УДК 553.411.016+553.242.4

МОДЕЛИРОВАНИЕ МАССОПЕРЕНОСА ЗОЛОТА ПРИ ЛИСТВЕНИТИЗАЦИИ И РОДИНГИТИЗАЦИИ НА ПРИМЕРЕ УСТЬ-ДЕПСКОГО ОФИОЛИТОВОГО КОМПЛЕКСА (ВЕРХНЕЕ ПРИАМУРЬЕ)

Л.П. Плюснина, Г.Г. Лихойдов, В.П. Молчанов, Ж.А. Щека

Дальневосточный геологический институт ДВО РАН, Владивосток Поступила в редакцию 15 августа 2006 г.

Путем экспериментального и теоретического моделирования на изотермах 300, 400°С при Р_{общ} = 1 кбар изучен массоперенос золота хлоридными и углекисло-хлоридными растворами. Подтвержден отрицательный эффект влияния СО₂ на растворимость золота во флюиде. Низкая растворимость золота (mAu <10⁸), установленная в ходе экспериментов, объясняет механизм его осаждения при взаимодействии серпентинитов и лиственитов с кислыми рудоносными растворами. Сделан вывод о том, что лиственитизация, связанная в нашем случае с внедрением орогенных гранитоидов, накладываясь на серпентиниты и родингиты, решающим образом влияет на перенос золота в единой рудно-геохимической системе. Особенности процессов метасоматоза в Усть-Депских офиолитах и содержание золота в продуктах их проявления подтверждают сделанный вывод.

Ключевые слова: офиолиты, листвениты, родингиты, золото, эксперимент, термодинамические расчеты, Приамурье.

ВВЕДЕНИЕ

Метасоматические процессы родингитизации и лиственитизации, характерные для офиолитовых комплексов, нередко определяют их повышенную золотоносность [2, 9–12, 18]. При этом существует противоречие во взглядах различных исследователей на генетическую связь золоторудной минерализации с процессами лиственитизации и родингитизации. Наиболее наглядно эти расхождения выступают при описании известного месторождения Золотая Гора, локализованного в зоне Главного Уральского разлома в пределах Карабашского массива серпентинизированных гарцбургитов.

Ряд исследователей признают определяющую роль ультраосновных пород как основных поставщиков петрогенных элементов и золота в процессе серпентинизации и родингитизации, обусловленную воздействием мантийных флюидов. При этом влияние более поздней лиственитизации на массоперенос и отложение золота ими практически не рассматривается [11, 12, 17]. Детальное исследование минералогии родингитов и лиственитов Золотой Горы, выполненное Э.М. Спиридоновым и П.А. Плетневым [18], позволило им установить, что родингиты и серпентиниты Золотой Горы золотоносны только там, где они лиственитизированы. Источником лиственитизирующих флюидов, по их мнению, являются гранитоиды гранодиорит-диоритовой формации раннекаменноугольного возраста.

Офиолиты менее изученного Усть-Депского комплекса в Верхнем Приамурье, включают апогарцбургитовые серпентиниты, родингиты по дайкам диабазовых порфиритов на контакте с серпентинитами и листвениты. Формирование лиственитов на субстрате офиолитового комплекса связано с более поздними, рвущими офиолиты, разновозрастными интрузиями гранитоидов [2, 9, 10]. К ним приурочены россыпи самородного золота и платиноидов. В отличие от месторождения Золотая Гора, Усть-Депский комплекс расположен в труднодоступном районе, отличается плохой обнаженностью и слабой изученностью. В связи с этим для решения поставленных задач нами было привлечено экспериментальное и термодинамическое моделирование. Выполненное ранее экспериментальное изучение биметасоматиче ских процессов на контакте базитов и гипербазитов позволило описать механизм формирования родингитов и их влияние на массоперенос золота [13, 14]. В частности, было показано, что в ходе родингитизации основных пород по контакту с гипербазитами формируются слабощелочные флюиды. На контактах более контрастных по кремнекислотности ультрабазитов и гранитоидов дайки последних биметасоматически замещаются альбититами. В таких обстановках возможен перенос золота, но лишь локально и при наличии градиента его концентрации в смежных породах. Следует заметить, что родингитизирующий водный флюид по химизму существенно отличается от углекислотно-хлоридных растворов, связанных с лиственитизацией ультрабазитов [11, 13, 16].

Листвениты Усть-Депского офиолитового комплекса занимают, в сравнении с родингитами, более значительную площадь и характеризуются повышенной золотоносностью [10]. В отличие от биметасоматической родингитизации габброидов, листвениты формируются по серпентинитам путем инфильтрационного метасоматоза под воздействием хлоридно-углекислых флюидов. Примесь мышьяка, сурьмы и ртути в некоторых лиственитах говорит об участии в их происхождении гидротерм, связанных с гранитоидами [19]. Повышенное содержание хрома, никеля, кобальта и платины отражает, в свою очередь, апогипербазитовую природу протолита [2]. Особый интерес при лиственитизации гипербазитов вызывает поведение и подвижность золота в углекисло-хлоридных флюидах. В связи с этим цель данной работы – моделирование путем физических и расчетных экспериментов процесса лиственитизации серпентинитов и анализ массопереноса золота в этих условиях на примере пород Усть-Депского офиолитового комплекса

