УДК 550.93+551.72(470.5)

U-Pb-СИСТЕМАТИКА ОБЛОМОЧНЫХ ЦИРКОНОВ ИЗ ОТЛОЖЕНИЙ СЕРЕБРЯНСКОЙ СЕРИИ СРЕДНЕГО УРАЛА

© 2012 г. А. В. Маслов, Г. М. Вовна*, В. И. Киселёв*, Ю. Л. Ронкин, М. Т. Крупенин

Институт геологии и геохимии УрО РАН 620075 Екатеринбург, Почтовый пер., 7; E-mail: maslov@igg.uran.ru *Дальневосточный геологический институт ДВО РАН 690022 Владивосток, проспект 100-летия Владивостока, 159; E-mail: gala1367@mail.ru Поступила в редакцию 25.04.2011 г.

На основе LA-ICP-MS данных установлено, что среди обломочных цирконов в тиллитовидных конгломератах танинской свиты серебрянской серии западного склона Среднего Урала присутствует примерно одинаковое количество кристаллов с неоархейскими и палеопротерозойскими U-Pb-изотопными возрастами. Это позволяет считать, что основным источником алюмосиликокластики в начале серебрянского времени были кристаллические породы фундамента восточной части Восточно-Европейской платформы. Обломочные цирконы в песчаниках керносской свиты имеют мезо- и неоархейский (~15%), палеопротерозойский (~60%) и мезопротерозойский (~26%) возраст. Сравнение полученных данных с материалами изучения обломочных цирконов из песчаников рифея и венда Южного Урала показало, что в составе рифейских и нижневендских отложений обоих регионов существенная доля принадлежит продуктам размыва средне- и позднепалеопротерозойских кристаллических пород цоколя Восточно-Европейской платформы. При формировании отложений серебрянской серии, кроме того, заметную роль играли развитые на палеоводосборах более древние, раннепалеопротерозойские, нео- и мезоархейские породные ассоциации. Конец серебрянского времени (керносский век) отличался от его начала (танинский век) появлением в областях сноса также мезопротерозойских комплексов, роль которых в формировании рифейско-вендских отложений соседнего южноуральского сегмента, по имеющимся на сегодня данным, невелика. Это позволяет предполагать пространственно-временное разнообразие источников кластического материала для верхнедокембрийских отложений западной мегазоны Южного и Среднего Урала.

Изучение распределения редкоземельных элементов (РЗЭ), Th, Hf, Sc, Co, Cr и Ni в тонкозернистых обломочных породах серебрянской серии верхнего докембрия западного склона Среднего Урала (Кваркушско-Каменногорский мегантиклинорий) и результаты определения их Nd-модельного возраста позволили установить, что нормализованные к хондриту спектры РЗЭ в них типичны для постархейских глинистых сланцев и аргиллитов [Маслов и др., 2006]. В то же время присутствие на ряде стратиграфических уровней глинистых пород с $Gd_N/Yb_N > 2.0$, как и высокая степень деплетирования ТРЗЭ в некоторых их образцах, указывают на присутствие в составе тонкой алюмосиликокластики архейского компонента. Величина Т_{DM} в глинистых сланцах нижней части серебрянской серии составляет от ~2.0 до 1.85 млрд лет, тогда как на более высоких уровнях разреза доминируют породы с Т_{DM} ~1.77–1.70 млрд лет. Эти факты, как и материалы ранее проведенных минералого-петрографических исследований [Аблизин и др., 1982], дают основания предполагать, что основной областью сноса тонкой алюмосиликокластики для серебрянского бассейна являлись восточные районы Восточно-Европейской платформы, где доминировали кристаллические комплексы раннего протерозоя. Снижение же Nd-модельных возрастов в конце серебрянского времени было обусловлено, по всей видимости, появлением новых, в том числе и восточных (уральских) питающих провинций, сложенных более молодыми комплексами пород [Маслов и др., 2006]. В настоящее время эти предположения подтверждаются новыми данными о U-Pb изотопном возрасте обломочных цирконов, присутствующих в породах серебрянской серии.

Серебрянская серия Кваркушско-Каменногорского мегантиклинория объединяет танинскую, гаревскую, койвинскую, бутонскую и керносскую свиты (рис. 1) [Аблизин и др., 1982]. Танинская свита (мощность до 500 м) слагается несколькими пачками редкогалечниковых тиллитовидных конгломератов, чередующихся с полевошпато-кварцевыми песчаниками, алевролитами, глинистыми и (в нижней части) "зелеными" аповулканогенными сланцами. Гаревская свита (500-650 м) объединяет тонкополосчатые филлитовидные глинистые сланцы и мелкозернистые песчаники. Койвинская свита (250-300 м) представлена чередованием пестро- и красноцветных глинистых сланцев, алевролитов и известняков; в ряде разрезов свиты присутствуют пакеты и пачки редкогалечниковых конгломератов, а также железистые песчаники и сланцы. По представлениям Н.М. Чумакова [2011, с. 10], в настоящее время "... можно сделать осторожное предположение, что танинская и койвинская свиты могут относиться к нижнелапландскому ледниковому горизонту (нижнеблоньская подсвита Беларуси и свита Смальфиорд Норвегии)", т.е. возраст их составляет несколько менее 660 млн лет. Бутонская свита (300-350 м) объединяет полосчатые темно-серые низкоуглеродистые глинистые сланцы с редкими прослоями алевролитов и песчаников. Керносская свита (200-600 м) сложена песчаниками и филлитовидными алевритоглинистыми породами. В северной части Кваркушско-Каменногорского мегантиклинория в разрезах верхней части этой свиты существенная роль принадлежит вулканогенным породам дворецкого комплекса – пикритам, трахибазальтам, трахиандезитобазальтам, щелочным базальтам, фонолитам, щелочным трахитам и др.

Sm-Nd и Rb-Sr методами для трахиандезитов дворецкого комплекса Е.В. Карпухиной с соавторами [2000, 2001] получены датировки, отвечающие интервалу 600–560 млн лет. По данным Ю.Л. Ронкина [Суслов и др., 2002], изотопный возраст трахиандезитов дворецкого комплекса составляет 569 ± 42 млн лет (Sm-Nd метод, валовая проба) и 559 ± 16 млн лет (Rb-Sr метод, валовая проба). А.А. Носовой (устное сообщение, 2009 г.) для вулканитов дворецкого комплекса по двум валовым пробам и монофракциям клинопироксенов получена Sm-Nd датировка 626 ± 50 млн лет (CKBO = 1.5).

