curve, calculated from point O to point M1; О – meeting 
point of front C1 of an incident blast wave with a boundary surface at the initial instant (t = 0). 

Taking into account the introduced coordinate system, we have a relation of the following form 

nx

Rr , 

where r  – radius vector of point M; R


 – radius vector of point M1; n  – unit normal vector n,   – 
unit vector of tangent line  in point M1. 

Then the following is correct  

ndxdyxykxdyykndxdyndxnxdRdrd 
 ))(1()( , 

where k(y) – line G curvature in point M1. 
Finally, we have  

2222222 ))(1()( dyHdxdyxykdxrd 
 , 

where xykH )(1  – Lame coefficient. 
Let us introduce the following notations: ν1, ν2 – components of velocity vector of rock mass 

particles in coordinate axes M1x and M1y accordingly; and through 11, 12, 22 – components of 
stress. Then the equations motion and Hooke’s law differentiated by time, written in dimensionless 
form will have the following form [1, 7, 8]: 
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Here 
)1(2

21



b ;  – Poisson ratio; material coordinates x, y are related to characteristic size of 

working 



SL , m; S – working cross-sectional area, m2; components of velocity vector v1 and v2 – 

for longitudinal waves propagation velocity in rock mass ,
)21)(1(

)1(








Ec  m/s; E – Young’s 

modulus, Pa;  – medium density, kg/m3; stress components are related to a variable c2; velocity 
vector components – to a variable c; time t – to a variable L/c. 

The system of first-order differential equations in partial derivatives (1) can be written in the 
matrix form: 
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where TvvU },,,,{ 12221121   – vector of unknowns; 
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The fifth-order constant matrixes present in matrix equation (2), have the form  
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To close the system (1) with boundary conditions, the following conditions are considered 
in the paper:  

1. Boundary conditions on the cavity surface (a mine working): 

0012011 
 xx  

or in the matrix form  
00 xSU ,                                                                     (3) 

where rectangular matrix S has a form  
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Periodicity condition 
lyy UU
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0 ,                                                                      (4) 

where l – line G curve length. 
2. The initial conditions at the initial time t = 0 determine the stress and velocity fields by for-
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where 
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s
ssf

s ; function f(s) sets the diagram of the incident seismic blast wave; s – dis-

tance of the medium point to the wave front at time t = 0. 
Solution of the problem. For the numerical solution of the boundary value problem (2) – (5) (dif-

ferential matrix equation with the corresponding boundary and initial conditions) the finite difference 
method is constructed. The calculated difference scheme is constructed. In this case, we write equation 
(2) in a divergent form [4]: 
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where C
y
pqQT



 . 

Further, the domain of varuables variation x, y (computational domain) is divided into rectan-
gles by straight lines )...,,2,1( Jjxx j   and )...,,2,1( Nnyy n  , and in space (x, y, t), allocating 
an elementary parallelepiped V, bounded by the planes 1 jxx , jxx  , 1 kyy , kyy  , 'tt  , 

 'tt , we obtain a finite-difference scheme for the set boundary-value problem (Fig.2) for deter-
mining main parameters of stress condition of rock mass, including a working. 

Integrating the matrix equation (6) by volume (parallelepiped V) 
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and transforming the left-hand side of the last expression according to Gauss's formula: 
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 
S

xnBUtnU ),cos(),cos([   

,)],cos( 
V

TUdVdSynpCU   

where S – surface of the examined paral-
lelepiped V, i.e.  jn

jn SSS  

1,,1
ˆ̂ˆ̂ˆˆ

  njjnnjjn SSSS ; n  – direction 
of the outer normal line to it, as well as 
assuming that on each face a vector of 
unknowns U keeps a constant value to a 
precision of first-order small quantities, 
we have 

  ynjjnyxjn
jn hUUBhhUU )ˆˆ()( ,1  

  xnjnjjnjn hUpUpC )ˆ̂ˆ̂( 1,1,  
 yxjn hhTU)( ,                (7) 

jnU , jnU  – values of vector of unknowns 
U at upper and lower faces jnS , jnS  ac-
cordingly; jnÛ , njU ,1

ˆ
  – values of vector 

of unknowns U at lateral faces 
njjn SS ,1

ˆ,ˆ
 , perpendicular to axis M1x; 

jnÛ̂ , 1,
ˆ̂

njU  – values of vector of un-

knowns U at lateral faces 1,
ˆ̂,ˆ̂

njjn SS , per-
pendicular to axis M1y. 