ГЕ ОХИМИЯ, МИНЕ РАЛЬНЫЙ СОСТАВ И УСЛОВИЯ ОБРАЗОВАНИЯ МЕТАСОМАТИ ЧЕСКИХ ПОРОД УСТЬ-ДЕПСКОГО ОФИОЛИТОВОГО БЛОКА

В структурном отношении названный блок относится к Селемджино-Зейскому поясу и расположен на сопряжении крупных складчато-надвиговых систем: субширотной – Монголо-Охотской и Дасинаньлин-Селемджинской северо-восточного простирания. Прерывистая полоса ультрамафитов Усть-Депской зоны вытянута с юго-запада на северо-восток от р. Зея (массивы Усть-Депский и Дуге) в бассейн р. Гарь (Гарьский массив) вплоть до отрогов хребта Тукурингра, где подобные тела сохранились лишь в виде мелких фрагментов (рис. 1). Наиболее крупный Усть-Депский массив апогарцбургитовых серпентинитов занимает около 350 км². Он прорван многочисленными дайками диабазов мощностью до 100 м и длиной более 1000 м. Массив нарушен зонами дислокаций с приуроченными к ним метасоматическими породами, в числе которых преобладают листвениты и родингиты с золотой минерализацией. Листвениты тяготеют, главным образом, к выходам разновозрастных (Pz₁-K₂) интрузий и даек гранитоидов [9]. С Усть-Депским комплексом пространственно связаны платиноидно-золотые россыпи.

В пределах Усть-Депского блока предполагается от трех до пяти скрытых на глубине зон лиственитизации. Эти зоны фиксируются на поверхности небольшими линейными участками карбонатизированных серпентинитов, приуроченных обычно к зонам рассланцевания и дайкам диабазов. Шире листвениты представлены на Гарьском выступе в бассейне р. Гарь-2. На ее левобережье среди оталькованных серпентинитов локализуются несколько зон выветрелых лиственитов, интерес к которым обусловлен россыпями золота в бассейне этой реки. В крупных золотых самородках этих россыпей обнаружено, кроме того, высокое содержание платины. Листвениты образуют мощные линзовидно-полосчатые зоны кварц-карбонатных пород, простирающиеся на 700 м. Карбонаты в них представлены, главным образом, анкеритом и брейнеритом, реже встречаются доломит и магнезит. Нередко в лиственитах фиксируется примесь фуксита, хромита и сульфидов. Видимое самородное золото (0.1-0.15 мм) встречается в агрегатах кварца, карбонатов, слюды и пирита. В золоте есть примесь меди и серебра 2.3 и 6.3 % ат., соответственно [9]. Пространственно с лиственитами ассоциируют кварц-карбонатные и кварцевые жилы, несущие Zn (1000 г/т), As (500 г/т), Cu (100 г/т), W и Sn (по 20 г/т). Кроме того, в них же скапливаются Ni и Cr – до 3000 г/т [2]. Высокая концентрация геохимически разнотипных элементов в лиственитах иллюстрирует влияние при их образовании как протолита ультрабазитов, так и даек гранитоидов, секущих серпентиниты.

Родингиты, как продукт биметасоматиче ского взаимодействия базитов и ультрабазитов, развиваются по контактам даек диабазов с вмещающими серпентинитами. Гранитоиды вблизи родингитов замещаются альбититами. Состав серпентинитов, лиственитов, родингитов и альбититов приведен в табл. 1 и 2.

Вследствие слабой обнаженности контакты родингитов и лиственитов не установлены, однако родингиты, развитые вблизи зон лиственитизации, отличаются повышенным содержанием CO₂ (табл.1, обр. Су4/8 и Рд8). По-видимому, наложение процессов лиственитизации и внедрение даек гранитоидов обусловили высокую степень окисления железа и повышенное содержание CO₂ в родингитах. Относительно высокие концентрации Ті и V в родингитах отражают особенности диабазового протолита, что находит аналогию и в других комплексах офиолитов

Рис. 1. Схема геологического строения Усть-Депского офиолитового блока (по [9]).

А – географическое положение изученных объектов; Б: 1 – четвертичные отложения; 2 – неоген-нижнечетвертичные отложения; 3 – песчаники и угли молчановской свиты (J₃); 4, 5 – терригенные породы депской (4) и аякской (5) свит (J₃); 6, 7 – терригенные породы ускалинской (6) и усманковской (7) свит (J₂₋₃); 8 – конгломераты и песчаники; 9 – зеленые сланцы (PR₃-PZ₁); 10 – биотитовые, гранат-биотитовые, двуслюдяные гнейсы и кварциты (PR₁); 11 – ранне-меловые: (а) – граниты, (б) – гранит-порфиры; 12 – биотитовые граниты (PZ₁-K₁); 13 – гипербазиты (PZ₁); 14 – контуры гипербазитовых массивов по геофизическим данным; 15 – разрывные нарушения.

Таблица	1. Состав	метасоматических	пород	Усть-Д	Цепского	офиолитового	блока.
---------	-----------	------------------	-------	--------	----------	--------------	--------

Оксиды	46*	57	Cy 4/6	Cy 4/8	Р д8	Рд9*	100	101
SiO ₂	40.91	38.66	46.16	36.86	38.31	75.69	27.76	29.57
TiO ₂	0.01	0.01	0.27	0.74	1.19	0.04	0.03	0.06
Al_2O_3	1.0	0.87	15.58	1.77	8.74	12.69	1.69	1.32
Fe ₂ O ₃	13.27	6.28	1.8	13.47	8.49	0.91	1.29	1.89
FeO	н/опр	2.2	1.58	1.85	5.45	н/опр	4.42	4.2
MnO	0.25	0.06	0.04	0.16	0.26	0.05	0.03	0.04
MgO	40.89	37.83	11.8	9.68	8.08	0.87	28.9	25.59
CaO	0.27	0.08	15.7	29.54	24.63	0.9	0.29	1.32
Na ₂ O	0.14	0.02	0.36	0.13	0.14	8.44	0.05	0.11
K ₂ O	0.01	0.02	0.67	0.01	0.02	0.15	0.18	0.39
P_2O_5	0.02	0.01	0.01	н/опр	н/опр	н/опр	0.05	0.05
SO_3	н/опр	н/опр	н/опр	н/опр	0.01	н/опр	н/опр	н/опр
CO_2	н/опр	0.2	0.15	1.07	1.03	н/опр	34.92	34.62
H ₂ O	н/опр	12.28	4.82	4.27	3.3	н/опр	0.02	0.03
Σ	96.77	98.52	98.94	99.55	99.65	99.74	99.63	99.19