Отложения серебрянской серии несогласно перекрыты породами старопечнинской свиты сылвицкой серии. Последние, по данным С.Б. Суслова с соавторами [2002], прорваны интрузивными образованиями кусьинского комплекса. Возраст пикритов кусьинского комплекса (массив на р. Кусья), определенный Rb-Sr методом по монофракциям пироксена и породе в целом, составляет 608 ± 3 млн лет ($I_{Sr} = 0.7033 \pm 3$), а Sm-Nd датировка щелочных габбро бассейна р. Чикман (изохрона по апатиту, клинопироксену и породе в целом) равна 626 ± 57 млн лет [Карпухина и др., 1999].

Рис. 1. Схематическая стратиграфическая колонка серебрянской серии западного склона Среднего Урала.

песчаники; 2 – глинистые сланцы; 3 – низкоуглеродистые глинистые сланцы; 4 – известняки; 5 – тиллитовидные конгломераты; 6 – "зеленые" аповулканогенные сланцы; 7 – гематитизированные песчаники и алевролиты; 8 – вулканогенные породы; 9 – места отбора образцов для выделения обломочных цирконов.

Свиты: tn – танинская; gr – гаревская; kv – койвинская; bt – бутонская; kr – керносская.

Минералого-петрографическое изучение песчаников и тиллитовидных конгломератов серебрянской серии выполнено в основном в 1960-70-х гг. При этом ряд авторов первоначально считал основным источником валунно-галечного материала, слагающего конгломераты танинской свиты, поднятия Уральской геосинклинали, располагавшиеся к востоку от современного Кваркушско-Каменногорского мегантиклинория.

По данным Б.Д. Аблизина с соавторами [1982], в тиллитовидных конгломератах нижнетанинской подсвиты среди обломков присутствуют гнейсы, плагиограниты, аплиты, граниты, порфириты и порфироиды, диабазы, песчаники, кварцито-песчаники, кварциты, карбонатные породы, кремни и сланцы. Примечательно, что карбонатные фрагменты часто представлены мраморизованными или тонкозернистыми известняками с онколитами и катаграфиями, типичными для подстилаю-

Рис. 2. Обзорная схема Урала (а) и положение мест отбора образцов на выделение обломочных цирконов в окрестностях с. Серебрянка (б).

I – мезозойско-кайнозойские отложения; II – Предуральский прогиб; III–VIII – мегазоны Урала: III – Западно-Уральская, IV – Центрально-Уральская, V – Тагильская, VI – Магнитогорская, VII – Восточно-Уральская, VIII – Зауральская.

Цифры в кружках: 1 – Главный Уральский разлом; 2 – Серовско-Маукский разлом.

щей клыктанской свиты. Обломки гранитоидов, среди которых описаны плагиограниты, плагиоклаз-микроклиновые и микроклиновые граниты, аналогичны гранитоидам кристаллического фундамента Восточно-Европейской платформы. Изучение характера распределения обломков в разрезах нижнетанинской подсвиты позволило Б.Д. Аблизину с соавторами [1982] сделать вывод, что основная область сноса в начале серебрянского времени располагалась к юго-западу и западу от Среднего Урала. Наряду с гранитоидами среди обломков в тиллитовидных конгломератах присутствуют парагнейсы, биотит-плагиоклазовые плагиогнейсы, гранатовые, гранат-биотитовые, биотит-гранат-силлиманитовые гнейсы и аплитогнейсы. Состав обломков в тиллитовидных конгломератах верхнетанинской подсвиты сходен с охарактеризованным выше, в то же время в отдельных разрезах среди них присутствует довольно много фрагментов карбонатных пород, что не типично для нижнетанинских конгломератов.

Редкогалечные конгломераты койвинского уровня, в отличие от танинских, сложены преимущественно обломками кварцито-песчаников, кислых изверженных пород, кремней и кварцитов; в ряде разрезов в них присутствуют и фрагменты карбонатных пород.

Песчаники нижней подсвиты керносской свиты по особенностям петрографического и химического состава подразделяются на две крупные группы [Аблизин и др., 1982]. Породы первой группы – это серые и светло-серые фосфатоносные песчаники, содержание в которых кварца составляет 65-75%, а полевых шпатов (альбит, альбит-олигоклаз, ортоклаз, микроклин) – от 15–20 до 25-30%. Обломки пород в песчаниках представлены микрокварцитами и кремнями. Среди полевых шпатов, часто обладающих хорошей или весьма хорошей окатанностью, преобладают плагиоклазы. Вторая группа представлена светлоокрашенными, относительно плохо отсортированными олигомиктовыми кварцито-песчаниками, в которых среди полевых шпатов преобладает ортоклаз. Окатанность зерен полевых шпатов сушественно хуже, чем в породах первой группы. Обломки пород представлены микрокварцитами, алеврито-глинистыми сланцами, кремнями, микропегматитами и фосфоритами.

Для верхнекерносской подсвиты характерны известковистые и глинистые полевошпато-квар-

2012

Рис. 3. Тиллитовидные конгломераты верхней части танинской свиты в обнажениях на левом берегу р. Серебряная (а, б), общий вид скалы Россыпной камень (в) и характер вскрытых на ней песчаников керносской свиты (г). Фото М.Т. Крупенина.

цевые песчаники, брекчии и внутриформационные конгломераты. Брекчии сложены слабоокатанными, часто угловатыми обломками известняков, глинистых сланцев, кремней и фосфоритов, в них присутствуют и фрагменты кварцито-песчаников. Во внутриформационных конгломератах обломки пород представлены полевошпато-кварцевыми кварцито-песчаниками, низкоуглеродистыми глинистыми сланцами и фосфоритами. По внешнему облику эти породы весьма похожи на другие литотипы, развитые в разрезах керносской свиты [Аблизин и др., 1982]. В тиллитовидных конгломератах и гравелитах керносской свиты доминируют обломки подстилающих серебрянскую серию пород рифея. В то же время сопоставление типоморфных признаков и ассоциаций типов кварца в породах фундамента и песчаниках керносской свиты позволило установить, что его источником являлись преимущественно гранитогнейсы цоколя Восточно-Европейской платформы [Аблизин и др., 1982].

ЛИТОЛОГИЯ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ № 2 2012

На основании приведенных выше данных можно полагать, что основным источником обломочного материала для песчаников и тиллитовидных конгломератов серебрянской серии являлись как породы кристаллического фундамента Восточно-Европейской платформы, так и внутрибассейновые поднятия.