Variables jnÛ , jnÛ̂  are defined by 
splitting method [3, 11], in accordance 
with which the values of the unknown 
vector U at lateral faces are calculated by 
solving spatial one-dimension equations 
[2, 3]. Then for determining the unknown 
vector U we consider the boundary-value 
problem in the following form  
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Denoting through Λx a matrix of left eigenvectors of the matrix B, corresponding to its eigen-
values μk (k = 1, 2, …, 5), and assuming xx VU 1 , from equation (8) we have 
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where )...,,,(diag 521
1  

xxBM . 
From equation (9) it follows, that components k

xV  (Riemann invariants) of vector xV  keep con-
stant values at straight lines μkt – x = const (Fig.3). 
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Thus, we have  
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The last expression we write in the matrix form: 

njxjnxjnx VPVPV ,1,,,
ˆ


  ,                                                          (10) 

where }{diag)};(diag{sign);(
2
1

kkk PPPPPP  . 

Finally, the solution of the difference equation (7) takes the form 
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where 
1  xxx M ;     1  yyy M ;     )(

2
1 MMM  ; 

1  xxxxx M ;     1  yyyyy M . 
Formula (11) allows to obtain an expression for the values of the unknown vector U at the in-

ner nodes of the upper layer corresponding to the time instant (t' + ), through the values of this 
vector at the nodes of the lower layer for the time instant t'. 

Then, with the help of the obtained formula (11), a transition from the time layer corresponding 
to the instant of time 'tt   is made to the next time layer  'tt . We note that formula (11) allows 
us to find new values of the vector of unknowns U only in the inner cells of the computational do-
main, i.e. in cells that do not share points with the cavity boundary. For this reason, in order to find 
a solution in boundary cells, it is necessary to involve the boundary conditions (3) – (4). 

Denoting by NpS p :1,,1   cells adjacent to a cavity boundary, the boundary conditions (3) on 
the surface will have the following form  

0ˆ
,0 pUS ,                                                                      (12) 

or shifting to (12) to Reimann invariants: 
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,0,

1 
pxx VS .                                                                   (13) 

The matrix equality (12) have two conditions for determining the component of the unknowns 
vector pU ,0

ˆ . We obtain three more necessary relations from the condition of saving the Reimann 
invariants, corresponding to the nonpositive eigenvalues of matrix В: 

)(
,1,,0,

ˆ k
pxpx VV  ;   5,4,3k ,                                                           (14) 

or in matrix form we can write it in the form  
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Combining the matrix equations (13) and (15), we obtain the required system of algebraic 
equations for the determination of all components of the vector of unknowns pxV ,0,

ˆ , the solution of 
which is written in the form 
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The last three components of the vector pxV ,0,
ˆ  are defined, as before, by the relations (14). 

Thus, the vector pxV ,0,
ˆ  can be represented in the form  
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xG ; e3, e4, e5 – eigenvectors of matrix В, corresponding to its nonpositive 

eigenvalues. 
 

Fig.6. Visualization of a scenario: defined points and stress diagrams (left), velocity diagrams (right) 

Fig.4. Calculation configuration  Fig.5. Visualization of a process with defined points  
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In addition, we introduce ghost cells Sj0, SjN ( Jj :1 ) and assume jjN,jnj UUUU ,1,1,0 ,   . We 
note that formulas (16) completely coincide with formulas (10), and, hence, the relation (11) is valid 
for the entire calculated area. 

To solve the boundary value problem, we use a step-by-step algorithm. If on the time layer cor-
responding to the instant of time t = t , the state of the medium is already known, then to shift to the 
next time layer t = t +  it is necessary with formulas like (17) to fill in the ghost cells and later use 
the relation (11). Moreover, as it follows from (10), during each transition the length of the calcu-
lated area decreases by one cell in the direction of axis Ox (see Fig.2). Therefore, if it is required to 

find a solution in the arbitrary rectangle 







],0[
];,0[ 1

ly
xx  for all solutions  Tt ,0 , then the initial calcu-

lated area should at least occupy a rectangle 







.],0[
;],0[ 1

ly
Txx  

Figures 4-6 show the results of the solution of the model boundary-value problem with the fol-
lowing parameters: working in the form of an ellipse with semi-axes 2 and 4 m is located in rocky 
ground (Young's modulus E = 57.9 GPa, Poisson's ratio  = 0.35, velocity of longitudinal waves v = 
5800 m/s), the diagram of the incident wave is shown in Fig. 4.  

 
 

Conclusions 
 
1. A mathematical model of the seismic explosion wave impact on a mine working has been 

obtained. 
2. An original calculation-difference scheme for the solution of boundary-value problem under 

consideration has been developed, which describes the impact of a seismic explosion wave on rock 
mass, including mine working. 

3. An algorithm for the numerical solution of a boundary-value problem that realizes the ob-
tained mathematical model has been developed. 

4. An effective software product has been developed in the JavaScript language, which was 
tested for the solution of a typical model problem.  
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