Примечание. 46 и 57 – серпентиниты, Су 4/6 и 4/8, Рд8 – родингиты, Рд9 – альбитит, 100 и 101 – листвениты. * – РФА (рентгено-флю оресцентный анализ), остальные – стандартный сили катный анализ.

Элемент	Cy4/6	Cy4/8	Рд8	Рд9	46
Rb	1	1	-	1	-
Sr	324	13	11	122	11
Y	18	46	28	10	-
Zr	48	86	60	87	-
Nb	3	4	3	11	2
V	238	305	312	13	49
Cr	41	85	69	10	2958
Co	20	59	38	3	91
Ni	36	67	246	18	1882
Ba	25	19	43	97	25

Таблица 2. Содержание микроэлементов (г/т) в метасоматических породах Усть-Депского блока (РФА).

Примечание. Номер образца соответствует табл. 1.

Таблица 3. Благородные металлы в метасоматитах Усть-Депского офиолитового блока (г/т).

Образец	Au	Pt	Pd	Порода
Mo-40	18.8	н/опр	н/опр	Лиственит
Mo-42	3.9	н/опр	н/опр	Лиственит
Mo-52	2.56	< 0.05	< 0.09	Лиственит
Mo-102*	0.28	0.31	0.16	Лиственит
Mo-103*	0.67	0.29	0.21	Лиственит
Mo-104*	0.54	0.59	0.11	Лиственит
Mo-104a	0.85	0.19	0.05	Серпентинит
46	2.09	0.06	< 0.09	Серпентинит
Mo-25	0.17	2.82	< 0.1	Хромитит
Mo-105*	0.45	0.2	0.01	Хромитит
Mo-51	1.34	0.11	< 0.09	Родингит
C y 4/6	0.48	0.31	< 0.09	Родингит
C y 4/8	4.67	0.11	< 0.09	Родингиг
Рд8	0.76	0.59	< 0.09	Родингит
Рд9	0.48	0.25	< 0.09	Альбитит

Примечание. * – атомно-абсорбционная спектроскопия с пламенной и электротермической атомизацией (спектрометр AA-6200 фирмы Shimadsu); остальные – метод АЭС-ИСП, аналитический центр ДВГИ ДВО РАН.

[13]. Установленные аномальные содержания Cr, Ni и Co в родингитах объясняются их привносом из смежных серпентинитов при контактово-реакционном взаимодействии с базитами. Подвижность рудных компонентов энергична, благодаря биметасоматическому взаимодействию смежных пород и высокому градиенту концентраций элементов в зоне контакта. Метасоматические породы комплекса характеризуются повышенной золотоносностью, присутствием платины и, в меньшей мере, палладия (табл. 3).

Проблема источника и детали концентрирования золотой минерализации в офиолитовых комплексах по-прежнему актуальны. Существует мнение, что золото перераспределяется автохтонными флюидами, в частности, на месторождении Золотая Гора [12]. С другой стороны, концентрация золота в метасоматитах может увеличиваться в 5–10 раз благодаря аллохтонным флюидам, связанным с внедрением более поздних гранитоидов [5]. Независимо от генезиса флюидов особый интерес представляют механизм и термодинамические параметры процессов перераспределения золота.

ЭКСПЕРИМЕНТАЛЬНОЕ И ССЛЕДО ВАНИЕ МАССОПЕРЕНОСА ЗОЛОТА В ХОДЕ РОДИН ГИТИЗАЦИИ

Родингиты сложены гранатом гроссуляр-андрадитового ряда, несколькими генерациями диопсида переменной железистости, везувианом, цоизитом, тремолитом, пренитом, хлоритом, сфеном, реликтами апатита и магнетита. Весьма характерен неоднородный минеральный состав, без четкой регрессивной зональности. Многочисленные прожилки алюмосиликатов, обычных в этой обстановке, хлорита и кварца подчеркивают метасоматическую природу родингитов. Рентгеноспектральный микроанализ родингитов фиксирует значительную вариацию железистости минералов и свидетельствует о длительности и многостадийности процессов их формирования (табл. 4). Физико-химические условия образования родингитов Усть-Депского выступа описаны по результатам экспериментального изучения гранат-диопсид-везувиан-хлорит-карбонатных равновесий в работах [10, 14]. Устойчивость типичных минеральных парагенезисов родингитов ограничена крайне низкой активностью углекислоты ($X_{CO_2} < 0.003$), что иллюстрирует диаграмма Т-Х_{со,} (рис. 2), построенная по данным экспериментального изучения равновесий в модельной безжелезистой системе Ca-Mg-Al-Si-H₂O-CO₂. Даже незначительные колебания температуры и/или концентрации углекислоты в метаморфизующем водном флюиде приводят к смене минеральных парагенезисов. Ассоциации с везувианом оказываются устойчивыми лишь при минимальной концентрации CO_2 во флюиде ($X_{CO_2} < 0.0015$). Это объясняет присутствие везувиана в обр.Су 4/6, где по данным химического анализа установлено минимальное содержание СО₂.