Для определения U-Pb-изотопного возраста присутствующих в породах серебрянской серии обломочных цирконов нами в 2008 г. в окрестностях с. Серебрянка (рис. 2, 3) были отобраны представительные образцы матрикса тиллитовидных конгломератов из верхней пачки танинской свиты (образец 08-17-1, 57°58.45' с.ш., 58°59.42' в.д.) и нижней подсвиты керносской свиты (образец 08-17-4, 57°58.738' с.ш., 58°56.252' в.д., скала Россыпной камень). Из указанных образцов Н.Г. Гаевой (ОАО Уральская геологосъемочная экспедиция) были выделены обломочные цирконы и имплантированы в ЦИИ ВСЕГЕИ (г. Санкт-Петербург) в шайбу диаметром 25 мм эпоксидной смолой вместе с цирконами стандар-

Кристалл и зона абляции	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁶ Pb/ ²³⁸ U	±1σ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	²⁰⁶ Pb/ ²³⁸ Pb млн лет	±, млн лет	²⁰⁷ Pb/ ²⁰⁶ Pb, млн лет	±, млн лет
1m4b2r*	14.202	0.082	0.4472	0.0023	0.891	0.2303	0.0015	2383	15	3054	10
1m4b2z*	14.29	0.10	0.4482	0.0027	0.861	0.2312	0.0018	2387	17	3060	12
1m4a7z*	11.30	0.12	0.3953	0.0035	0.834	0.2073	0.0025	2147	23	2885	20
1m4a7r*	10.885	0.076	0.4118	0.0023	0.8	0.1917	0.0015	2223	15	2757	13
1m4a2r*	10.800	0.063	0.4112	0.0019	0.792	0.1905	0.0013	2220	12	2746	11
1m4a2z*	11.747	0.054	0.4535	0.0017	0.815	0.1879	0.001	2411	11	2724	9
1m4a6r	10.791	0.046	0.4191	0.0014	0.784	0.1867	0.0009	2256	9	2713	8
1m4a8r	10.671	0.070	0.4172	0.0022	0.804	0.1855	0.0014	2248	14	2703	12
1m4b5r	7.745	0.033	0.3127	0.0010	0.751	0.1796	0.0009	1754	6	2649	8
1m4d2z*	12.62	0.10	0.4966	0.0033	0.839	0.1843	0.0017	2599	21	2692	15
1m4d2r*	12.684	0.081	0.4899	0.0025	0.799	0.1878	0.0013	2570	16	2723	11
1m4d3r	12.596	0.076	0.4916	0.0024	0.809	0.1858	0.0012	2578	15	2705	11
1m4d4z	11.25	0.20	0.4223	0.0061	0.813	0.1932	0.0039	2271	39	2770	33
1m4d5z	11.00	0.75	0.4200	0.0229	0.8	0.19	0.0145	2260	146	2742	126
1m4b7z	11.622	0.038	0.4557	0.0012	0.805	0.185	0.0007	2421	8	2698	6
1m4c5z	8.041	0.059	0.3016	0.0018	0.813	0.1934	0.0016	1699	12	2771	14
1m4c7z	7.813	0.039	0.2994	0.0012	0.803	0.1893	0.0011	1688	8	2736	10
1m4cl0r*	10.97	0.18	0.4383	0.0055	0.765	0.1815	0.0033	2343	35	2667	30
1m4cl0z*	11.041	0.069	0.4394	0.0022	0.801	0.1822	0.0013	2348	14	2673	12
1m4a5z*	5.248	0.021	0.2264	0.0007	0.773	0.1681	0.0008	1316	5	2539	8
1m4a5r*	5.256	0.029	0.2282	0.0009	0.715	0.167	0.0011	1325	6	2528	11
1m4d7r1*	10.38	0.12	0.4605	0.0040	0.751	0.1635	0.0021	2442	26	2492	22
1m4d7r2*	8.81	0.47	0.3982	0.0159	0.748	0.1605	0.0096	2161	102	2461	101
1m4c8r	4.576	0.040	0.2250	0.0014	0.712	0.1475	0.0015	1308	9	2317	17
1m4d6z*	5.995	0.080	0.3422	0.0030	0.657	0.1271	0.0019	1897	19	2058	26
1m4d6r*	5.970	0.068	0.3443	0.0026	0.663	0.1258	0.0016	1907	17	2040	22
1m4a4r	5.030	0.047	0.2840	0.0018	0.678	0.1285	0.0013	1611	12	2078	18
1m4a4z*	4.986	0.052	0.2845	0.0020	0.674	0.1271	0.0015	1614	13	2058	21
1m4b4r*	5.130	0.023	0.2944	0.0009	0.682	0.1264	0.0006	1663	6	2048	8
1m4b6z	6.480	0.032	0.3744	0.0012	0.649	0.1255	0.0007	2050	8	2036	10
1m4b8z	5.132	0.028	0.2911	0.0011	0.693	0.1279	0.0008	1647	7	2069	11
lm4d1z	5.903	0.093	0.3318	0.0035	0.67	0.129	0.0023	1847	23	2084	31
1m4b3z	5.071	0.028	0.2970	0.0011	0.671	0.1238	0.0008	1676	7	2012	11
1m4c2z*	5.523	0.044	0.3242	0.0017	0.658	0.1236	0.0011	1810	11	2009	16
1m4c2r*	5.360	0.024	0.3158	0.0009	0.636	0.1231	0.0006	1769	6	2002	9
1m4c3z	6.178	0.048	0.3662	0.0019	0.668	0.1224	0.001	2011	12	1992	15
1m4c11z	5.914	0.060	0.3490	0.0023	0.65	0.1229	0.0014	1930	15	1999	20
1m4a1r*	5.877	0.025	0.3561	0.0010	0.66	0.1197	0.0006	1964	6	1952	9
1m4a1z*	5.619	0.019	0.3472	0.0007	0.596	0.1174	0.0004	1921	5	1917	6
1m4b1z*	5.288	0.030	0.3216	0.0012	0.658	0.1193	0.0007	1798	S	1946	10
1m4b1r*	5.243	0.027	0.3185	0.0011	0.671	0.1194	0.0007	1782	7	1947	10
1m4c6r	3.977	0.027	0.2485	0.0011	0.652	0.1161	0.0009	1431	7	1897	14

Таблица 1. U-Pb LA-ICP-MS данные для обломочных цирконов из матрикса тиллитовидных конгломератов танинской свиты серебрянской серии (обр. 08-17-1)

Примечание. Здесь и в табл.2 – Rho – коэффициент корреляции отношений ²⁰⁷Pb/²³⁵U-²⁰⁶Pb/²³⁸U; * – исследован один кристалл.

Таблица 2. U-Pb LA-ICP-MS данные для обломочных цирконов из песчаников керносской свиты серебрянской серии (обр. 08-17-4)

Кристалл и зона абляции	²⁰⁷ Pb/ ²³⁵ U	±lσ	²⁰⁶ Pb/ ²³⁸ U	±1σ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	²⁰⁶ Pb/ ²³⁸ U, млн лет	±, млн лет	²⁰⁷ Pb/ ²⁰⁶ Pb, млн лет	±, млн лет
1m1b18z	16.813	0.059	0.5224	0.0016	0.873	0.2334	0.0009	2709	10	3076	6
1m1a12z	16.890	0.076	0.5486	0.0021	0.851	0.2233	0.0011	2819	14	3005	8
1m1b9z*	12.96	0.15	0.4356	0.0043	0.853	0.2158	0.0028	2331	28	2950	21
1m1b9r*	11.37	0.19	0.3836	0.0055	0.858	0.215	0.0042	2093	35	2944	32
1m1a16z*	13.11	0.11	0.4536	0.0032	0.841	0.2096	0.002	2411	21	2902	15
1m1a16r*	12.800	0.093	0.4558	0.0028	0.845	0.2037	0.0017	2421	18	2856	14
1m1a14r	12.17	0.11	0.4428	0.0034	0.85	0.1993	0.0021	2363	22	2820	17
1m1b32z*	12.601	0.061	0.4445	0.0018	0.837	0.2056	0.0011	2371	12	2871	9
1m1b32r*	11.635	0.059	0.4180	0.0018	0.849	0.2019	0.0012	2251	12	2842	10
1m1c10z	10.63	0.22	0.4040	0.0068	0.813	0.1908	0.0045	2187	44	2749	39
1m1b23z	13.123	0.099	0.4936	0.0031	0.833	0.1928	0.0016	2586	20	2766	14
1m1b16r	8.510	0.036	0.3404	0.0011	0.764	0.1813	0.0009	1889	7	2665	8
1m1b2z*	6.895	0.040	0.2882	0.0013	0.778	0.1735	0.0012	1633	8	2592	12
1m1b2r*	6.172	0.032	0.2627	0.0010	0.734	0.1704	0.001	1504	6	2562	10
1m1a8r	7.380	0.068	0.3120	0.0022	0.765	0.1716	0.0018	1751	14	2573	18
1m1b17r	9.269	0.064	0.4189	0.0022	0.761	0.1605	0.0012	2255	14	2461	13
1m1c1z	9.368	0.039	0.4231	0.0013	0.738	0.1606	0.0007	2275	8	2462	7
1m1b4z	5.664	0.042	0.2729	0.0014	0.692	0.1505	0.0013	1556	9	2352	15
1m1b25z	7.251	0.037	0.3500	0.0013	0.728	0.1503	0.0009	1935	8	2349	10
1m1b22z*	6.795	0.082	0.3411	0.0029	0.705	0.1445	0.0019	1892	19	2282	23
1m1b22r*	6.461	0.068	0.3292	0.0024	0.693	0.1423	0.0017	1835	15	2255	21
1m1b8z*	5.33	0.17	0.2906	0.0064	0.69	0.133	0.0048	1645	41	2138	63
1m1b8r*	5.340	0.074	0.2942	0.0027	0.662	0.1316	0.002	1662	17	2119	27
1m1c26z	5.029	0.072	0.2787	0.0027	0.677	0.1309	0.0021	1585	17	2110	28
1m1a11z*	5.341	0.054	0.2808	0.0019	0.669	0.138	0.0016	1595	12	2202	20
1m1a11r*	3.401	0.066	0.1921	0.0024	0.644	0.1284	0.0028	1133	15	2076	38
1m1b21z*	7.610	0.063	0.3770	0.0023	0.737	0.1464	0.0013	2062	15	2304	15
1m1b21r*	5.225	0.056	0.2923	0.0021	0.67	0.1296	0.0015	1653	14	2093	20
1m1b10r	4.685	0.082	0.2631	0.0030	0.651	0.1291	0.0025	1506	19	2086	34
1m1a9r*	6.920	0.062	0.3865	0.0023	0.664	0.1299	0.0013	2107	15	2097	18
1m1a9z*	6.891	0.063	0.3890	0.0024	0.675	0.1285	0.0013	2118	15	2078	18
1m1b13z	5.082	0.037	0.2866	0.0014	0.671	0.1286	0.001	1625	9	2079	14
1m1a13z*	6.219	0.047	0.3517	0.0017	0.64	0.1282	0.0011	1943	11	2073	15
1m1a13r*	5.545	0.042	0.3145	0.0016	0.672	0.1279	0.0011	1763	10	2069	15
1m1a10z*	5.270	0.162	0.2833	0.0059	0.677	0.1349	0.0046	1608	38	2163	59
1m1a10r*	5.334	0.097	0.3060	0.0037	0.665	0.1264	0.0026	1721	24	2048	36
1m1a3z	5.215	0.049	0.2955	0.0018	0.648	0.128	0.0013	1669	12	2071	18
1m1b1r*	6.345	0.038	0.3581	0.0015	0.699	0.1285	0.0009	1973	10	2078	12
1m1b1z*	6.355	0.034	0.3583	0.0013	0.678	0.1286	0.0008	1974	8	2079	11
1m1b19r	3.356	0.050	0.1905	0.0018	0.634	0.1278	0.0022	1124	12	2068	30
1m1b6r*	5.641	0.029	0.3224	0.0011	0.664	0.1269	0.0007	1801	7	2055	10
1m1b6z*	6.753	0.026	0.3785	0.0010	0.686	0.1294	0.0005	2069	6	2090	7
1m1b31z	5.442	0.037	0.3096	0.0014	0.665	0.1275	0.001	1739	9	2064	14
1m1b11z	5.573	0.036	0.3173	0.0014	0.683	0.1274	0.0009	1777	9	2062	12
1m1b29z	3.773	0.032	0.2162	0.0012	0.654	0.1266	0.0012	1262	8	2051	17