Высокая чувствительность Са-алюмосиликатов к флюидному режиму обусловливает полиминеральный состав родингитов, даже на локальных участках их развития. Температура образования родингитов Усть-Депского комплекса, судя по диаграмме (рис. 2), – 370–450 °С. С понижением температуры и/ или увеличением мольной доли углекислоты во флюиде становится устойчивой ассоциация кварца с хлоритом и кальцитом. В железосодержащей системе парагенезис кварца с хлоритом и карбонатами Fe-Mg состава характеризует поле устойчивости листвени-

			D 0				0 1/6	C 1/9		
Оксиды	Рд 8					Cy 4/6			Cy4/8	
	Di ₁	Di ₂	Gr ₁	Gr ₂	Chl	Ves	Gr	Chl	Di	Gr
SiO ₂	52.75	50.58	38.43	37.34	30.40	36.92	37.01	27.56	54.60	35.73
TiO ₂	0.01	0.12	0.85	0.89	0.12	0.93	0.99	0.03	0.04	3.62
Al_2O_3	0.37	1.65	10.15	11.13	15.00	16.63	12.15	20.05	0.00	1.21
Cr_2O_3	0.05	0.05	0.00	0.03	0.04	0.00	0.11	0.33	0.00	0.15
FeO	5.03	9.38	14.47	16.00	30.75	4.17	12.78	16.13	1.12	27.00
MnO	0.86	0.83	0.08	0.15	0.55	0.13	2.02	0.47	0.51	0.08
MgO	16.29	13.16	0.56	0.35	13.33	2.05	0.09	23.21	17.36	0.72
CaO	24.98	24.62	34.98	34.17	0.61	35.21	34.99	0.07	25.37	32.84
Na ₂ O	0.01	0.07	0.00	0.00	0.00	0.04	0.03	0.00	0.00	0.02
K_2O	0.03	0.02	0.00	0.02	0.01	0.07	0.08	0.06	0.00	0.01
NiO	0.01	0.01	0.04	0.04	0.05	0.19	0.21	0.20	0.00	0.00
Σ	100.28	100.48	99.54	100.12	90.81	97.18	100.25	87.91	99.01	100.38

Таблица 4. Химический состав минералов из родингитов (микрозондовый анализ).

Примечание. Chl – хлорит, Di – диопсид, Gr – гранат, Ves – везувиан.

Рис. 2. Поля устойчивости ассоциаций родингитов (R) и лиственитов (L) в координатах температура (T) – мольная доля углекислоты (X_{CO_2}) , $P_{oбщ} = 2 \ \kappa forget{a}$ for – гранат, Di – диопсид, Ves – везувиан, Chl – хлорит, Qtz – кварц, Cc – кальцит, Wo – волластонит. Номера реакций: 1 – 2.1Gr + 1,3Di + 2H₂O = 0.8Ves + 0.1Chl + 1.4 Qtz; 2 – 2.5Gr + Di + Cc + 2H₂O = Ves + 0.5Qtz + CO₂; 3 – Gr + 5Di + 4H₂O + 8CO₂ = Chl + 8Cc + 10Qtz; 4 – 2.5Gr + Di + 0.5Wo + 2H₂O = Ves + 1.5Qtz; 5 – Wo + CO₂ = Cc + Qtz; ассоциации: R₁ – Ves+Chl, R₂ – Ves+Di+Gr, R₃ – Di+Gr, L – Cc+Chl+Qtz.

тов, которое условно показано на диаграмме T-X_{со2} модельной системы. Следует иметь в виду, что введение в систему железа понижает температуру образования всех отмеченных ассоциаций [14]. Таким образом, листвениты формируются при температуре ниже 370°С и повышенной активности углекислоты. Температурный диапазон образования лиственитов

на месторождении Золотая гора составляет 360–390°, по [17], и 290–340°С, по [18].

Контактово-реакционные процессы между габбро и дунитом, плагиогранитом и дунитом, их влияние на подвижность золота изучены раньше при 300-500°С и Р_{общ} = 1 кбар [14, 15]. Было показано, что исходные щелочные или кислые хлоридные растворы в этих условиях нейтрализуются. Это происходит путем насыщения их петрогенными компонентами в зоне взаимодействия контрастных по кремнекислотности пород (ультрабазит-гранитоид). Валовая моляльная концентрация золота в сосуществующем флюиде снижается примерно на 2 порядка. Кроме того, появляются растворы, пересыщенные SiO₂, из которых при концентрации Au^{aq} выше 0.03 и 0.12 мг/л (при 300 и 500°С, соответственно) отлагаются золотоносные силикситы. Взаимодействие базитов и гипербазитов, гораздо менее контрастных по кремнекислотности, генерирует слабощелочные флюиды, способствующие высокой подвижности Ca, Mg, Al и формированию родингитов в целом. В подобной обстановке между контактирующими породами возможен локальный массоперенос Аи, если градиент его концентраций достигает нужных значений.