Таблица 2. Окончание

Кристалл и зона абляции	²⁰⁷ Pb/ ²³⁵ U	±1σ	²⁰⁶ Pb/ ²³⁸ U	±1σ	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	±1σ	²⁰⁶ Pb/ ²³⁸ U, млн лет	±, млн лет	²⁰⁷ Pb/ ²⁰⁶ Pb, млн лет	±, млн лет
1m1b24z	6 046	0.048	0 3472	0.0017	0.617	0 1263	0.0011	1921	11	2047	15
1m1c15z	4.921	0.099	0.2827	0.0037	0.651	0.1262	0.0028	1605	24	2046	39
1m1a7z*	6.024	0.084	0.3422	0.0032	0.671	0.1277	0.002	1897	21	2067	28
1m1a7r*	6.059	0.112	0.3554	0.0044	0.67	0.1236	0.0025	1960	28	2009	36
1m1a4r	5.122	0.038	0.2962	0.0015	0.683	0.1254	0.001	1672	10	2034	14
1m1c23z	4.302	0.165	0.2488	0.0062	0.65	0.1254	0.0054	1432	40	2034	76
1m1b7z*	4.223	0.072	0.2523	0.0028	0.651	0.1214	0.0023	1450	18	1977	34
1m1b7r*	4.309	0.082	0.2519	0.0031	0.647	0.1241	0.0027	1448	20	2016	39
1m1a2z	5.090	0.034	0.2997	0.0013	0.649	0.1232	0.0009	1690	8	2003	13
1m1c21z	4.86	0.12	0.2860	0.0047	0.666	0.1232	0.0035	1622	30	2003	50
1m1b30z	5.354	0.028	0.3159	0.0011	0.666	0.1229	0.0007	1770	7	1999	10
1m1a5z	5.008	0.042	0.3026	0.0017	0.67	0.12	0.0011	1704	11	1956	16
1m1c25z	3.722	0.073	0.2281	0.0028	0.626	0.1183	0.0026	1325	18	1931	39
1m1b12z	5.097	0.053	0.3131	0.0020	0.614	0.1181	0.0013	1756	13	1928	20
1m1b26z	4.447	0.017	0.2772	0.0007	0.661	0.1164	0.0005	1577	5	1902	8
1m1c16z*	3.224	0.026	0.1905	0.0010	0.651	0.1227	0.0011	1124	6	1996	16
1m1c16r*	2.588	0.046	0.1622	0.0018	0.624	0.1157	0.0023	969	12	1891	36
1m1b20z	2.909	0.020	0.1917	0.0008	0.607	0.1101	0.0009	1131	5	1801	15
1m1c8z	3.728	0.031	0.2544	0.0013	0.615	0.1063	0.001	1461	8	1737	17
1m1c18z	3.292	0.027	0.2398	0.0011	0.559	0.0996	0.0009	1386	7	1617	17
1m1b14z	3.628	0.020	0.2739	0.0009	0.596	0.0961	0.0006	1561	6	1550	12
1m1c22z	2.785	0.048	0.2123	0.0021	0.574	0.0951	0.0018	1241	14	1530	36
1m1b34z	3.030	0.022	0.2320	0.0009	0.534	0.0947	0.0007	1345	6	1522	14
1m1c19z	2.777	0.057	0.2127	0.0024	0.55	0.0947	0.0021	1243	15	1522	42
1m1c20z	2.688	0.050	0.2074	0.0022	0.57	0.094	0.0019	1215	14	1508	38
1m1b33r*	2.826	0.022	0.2214	0.0010	0.58	0.0926	0.0008	1289	6	1480	16
1m1b33z*	2.994	0.017	0.2354	0.0007	0.524	0.0922	0.0006	1363	5	1472	12
1m1c5z*	3.059	0.029	0.2337	0.0012	0.542	0.0949	0.001	1354	8	1526	20
1m1c5r*	2.514	0.057	0.1985	0.0025	0.555	0.0919	0.0023	1167	16	1465	48
1m1c9z*	2.720	0.043	0.2136	0.0019	0.563	0.0924	0.0016	1248	12	1476	33
1m1c9r*	2.076	0.021	0.1717	0.0009	0.518	0.0877	0.001	1021	6	1376	22
1m1a6z	2.610	0.026	0.2166	0.0012	0.556	0.0874	0.001	1264	8	1369	22
1m1c7z	2.630	0.034	0.2207	0.0016	0.561	0.0864	0.0012	1286	10	1347	27
1m1c4z	2.511	0.021	0.2116	0.0010	0.565	0.0861	0.0008	1237	6	1340	18
1m1a1z	2.537	0.027	0.2216	0.0013	0.551	0.083	0.001	1290	8	1269	24
1m1c14r	1.961	0.034	0.1722	0.0015	0.502	0.0826	0.0016	1024	10	1260	38
1m1c24z	1.785	0.042	0.1571	0.0019	0.514	0.0824	0.0021	941	12	1255	50
1m1a15z	2.188	0.021	0.1927	0.0010	0.541	0.0824	0.0009	1136	6	1255	21
1m1c12z	2.011	0.021	0.1781	0.0010	0.538	0.0819	0.0009	1057	6	1243	22
1m1c17z	2.205	0.039	0.2011	0.0017	0.478	0.0795	0.0015	1181	11	1185	37
1m1c6z*	1.643	0.026	0.1553	0.0012	0.488	0.0767	0.0013	931	8	1113	34
1m1c6r*	1.39	0.26	0.1311	0.0119	0.485	0.0769	0.0156	794	76	1119	405
1m1c3z	1.400	0.017	0.1378	0.0008	0.478	0.0737	0.001	832	5	1033	27
1m1c11z*	1.636	0.045	0.1499	0.0020	0.485	0.0792	0.0024	900	13	1177	60
1m1c11r*	1.147	0.045	0.1210	0.0021	0.442	0.0688	0.0029	736	14	893	87

Рис. 4. Микрофотографии шлифов матрикса тиллитовидных конгломератов верхней части танинской свиты: а – в проходящем свете, б – в скрещенных николях. В нижней части рисунка а – обломок железистых кварцитов. Фото М.Т. Крупенина.

та TEMORA. Далее интеграционная поверхность, содержащая кристаллы, была сошлифована и приполирована приблизительно на половину своей толщины. Для выбора конкретных локальных областей датирования использовались оптические изображения (в проходящем и отраженном свете), изображения в обратно рассеянных электронах, а также катодолюминесценция (с помощью электронного микроскопа CamScan MX2500), отражающие внутреннюю структуру и зональность выбранных для исследования кристаллов.

U-Pb изотопные данные получены в лаборатории аналитической химии ДВГИ ДВО РАН

Рис. 5. Обломочные цирконы, выделенные из обр. 08-17-1.

(г. Владивосток) с помощью плазменного массспектрометра Agilent 7500a (Agilent Technologies), интегрированного с лазером UP-213 (New Wave/Merchantek) в режиме "on-line". Подробное описание методики исследований приведено в [Horn et al., 2000; Jackson et al., 2004; Киселев и др., 2008]. Измеренные величины обработаны с помощью программ "Glitter v. 4.4.2" (Access Macquarie Ltd.) и Isoplot/Ex v. 3.6 (Berkeley Geochronology Center). U-Pb-отношения нормализованы к соответствующим значениям изотопных отношений в цирконовом стандарте TEMORA.

В целом было изучено почти 100 кристаллов цирконов (соответственно, 30 и 69 для образцов 08-17-1, 08-17-4), U-Pb изотопная систематика которых представлена в таблицах 1 и 2.

Матрикс редкогалечных конгломератов танинской свиты характеризуется слабой рассланцованностью и имеет темно-серую с фиолетовым оттенком окраску. В алеврито-глинистом с примесью псаммитовых зерен материале наблюдаются средне- и плохоокатанные обломки (3–8 мм, 20–30% площади шлифа) алевропесчаников и микрокварцитов, зерна микроклина, а также фрагменты гранитодов и карбонатных пород (рис. 4).

Обломочные цирконы (30 зерен¹) в данном образце представлены преимущественно слабоока-

танными бесцветными или светло-розовыми прозрачными зернами с сохранившимися в той или иной мере удлиненно-призматическими двупирамидальными очертаниями (рис. 5). Размер зерен варьирует от $80-90 \times 100-110$ до $120-140 \times 200$ мкм. Наиболее крупное из изученных нами зерен размером ~260 мкм имеет субизометричные очертания. Для значительного числа изученных зерен трещины или признаки дробления и последующего их залечивания не характерны. Преобладают цирконы с достаточно гладкой поверхностью. Твердофазные включения наблюдаются не во всех зернах, количество их составляет в среднем 1–3 на зерно (максимум – 5).

По данным катодолюминесценции, количество зерен с осциллирующей магматической зональностью в образце 08-17-1 составляет несколько более половины всех выделенных кристаллов. Наряду с ними среди детритовых цирконов присутствуют незональные или неотчетливо зональные зерна, тогда как кристаллы с ксеногенными ядрами практически отсутствуют. Для 12 зерен всех перечисленных выше типов выполнено определение изотопного состава U и Pb как в централь-

¹ Использование данных менее чем по 117 обломочным зернам цирконов, по представлениям [Vermeesch, 2004], позволяет выявлять только главные типы размывавшихся на палеоводосборах пород. Второстепенные источники, поставлявшие в область осадконакопления менее 5% кластики, могут быть при этом пропущены.

Рис. 6. Катодолюминесцентные изображения и вычисленный по отношениям ²⁰⁷ Pb/²⁰⁶ Pb U-Pb-изотопный возраст (млн лет) некоторых зерен обломочных цирконов из матрикса тиллитовидных конгломератов танинской свиты.

ных, так и краевых их частях (см. табл. 1). Катодолюминесцентные изображения и ²⁰⁷Pb/²⁰⁶Pb изотопный возраст некоторых зерен обломочных цирконов из матрикса тиллитовидных конгломератов танинской свиты приведены на рис. 6. На гистограмме ²⁰⁷Pb/²⁰⁶Pb их возрастов наблюдаются два отчетливых пика (~2700 и ~2000 млн лет) (рис. 7а). Это свидетельствует о том, что обломочные цирконы, присутствующие в матриксе тиллитовидных конгломератов танинской свиты, представлены примерно поровну зернами с неоархейскими (~48%, 2771–2698, 2667–2650 и 2528 млн лет) и палеопротерозойскими (~49%, 2460 и 2317, 2085–2069, 2048–1998 и 1947–1897 млн лет) возрастами. Для одного из 30 исследованных зерен (~3%) определены значения ²⁰⁷Pb/²⁰⁶Pb воз-

Рис. 7. Гистограммы U-Pb изотопных возрастов, вычисленных по отношению ²⁰⁷Pb/²⁰⁶Pb, для обломочных цирконов из матрикса тиллитовидных конгломератов танинской свиты (а) и песчаников керносской свиты (б).

1 – количество исследованных зерен; 2 – относительная вероятность (relative probability).

I – архей; II – палеопротерозой; III – мезопротерозой; IV – неопротерозой (возрастные рамки показаны в соответствии с Международной стратиграфической шкалой, 2008 г.).

раста 3054 и 3061 млн лет. Таким образом, полученные данные подтверждают сделанные ранее выводы [Аблизин и др., 1982; Маслов и др., 2006], согласно которым основным источником алюмосиликокластики для бассейна начала серебрянского времени были кристаллические породы фундамента восточной части Восточно-Европейской платформы.

Песчаники керносской свиты имеют полевошпато-кварцевый состав (кварц – 80–85%, микрокварциты – 5–10%, полевые шпаты (микроклины и плагиоклазы) — 5—15%) и характеризуются крупнозернистой структурой и средней сортировкой. Размер зерен варьирует от 1.5 до 0.3 мм; преобладают хорошо окатанные зерна размером 0.6— 0.7 мм. Цемент преимущественно кварцевый регенерационный и конформно-регенерационный (рис. 8).

Выделенные из образца 08-17-4 детритовые цирконы (72 зерна) представлены преимущественно в различной степени окатанными бесцветными, светло- и темно-розовыми прозрачными зернами, часть из которых сохранила удлиненно-призматические, близкие к двупирамидальным очертания (рис. 9). Преобладающий размер их – 130–150 × × 80-100 мкм. Иногда встречаются достаточно крупные (от 250 × 130 до 400 × 200 мкм) оскольчатые фрагменты кристаллов; небольшая часть зерен имеет почти округлую форму. В некоторых зернах наблюдаются хорошо выраженные трещины, часть которых пересекают все зерно. Значительная часть зерен содержит мелкие твердофазные включения; чаще всего число их варьирует от 1 до 3, в нескольких достигает 10 и более. Поверхность зерен детритовых цирконов либо относительно гладкая, либо покрыта многочисленными мелкими ямками; существенно реже тонкими продольными бороздами. Некоторые зерна обладают хорошо заметными темно-розовыми ядрами, наличие которых подтверждается и в катодных лучах.