МАССОПЕРЕНОС ЗОЛОТА В ПРОЦЕССЕ ЛИСТВЕНИТИЗАЦИИ

Листвениты формируются в ходе карбонатизации, что и определяет их кварц-карбонатный состав. Судя по включениям в лиственитах, материнские золотоносные растворы имеют бикарбонатно-сульфидно-хлоридный состав [5, 8]. Мы моделировали лиственитизацию серпентинитов под действием углекисло-хлоридных растворов. Процесс был изучен путем теоретических и физических экспериментов на изотермах 300 и 400°С при Р_{общ} = 1 кбар в присутствии пирит-гематит-магнетитового буфера (РНМ). Расчеты выполнены с помощью программного комплекса "Селектор-С" [3] со встроенной базой данных SUPCRT98 в версии ее последнего обновления. В качестве исходных растворов переменной кислотности служили: H₂O, 1mKCl, 1mKCl+0,1mHCl, 1 mKC1+0, 1mKOH, с мольной долей Х_{со2} во флюиде, равной 0; 0.005 и 0.05, что определяет модельную систему составом К-Са-Мg-Fe-Al-Si-Au-S-Cl-C-O-Н. Смесь минералов твердой навески формировалась максимально приближенной к составу серпентинита Усть-Депского комплекса (№ 57, табл.1). Серпентинит, взаимодействуя с водой, формирует слабощелочную среду, для которой характерна низкая растворимость золота: lg mAu = -7.65 и -6.67 при 300 и 400°С, соответственно. Добавление углекислоты еще более снижает валовую концентрацию золота в растворе, особенно при 300°С (табл. 5). С появлением KCl растворимость золота слабо растет, в том числе в присутствии СО₂, благодаря формированию хлорокомплексов Аи.

В расчетах, исходя из возможностей баз термодинамических данных программного пакета, участвовали Au(HS)²⁻ AuCl₃²⁻, AuCl²⁻, AuCl⁰, Au⁺ и Au³⁺. Содержание последнего из них оказалась ниже виртуального "порога чувствительности" (10-17 моля), остальные комплексы перечислены в порядке уменьшения их роли в составе валовой концентрации золота. Этот порядок оставался неизменным по всему диапазону расчетных параметров. Следует отметить, что доля хлоридной составляющей валовой растворимости Аи обычно оставалась на 2-3 порядка ниже гидросульфидной и определялась комплексом AuCl₂²⁻. Максимальную роль хлорокомплексы Аи приобретали лишь в наиболее кислой среде (1mKC1 + 0.1mHC1 при 300°С и Х_{со} = 0.05), где уступали бигидросульфидному (Au(HS)⁻²) всего 0.5 порядка величины lg mAu. В щелочной среде, вслед за ростом рН и самопроизвольным увеличением восстановительного потенциала, гематит исчезает, и валовая концентрация золота возрастает за счет гидросульфидной составляющей (табл. 5).

Исходный раствор	pН	lg mAu	$\lg f_{co_2}$	$lg \ f_{\rm H_2S}$	$\lg f_{O_2}$	lg f_{SO_2}
300°C,			$X_{CO_2} =$	0,005		
H ₂ O	5.04	-8.33	1.56	-1.19		
1 mKCl	5.30	-7.70	1.75	-1.21	30.08	651
1mKCl + 0.1mHCl	4.77	-8.20	1.75	-1.21	- 30.98	-0.51
1 mKCl + 0.1 mKOH	5.96	-7.05	1.75	-1.21		
$1 \mathrm{mKCl} + 0.1 \mathrm{mKOH}^*$	6.16	-6.80	1.75	-1.16	- 31.29	-6.92
			$X_{CO_2} =$	0,05		
H ₂ O	4.53	-8.88	2.42	-1.21		
1 mKCl	4.76	-8.27	2.73	-1.22	20.00	< - 1
1mKCl + 0.1mHCl	4.27	-8.57	2.76	-1.22	- 30.98	-6.51
1mKCl + 0,1mKOH	5.96	-7.05	1.75	-1.21		
400°C,			$X_{CO_2} = 0$	0,005		
H ₂ O	5.01	-6.61	1.18	-0.27		
1 mKCl	4.87	-6.03	1.57	-0.29	24.20	2.07
1mKCl + 0.1mHCl	4.70	-6.15	1.59	-0.29	-24.29	-2.97
1mKCl + 0.1mKOH	5.01	-5.87	1.62	-0.29		
$1 \mathrm{mKCl} + 0.1 \mathrm{mKOH}^*$	6.38	-4.37	1.59	-0.02	-25.91	-5.13
	$X_{CO_2} = 0,05$					
H ₂ O	4.81	-6.85	2.04	-0.29		
1mKCl	4.89	-6.08	2.42	-0.30	-24.29	-2.97
1mKCl + 0.1mHCl	4.67	-6.23	2.44	-0.30		
1mKCl + 0.1 mKOH	5.29	-5.70	2.39	-0.27	-24.48	-3.23
1 mKCl + 0.,1 mKOH*	5.93	-4.95	2.42	-0.13	-25.33	-4.36

Таблица 5. Параметры сульфидно-углекисло-хлоридных растворов и валовая концентрация золота в них после взаимодействия с серпентинитом по результатам расчетов (Р_{обш} = 1 кбар, буфер PHM).

Примечание. *- сдвиг в поле устойчивости магнетит+пирит (Mgt+Py), гематит (Hem) растворяется со снижением fo₂ (см. текст).

Раствор	pН	lg mAu	\lgf_{CO_2}	$\lg f_{\rm H_2S}$	lg f_{O_2}	lg f_{SO_2}
		3	00°C			
H_2O	5.81	-7.54	1.63	-1.19		
1 mKCl	5.11	-7.89	1.99	-1.21	20.09	(51
$1 \mathrm{mKCl} + 0.1 \mathrm{mHCl}$	4.29	-8.54	2.02	-1.21	-30.98 -	-0.31
$1 \mathrm{mKCl} + 0.1 \mathrm{mKOH}$	5.61	-7.40	1.95	-1.21		
		4	00°C			
H_2O^*	5.98	-5.58	1.32	-0.21	-24.69	-3.50
1mKCl*	5.52	-5.34	1.70	-0.13	-25.25	-4.25
$1 \mathrm{mKCl} + 0.1 \mathrm{mHCl}$	4.20	-6.33	1.68	-0.29	-24.29	-2.97
1mKCl+0.1mKOH*	5.99	-4.83	1.64	-0.06	-25.68	-4.83

Таблица 6. Параметры хлоридных растворов и валовая концентрация золота в них после взаимодействия с лиственитом по результатам расчетов (Р_{общ} = 1 кбар, буфер РНМ).