Судя по данным катодолюминесценции, большинство детритовых цирконов, выделенных из образца 08-17-4, характеризуются явно выраженной зональностью. Значительно реже встречаются гомогенные или неотчетливо зональные кристаллы, а также зерна с ядрами. В 20 зернах (как зональных, так и с хорошо выраженными внутренним ядром и каймой регенерации) изотопный состав U и Pb определен в двух разных участках (см. табл. 2, рис. 10). При наличии в зерне ядра и оболочки определение изотопного состава U и Pb в них также проводилось раздельно.

На графике распределения ²⁰⁷Рb/²⁰⁶Рb возрастов детритовых цирконов, выделенных из образца 08-17-4, наблюдается один отчетливый пик, соответствующий интервалу 2100-2000 млн лет, и ряд небольших пиков как в области значений более 2500 млн лет, так и в заметно более молодом интервале времени (1600-1200 млн лет) (см. рис. 76). В целом обломочные цирконы из песчаников керносской свиты состоят примерно на 15% из зерен мезо- и неоархейского возраста, около 60% составляют палеопротерозойские цирконы. Таким образом, ~75% исследованных нами детритовых цирконов данного образца достаточно близки по возрасту к обломочным цирконам из тиллитовидных конгломератов танинской свиты.

Рис. 8. Микрофотографии шлифов кварцитовидных песчаников керносской свиты, николи +. Фото М.Т. Крупенина.

Рис. 9. Обломочные цирконы, выделенные из обр. 08-17-4.

Однако, в отличие от образца 08-17-1, здесь присутствует ~26% зерен мезопротерозойских цирконов (1549–1508, 1472, 1465, 1376–1340, 1270– 1242, 1186, 1115 и 1034 млн лет). Разброс максимальных и минимальных значений возраста ядер и их оболочек варьирует от примерно 200 до несколько менее 100 млн лет (рис. 11). Кроме того, для одного зерна ²⁰⁷Pb/²⁰⁶Pb возраст ядра составляет ~1177, а оболочки ~892 млн лет, что соответствует тонию (ранний неопротерозой) Международной стратиграфической шкалы.

С учетом всего сказанного и основываясь на данных, приведенных в работах [Кузнецов, 2010; Kuznetsov et al., 2010], можно предполагать, что мезопротерозойские цирконы в песчаниках керносской свиты в той или иной мере отражают гренвильские события (1.0–1.3 млрд лет) и поздние фазы аккреционно-коллизионного (1.2–1.5 млрд. лет) тектогенеза на западе Балтики. Часть из них (главным образом кристаллы с возрастами 1.40–1.36 млрд лет), связана, вероятно, с теми или иными внутрибассейновыми событиями.

Сопоставление полученных нами U-Pb данных с материалами изучения обломочных цирконов из песчаников рифея и венда Южного Урала

[Willner et al., 2003] позволяет отметить следующее. В отложениях рифея Башкирского мегантиклинория преобладают (~73%) цирконы с палеопротерозойскими U-Pb-изотопными датировками (2185-2065, 2048-1859 и 1782-1743 млн лет), обнаружены также зерна с раннемезопротерозойскими возрастами (1398-1572 млн лет) (рис. 12а). Цирконы с аналогичными или близкими возрастами присутствуют и в кристаллических породах востока Восточно-Европейской фундамента платформы [Bogdanova et al., 2010]. Это, как и данные предшествующих минералого-петрографических исследований [Орлова, 1960; Акимова, 1964; Маслов, 1988; Сергеева, 1989 и др.], дает основание предполагать, что основными областями сноса терригенного материала, слагающего типовой разрез рифея, являлись прилежащие к Уралу области платформы (протократон Волго-Уралия), хотя присутствующие в указанном регионе архейские и раннепалеопротерозойские комплексы в размыв вовлечены не были. Об этом же свидетельствуют и результаты определения Ndмодельного возраста тонкозернистых обломочных пород типового разреза рифея [Маслов и др., 2003]. В песчаниках средних и верхних уровней типового разреза рифея присутствуют также зер-

Рис. 10. Катодолюминесцентные изображения и вычисленный по отношениям ²⁰⁷Pb/²⁰⁶Pb U-Pb-изотопный возраст (млн лет) зерен обломочных цирконов из песчаников керносской свиты.

2093
Imlb2lr
2304
Imlb2lzImlalor
Q163
Imlaloz
Q48Imlalor
Q163
Imlede
Imlaloz
Q48Imlalor
Q163
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede
ImledeImalor
Imlede
Imlede
Imlede
Imlede
Imlede
Imlede000

Рис. 11. Катодолюминесцентные изображения и U-Pb-изотопный возраст (млн лет) зерен обломочных цирконов, имеющих ясно выраженные ксеногенные ядра и оболочки нарастания (обр. 08-17-4).

на цирконов с раннемезопротерозойскими возрастами (1572-1398 млн лет), однако источники их достоверно не установлены. Обломочные цирконы из песчаников басинской и куккараукской свит верхнего венда Башкирского мегантиклинория характеризуются как U-Pb-изотопными возрастами 2058-1898, 1847, 1788 и 1483 млн лет (считается, что они поступали из подстилающих рифейских образований [Willner et al., 2003; Пучков, 2010]), так и существенно более молодыми датировками (643, 623, 619, 573 млн лет и т.п.) (см. рис. 12б). Присутствие в породах последних свидетельствует о появлении в венде вследствие тиманской орогении новой области сноса, расположенной к востоку от основной части современного Башкирского мегантиклинория [Willner et al., 2003; Пучков, 2000, 2010].

Таким образом, полученные нами первые результаты изучения U-Pb-системы обломочных цирконов из терригенных пород танинской и керносской свит серебрянской серии Кваркушско-Каменногорского мегантиклинория показывают, что в формировании рифейских и вендских отложений Южного и Среднего Урала существенная роль принадлежала продуктам размыва средне- и позднепалеопротерозойских комплексов пород кристаллического фундамента Восточно-Европейской платформы. Во время накопления отложений серебрянской серии источниками сноса служили также более древние – раннепалеопротерозойские, нео- и мезоархейские породные ассоциации. Конец серебрянского времени (керносский век) отличался от его начала (танинский век) присутствием в областях сноса также мезопротерозойских комплексов, роль которых в формировании рифейско-вендских отложений Южного Урала, по имеющимся в настоящее время в литературе данным, представляется весьма скромной. Таким образом, кластический материал при формировании верхнедокембрийских отложений западной мегазоны Урала поступал из разных областей сноса, разделенных в пространстве и времени. Такой же вывод можно сделать и при сопоставлении данных по возрасту детритовых цирконов в верхнедокембрийских разрезах Урала и Южного Тимана [Маслов, 2012].