Примечание.* - поле устойчивости Mgt+Py, Нет растворяется

Следующая серия расчетов моделировала взаимодействие собственно лиственитов с аналогичными по составу исходными растворами. Лиственит, близкий к составу № 101 (табл. 1), включает кварц, карбонаты анкерит-магнезитового ряда, хлорит, серицит, пирит, гематит и магнетит. Следует заметить, что при формировании по серпентинитам лиственитов, судя по составу последних, помимо СО, привносятся также калий, кальций и глинозем. Расчетным путем были установлены равновесные с лиственитами параметры растворов "in situ": Eh, pH, I; валовая растворимость матричных элементов системы и золота (lg mAu); фугитивность CO₂, CO, H₂, H₂S, CH₄, O₂, S₂ и SO₂. Сокращенный перечень наиболее важных из них приведен в табл. 6. Очевидно, что взаимодействие лиственита с хлоридными растворами широкого диапазона исходной кислотности (1.7 < pH < 9.8) нейтрализует их. Редокс-потенциал среды, фугитивность CH₄, SO₂ и S₂ поддерживаются буфером PHM. Активность СО, в хлоридной среде без добавления углекислоты определяется растворимостью карбонатов. При этом магнезит изученного состава полностью растворяется, доломит сохраняется в незначительном количестве. Концентрация золота в сосуществующих растворах поддерживается на достаточно низком уровне, минимум наблюдается в наиболее кислых исходных растворах (1mKCl + 0.1mHCl). В этих условиях, судя по расчетам при 300°С, содержание кремнекислоты (lg mSi^{aq} = 1.865) и летучесть CO_2 (lg f_{CO_2} = 2.02) достигают максимума. При 400°C расчетная валовая растворимость золота в системе увеличивается примерно на 2 порядка. Следует отметить, что в этих условиях совмещенная рудно-силикатная ассоциация буферной уже не является, так как результирующие параметры среды оказываются напрямую связанными с составом исходных растворов (табл. 6). На изотерме 400°С в числе твердых продуктов появляются калиевый полевой шпат и мусковит,

что фиксирует переход от лиственитов к пропилитам, который сопровождается существенным увеличением растворимости золота [16].

РЕЗУЛЬТАТЫ ФИЗИЧЕСКИХ ЭКСПЕРИМЕНТОВ

В базах термодинамических данных программного пакета "Селектор-С" нет сведений о гидрооксои гидрооксохлорокомплексах Au, хотя в слабокислых и слабощелочных хлоридных растворах они не исключаются [1]. Кроме того, расчеты не учитывают взаимодействие между главными комлексообразующими золота – хлором и гидросульфидами, возможность которого показана в [6]. Все это говорит в пользу большей надежности величин валовой растворимости золота, полученных в ходе физических опытов. В связи с этим мы изучили поведение золота и путем физических экспериментов. На изотермах 300 и 400 °С при Р_{обш} = 1 кбар в присутствии буферной ассоциации РНМ было изучено взаимодействие природных серпентинита и лиственита (табл.1, образцы 57 и 101, соответственно) с исходным раствором 1mKCl+0.1mHCl.

Опыты выполнены ампульно-автоклавным методом, источником Аи при растворении служили стенки золотых ампул размером (10×80×0.2 мм). Буферная смесь РНМ вместе с тонкоперетертой породой (по 150 мг каждой) помещались в ампулу, где она контактировала с раствором непосредственно. Это оптимизирует взаимодействие ампула-растворнавеска и работу буфера. Длительность опытов составляла 750 и 480 час при 300 и 400°С, соответственно. Закаленные после опытов растворы готовили канализу по принятой методике, включая предварительную экстракцию золота в диоктилсульфид [6]. Содержание золота определялось методом электротермической атомизации и регистрировалось на атомно-абсорбционном спектрометре Solar. Суммарная ошибка составляла ±10% отн. Состав твердых

Серия	Исходная ассоннания	lg mAu			
	неходная ассоциация	300°C	400°C		
1	Серпентинит + РНМ	-7.73 ± 0.30	-7.42 ± 0.40		
2	Лиственит + РНМ	-7.68 ± 0.35	-7.30 ± 0.30		
3	Серпентинит + РНМ	-8.13 ± 0.30	-7.55 ± 0.20		
4	Серпентинит + РНМ	-7.59 ± 0.35	-7.10 ± 0.20		

Таблица 7. Валовая концентрация золота в растворах, закаленных после взаимодействия с серпентинитами и лиственитами (P_{общ} = 1 кбар).

Примечание. Серии: 1 – X_{CO2} = 0, в продуктах – хлоритолит + PHM; 2 – X_{CO2} задается карбонатами породы; 3 – X_{CO2} = 0.005, в продуктах – лиственит + PHM; 4 – X_{CO2} = 0.05, в продуктах – лиственит в смеси с пирротином и магнетитом. PHM – пирит-гем атит-магнетитовый буфер.

продуктов контролировался рентгеном на аппарате ДРОН–3. Концентрация золота, измеренная в закаленных растворах, представлена в табл. 7.

В растворе 1 mKCl+0.1mHCl без СО, антигорит исходной смеси серпентинит+НРМ целиком замешался хлоритом (пеннином - d/n = 14.03; 7.08; 4.72; 4.57; 3.55Å). Двуокись углерода задавали щавелевой кислотой путем ее разложения при выведении опытов в режим. Уже при $X_{CO_2} = 0.005$ в твердых продуктах опытов образуются карбонаты состава (Mg, Fe)CO₂ (d/n = 2.75; 2.08; 1,71Å), кварц и примесь того же пеннина. При более высоком содержании углекислоты (X_{CO2} = 0,05) исходный гематит исчезал и появлялся пирротин (d/n = 2.08; 2.64; 2.96; 1.04Å). Параллельно несколько повышалась валовая концентрация золота, подчеркивая тем самым доминанту его гидросульфидных комплексов, что подтверждало результаты расчетов. Следует заметить, что низкая растворимость золота в углекисло-хлоридных растворах фиксируется как при взаимодействии с исходными лиственитами, так и с образованными по серпентинитам в ходе эксперимента (табл. 7).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТ ОВ

Разность между растворимостью золота, установленной путем расчетов и измеренной в ходе физических экспериментов, находится в пределах одного порядка величин lg mAu^{aq}. Это практически не выходит за интегральную неопределенность каждого из методов. Таким образом, комплекс методов позволяет использовать результаты каждого из них для более полной характеристики процессов. В ходе расчетов, например, установлены in situ величины pH. Eh и других параметров среды, формируемой в ходе взаимодействия серпентинитов и лиственитов с хлоридными растворами переменной кислотности. С другой стороны, валовая концентрация золота более корректно измеряется в растворах при физическом эксперименте. Последнее обстоятельство связано с тем, что пока базы термодинамических данных включают неполную информацию по формам золота в растворе. Тем не менее, расчеты можно использовать как иллюстрацию соотношения известных форм золота в валовых значениях его растворимости. Возможная ошибка за счет неполноты баз данных и взаимного влияния лигандформирующих компонентов сложного флюида находится в пределах разницы валовых значений растворимости Au, установленных физически и расчетным путем. Эта разница достигает 1.27 и 0.86 порядка величин lg mAu при 400 и 300°C, соответственно.

Транспортная роль гидросульфидов, по крайней мере в изученной области Р-Т-µ, параметров, остается ведущей в щелочной обстановке для золота в сульфидно-хлоридно-углекислой среде. Рост восстановительного потенциала, отмеченный выше, стабилизирует гидросульфидные комплексы и приводит к увеличению валовой концентрации Аи в сосуществующих растворах. Появление пирротина вместо гематита иллюстрирует это обстоятельство на твердых продуктах физических экспериментов. Наблюдается полная аналогия и с результатами расчетов, которые позволяют считать, кроме того, что эта картина связана исключительно с активностью кислорода в системе. Растворимость Аи, измеренная нами физически во флюиде с углекислотой, подтвердила выводы о снижении подвижности золота в подобных условиях, сделанные ранее расчетным путем [4]. В более низкотемпературной области (150-250°С), где в присутствии СО, также фиксируется весьма низкая растворимость золота, авторы говорят о "барьерной роли карбонатных пород", осаждающих золото [7].

ЗАКЛЮЧЕНИЕ

Моделирование поведения золота в сульфиднохлоридно-углекислой среде позволяет считать, что гидросульфидные его комплексы доминируют как в ходе образования лиственитов, так и в присутствии их. Щелочные растворы подобного состава могут, благодаря спонтанному эффекту восстановления среды, даже выносить золото из серпентинитов и лиственитов.

Подтверждается, в том числе и физическими экспериментами, отрицательное влияние углекислоты на растворимость золота в хлоридном флюиде. Рост активности СО₂ при поступлении нейтральных и кислых рудоносных растворов способствует, таким образом, отложению золота. Формирующиеся или существующие к моменту поступления рудоносных растворов листвениты служат эффективным барьером, на котором осаждается золото. И это барьер многократного действия, в отличие от родингитов.

Температурный диапазон формирования родингитов Усть-Депского комплекса составляет 370– 450 °С. Материнский флюид характеризует в этом случае водный состав при крайне низком потенциале СО₂. При формирования родингитов и соответствующем градиенте концентрации золота между смежными базитами и гипербазитами возможен лишь локальный его перенос, в границах области взаимодействия. Перераспределение и концентрирование золота в этих случаях синхронны биметасоматическим процессам формирования родингитов. Образовавшись, родингиты, в отличие от лиственитов, уже не могут служить эффективным барьером для осаждения золота.

Листвениты, связанные в нашем случае с внедрением гранитоидов, формируются в условиях высокой активности углекислоты при более низкой, по сравнению с родингитами, температуре (290-370°С). Установлено, что в метасоматических породах Усть-Депского комплекса концентрация золота существенно выше содержания платины и паллалия. источником которых, скорее всего, являются гипербазиты. Перенос золота и его концентрирование обусловлены в этом случае не только субстратом, но и гидротермами, связанными с гранитоидным магматизмом. Это обстоятельство необходимо учитывать при оценке перспектив оруденения. Таким образом, самый молодой, по сравнению со временем образования серпентинитов и родингитов, процесс лиственитизации оказывает влияние на перенос и отложение золота при метасоматическом преобразовании пород Усть-Депского офиолитового комплекса.

Работа выполнена при финансовой поддержке Президиума ДВО РАН, грант 06-2-СО-08-029.

ЛИТЕРАТУРА

 Акинфиев Н.Н., Зотов А.В. Термодинамическое описание хлоридных, гидросульфидных и гидроксокомплексов Ag (1), Cu (1) и Au (1) в диапазоне температур 25– 500°С и давлений 1–2000 бар // Геохимия. 2001. № 10. С. 1083–1099.