Рис. 12. Гистограммы U-Pb изотопных возрастов, вычисленных по отношению ²⁰⁷Pb/²⁰⁶Pb, для обломочных цирконов из песчаников рифея (а) и венда (б) Башкирского мегантиклинория (при построении гистограмм использованы данные [Willner et al., 2003]).

Условные обозначения см. рис. 7.

Авторы искренне признательны Н.С. Глушковой и Н.Г. Гаевой за помощь в подготовке данной работы.

Исследования выполнены при финансовой поддержке интеграционного проекта УрО, СО и ДВО РАН "Реконструкции источников поступления вещества в осадочные бассейны Северной Евразии: обстановки седиментогенеза, потенциальная рудоносность" (проект УрО РАН 09-С-5-1013).

СПИСОК ЛИТЕРАТУРЫ

Аблизин Б.Д., Клюжина М.Л., Курбацкая Ф.А., Курбацкий А.М. Верхний рифей и венд западного склона Среднего Урала. М.: Наука, 1982. 140 с.

Акимова Г.Н. О направлении и источниках сноса обломочного материала в отложениях верхнерифейской зильмердакской свиты Южного Урала // Докл. АН СССР. 1964. Т. 158. № 5. С. 1099–1101.

Карпухина Е.В., Первов В.А. Щелочно-базальтовый магматизм западного склона Урала как индикатор

ЛИТОЛОГИЯ И ПОЛЕЗНЫЕ ИСКОПАЕМЫЕ № 2 2012

позднепротерозойских процессов рифтогенеза (на примере дворецкого вулканического комплекса) // Изотопное датирование геологических процессов: новые методы и результаты. М.: ГЕОС, 2000. С. 170–172.

Карпухина Е.В., Первов В.А., Журавлев Д.З. Петрология щелочного вулканизма — индикатора поздневендского рифтогенеза, западный склон Урала // Петрология. 2001. Т. 9. № 5. С. 480–503.

Карпухина Е.В., Первов В.А., Журавлев Д.З., Лебедев В.А. Возраст мафит-ультрамафитового магматизма западного склона Урала (первые Sm-Nd и Rb-Sr данные) // ДАН. 1999. Т. 369. № 6. С. 809–811.

Киселев В.И., Вовна Г.М., Мишкин М.А., Ковалева Е.Ю. Одновременное определение содержания редких элементов и U–Pb изотопных отношений цирконов по единичному зерну методом ЛА–ИСП–МС // Материалы VIII научной конференции "Аналитика Сибири и Дальнего Востока". Томск, 2008. С. 78–79.

Кузнецов Н.Б. Позднедокембрийско-раннепалеозойская предыстория Западной Арктики (региональногеологический и палеотектонический аспекты) // Строение и история развития литосферы. Вклад России в Международный полярный год 2007/08. М., СПб.: Paulsen, 2010. С. 523–567. *Маслов А.В.* Литология верхнерифейских отложений Башкирского мегантиклинория. М.: Наука, 1988. 133 с.

Маслов А.В. Первый опыт сравнительного анализа результатов U-Pb изотопного датированиия обломочных цирконов из отложений верхнего докембрия Урала и Южного Тимана // Литосфера. 2012.

Маслов А.В., Ронкин Ю.Л., Крупенин М.Т. и др. Источники сноса рифейских бассейнов седиментации области сочленения Русской платформы и Южного Урала: синтез петрографических, петро- и геохимических данных // ДАН. 2003. Т. 389. № 2. С. 219–222.

Маслов А.В., Ронкин Ю.Л., Крупенин М.Т. и др. Систематика редкоземельных элементов, Th, Hf, Sc, Co, Cr и Ni в глинистых породах серебрянской и сылвицкой серий венда западного склона Среднего Урала – инструмент мониторинга состава источников сноса // Геохимия. 2006. № 6. С. 610–632.

Орлова М.Т. Акцессорные минералы древних немых толщ западного склона Южного Урала // Геология и полезные ископаемые Урала. Л.: ВСЕГЕИ, 1960. С. 31–43.

Пучков В.Н. Палеогеодинамика Южного и Среднего Урала. Уфа: Даурия, 2000. 146 с.

Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). Уфа: ДизайнПолиграфСервис, 2010. 280 с.

Сергеева Н.Д. Минералогическая корреляция верхнедокембрийских образований Южного Урала. Автореф. дис. ... канд. геол.-мин. наук. Свердловск: ИГГ УрО АН СССР, 1989. 23 с. Суслов С.Б., Зорин В.Н., Кинев А.Н. Государственная геологическая карта Российской федерации масштаба 1 : 200000. Издание второе. Серия Пермская. Лист О-40-XVII. Объяснительная записка. Пермь: Пермское государственное предприятие "Геокарта", 2002. 172 с.

Чумаков Н.М. Африканская ледниковая эра позднего протерозоя // Стратиграфия. Геологическая корреляция. 2011. Т. 19. № 1. С. 3–23.

Bogdanova S.V., Bingen B., Gorbatschev R. et al. The East European Craton (Baltica) before and during the assembly of Rodinia // Prec. Res. 2008. V. 160. P. 23–45.

Horn I., Rudnick R. L., McDonough W.F. Precise elemental and isotopic ratio determination by combined solution nebulization and laser ablation ICP-MS: application to U/Pb *geochronology* // Chem. Geol. 2000. V. 167. P. 403–426.

Jackson S.E., Pearson N.J., Griffin W.L. et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology // Chem. Geol. 2004. V. 211. P. 47–69.

Kuznetsov N.B., Natapov L.M., Belousova E.A. et al. Geochronological, geochemical and isotopic study of detrital zircon suites from late Neoproterozoic clastic strata along the NE margin of the East European Craton: Implications for plate tectonic models // Gondwana Res. 2010. V. 17. P. 583–601.

Vermeesch P. How many grains are needed for a provenance study? // Earth Planet. Sci. Lett. 2004. V. 224. P. 441–451.

Willner A.P., Sindern S., Metzger R. et al. Typology and single grain U/Pb ages of detrital zircons from Proterozoic sandstones in the SW Urals (Russia): early time marks at the eastern margin of Baltica // Prec. Res. 2003. V. 124. P. 1–20.