- Зимин С.С., Октябрьский Р.А., Молчанов В.П. и др. Перспективы гипербазитов Усть-Депской зоны офиолитов Среднего Приамурья на хромиты и самородные металлы. // Рудные месторождения континентальных окраин. Владивосток: Дальнаука, 2001. Т. 2. Вып. 2. С. 201–232.
- Карпов И.К., Чудненко К.В., Бычинский В.А. и др. Минимизация свободной энергии Гиббса при расчете гетерогенных равновесий // Геология и геофизика. 1995. Т. 36. С. 3–21.
- 4. Колонин Г.Р., Пальянова Г.А., Широносова Г.П., Моргунов Л.Г. Влияние углекислоты на внутренние равновесия во флюиде при формировании золоторудных гидротермальных месторождений // Геохимия. 1997. № 1. С. 46–57.
- 5. Коробейников А.Ф., Гончаренко А.И. Золото в офиолитовых комплексах Алтае-Саянской складчатой области // Геохимия. 1986. № 3. С. 328–338.
- Лихойдов Г.Г., Некрасов И.Я. Растворимость золота в комплексной водной сульфидно-хлоридной среде при 300– 500 °С и Р_{общ} = 1кбар // Геохимия. 2001. № 4. С. 394–403.
- Миронов А.Г., Альмухамедов А.И., Гелетий В.Ф. и др. Экспериментальные исследования геохимии золота с помощью метода радиоактивных изотопов. Новосибирск: Наука, 1989. 281 с.
- 8. Моисеенко В.Г. Геохимия и минералогия золота рудных районов Дальнего Востока. М.: Наука, 1977. 302 с.
- Молчанов В.П., Зимин С.С., Октябрьский Р.А. и др. Минеральный состав и золотоносность лиственитов Усть-Депской зоны офиолитов (Амурская область) // Рудные месторождения континентальных окраин. Владивосток: Дальнаука, 2000. Вып. 1. С. 170–180.
- 10. Молчанов В.П., Плюснина Л.П., Ханчук А.И. и др. Платино- и золотосодержащие родингиты в Усть-Депском офиолитовом блоке // Докл. РАН. 2006. Т. 406, № 5. С. 678–682.
- Мурзин В.В. Происхождение флюида при формировании золотоносных родингитов по изотопным данным (на примере Карабашского массива альпинотипных гипербазитов, Южный Урал) // Докл. РАН. 2006. Т. 406, № 5. С. 683–686.
- Мурзин М.М., Сазонов В.Н., Варламов Д.А., Шанина С.Н. Золотое оруденение в родингитах массивов альпинотипных гипербазитов // Литосфера. 2006. № 1. С. 113–134.
- Плюснина Л.П., Некрасов И.Я., Лихойдов Г.Г. Петрогенезис родингитов Мунилканского офиолитового блока Верхояно-Чукотской складчатой области // Изв. АН СССР, сер. геол. 1991. № 8. С. 38–50.
- Плюснина Л.П., Лихойдов Г.Г., Зарайский Г.П. Физикохимические условия формирования родингитов по экспериментальным данным // Петрология. 1993. Т. 1, № 5. С. 557–568.
- 15. Плюснина Л.П., Лихойдов Г.Г. Контактово-реакционное взаимодействие гранитоидов и габбро с гипербазитами и его влияние на подвижность золота и платины // Тихоокеан. геология. 1997. Т. 16, № 4. С. 95–101.
- 16. Плюснина Л.П., Лихойдов Г.Г., Ханчук А.И. Растворимость золота в хлоридных растворах, взаимодействующих с эпидотовыми пропилитами // Докл. РАН. 2003. Т. 389, № 3. С. 394–397.

- Сазонов В.Н., Мурзин В.В., Огородников В.Н., Волченко Ю.А. Золотое оруденение, сопряженное с альпинотипными ультрабазитами (на примере Урала) // Литосфера. 2002. № 4. С. 63–77.
- Спиридонов Э.М., Плетнев П.А. Месторождение медистого золота Золотая Гора (о "золото-родингитовой формации"). М.: Науч. мир, 2002. 219 с.
- Auclair M., Gauthier M., Trottier J. et al. Mineralogy, geochemistry, and petrogenesis of the Eastern metals serpentinite associated Ni-Cu-Zn deposit, Quebec Appalachians // Econ. Geology and the Bulletin of the Society of Econ. Geologists. 1993. V. 88, N 1. P. 123–138.

Рекомендована к печати А.И. Ханчуком

L.P. Plyusnina, G.G. Likhoidov, V.P. Molchanov, Zh.A. Shcheka

Modeling of gold transfer during listwenite and rodingite formation as exemplified by the Ust'-Dep ophiolite complex (Upper Priamurye)

By experimental and thermodynamic modeling gold transfer by chloride and carbonate-chloride hydrothermal solutions at 300 and 400°C isotherms and $P_{tot} = 1$ kbar was studied. The negative effect of CO₂ on Au solubility in fluids was confirmed. The low values of gold solubility (mAu < 10⁻⁸) measured during the experiments explain its precipitation in the process of interaction of serpentinite and listwenite with acid ore-bearing solutions. Listwenite formation was initiated by orogenic granitoids superposed in the studied case on serpentinites and rodingites, and it affects decisively gold transfer in the unified ore-geochemical system. The described metasomatic processes in the Ust'-Dep ophiolites and gold content in its metasomatic rocks confirm the conclusion.

Key words: ophiolite, listwenite, rodingite, gold, experiment, , thermodynamic modeling, Upper Priamurye.