1988

## НАУЧНЫЕ НОВОСТИ И ЗАМЕТКИ

УДК 553.492(266)

л.е. штеренберг, б.и. воронин, с.с. степанов ЧАСТИЧНО ОКИСЛЕННЫЙ САМОРОДНЫЙ АЛЮМИНИЙ В ОСАДКАХ СЕВЕРО-ВОСТОКА ТИХОГО ОКЕАНА

Микрообломки самородного алюминия, обычно в виде угловатых, неправильной формы пластинок размером около 0,1 мм, обладающие ярким металлическим блеском и в сростках с другими минеральными выделениями (рисунок, а), установлены среди осадков ряда станций вблизи субширотного разлома Кларион, на гребне Восточно-Тихоокеанского поднятия (ВТП), в депресии Бауэр и на некоторых других участках Тихого океана. Самородный алюминий, найденный среди магматогенных образований и в глубоководных океанических осадках, характеризующихся высокими значениями Еh, представлен неокисленной формой. Такая сохранность его, по мнению исследователей (Олейников и др., 1978), связана с появлением на поверхности алюминия тонкой окисной пленки, предохраняющей от более глубокого разложения. Было также высказано предположение, что сохранность металлического алюминия в сильноокисленных океанских осадках связана с присутствием в его составе кремния, который образует с ним соединения типа силицидов (Штеренберг, Васильева, 1979; Штеренберг и др., 1980, 1985).

С помощью водной промывки осадков через капроновую сетку во фракции >0,1 мм нами обнаружены разные по величине образования, имеющие темно-серый цвет и слабый металлический блеск. По внешнему виду они напоминают самородный свинец, также пачкающий руки металлической пылью. Обломки эти иногда достигают 3-4 см, но в основном это небольшие образования (см. рисунок, 6), очень мягкие, легко рассыпающиеся даже при слабом нажатии пальцем или каким-либо другим твердым предметом. Форма их, особенно тех, которые имеют небольшой размер, главным образом шаровидная или близкая к ней. Иногда встречаются образования и несколько иного облика, однако и в этих случаях они имеют сглаженные сферические поверхности.

Темно-серые образования установлены на станции 651 (17°49' с.ш., 124°41' з.д., глубина 4350 м) в интервале разреза осадков 385—410 см и на станции 645 (18°11' с.ш., 141°08' з.д., глубина 5480 м) в интервале разреза осадков 285—295 см.

В интервале разреза 385—410 см ст. 651 фракция более 0,1 мм составляет 0,09% от веса отобранных для изучения осадков. Она представлена главным образом резко отличными по внешнему виду, твердости и составу образованиями. Одни из них — обломки серовато-беловатой монтмориллонитовой глины, среди которой под микроскопом устанавливаются отдельные спикулы губок плохой сохранности. Другие — твердые, неправильной формы, угловатые обломки светлосерой породы, содержащей ярко-красные прослойки и включения. По внешнему виду эти обломки напоминают яшмо-кварциты. Под микроскопом в проходящем свете видны участки, занятые кварцем, перемежающиеся с непрозрач-



Мелкие обломки самородного алюминия (отдельные и в сростках с другими образованиями) в осадках Тихого океана (вблизи разломной зоны Кларион, на ВТП, в депрессии Бауэр и других пунктах)

a — сфотографировано с боковой подсветкой, под микроскопом,  $\times$ 9,  $\delta$  — темно-серое образование, представленное частично окисленным, механически перетертым самородным алюминием, сфотографировано с боковой подсветкой под микроскопом,  $\times$ 6;  $\epsilon$  — тот же образец, свет отраженный, без анализатора,  $\times$ 250;  $\epsilon$  — тот же образец, под сканирующим микроскопом,  $\times$ 5000

ными рудными выделениями. Рентгеновский анализ этих обломков, как и других образований станций 651 и 645, выполненный с помощью 57-миллиметровой камеры УРС-55 (Со-К<sub>а</sub>-излучение), показал, что мы имеем дело с кварцем и гематитом. Действительно, на рентгенограмме видны линии кварца — 4,26; 3,34; 2,45 Å и др., перемежающиеся с линиями гематита — 3,68; 2,69; 2,51 Å и др. Подобные яшмовидные образования, вероятнее всего, образовались гидротермальным путем(Хворова, Ильинская, 1983).

Важно отметить во фракции >0,1 мм рассматриваемого интервала разреза станции 651 Fe-Mn-микроконкреции II типа (по Штеренбергу и др., 1980), для которых характерны темно-серый цвет и довольно отчетливый металлический блеск. Форма их весьма разнообразна; наиболее часто встречаются палочко-

видные, шаровидные и серповидные. Поверхность их, как правило, гладкая. Подобные микроконкреции содержат около 21,0% железа и 10% марганца; средние содержания в них никеля 1,2%, меди — 0,85, кобальта — 0,13%.

Основным марганцеворудным минералом микроконкреций II типа является бернессит. Значительно реже во фракции >0,1 мм встречены микроконкреции I типа (Штеренберг и др., 1980). Основными марганцевыми минералами этого типа микроконкреций являются неупорядоченный асболан — бузерит, в подчиненном количестве находится вернадит. Микроконкреции I типа имеют черный цвет и очень слабый металлический блеск. Форма их также разнообразна: неправильношаровидная, удлиненная, слабо уплощенная и др. Поверхность изобилует мелкими выступами и впадинами. Под оптическим микроскопом видно зональноконцентрическое строение, практически не отличающееся от строения Fe-Mn-макроконкреций. По составу макро- и микроэлементов микроконкреции I типа также не отличаются от их поверхностных и погребенных макроскопических аналогов.

Осадки, поднятые на станции 645, по всему разрезу представлены темнокоричневыми глинистыми илами с включениями цеолитов. В осадках изученного нами интервала (285—295 см) фракция >0,1 мм составляет около 0,25%. Темносерые металловидные образцы имеют значительно меньший размер, чем на станции 651. Наиболее развитыми во фракции >0,1 мм станции 645 оказались неправильной формы и полуокатанные обломки плотной алевритовой глины, достигающие в диаметре 2—3 мм. Они часто несут на своей поверхности тонкие корочки и пленки железомарганцевых окислов. Отдельные глинистые обломки почти полностью окружены этими рудными выделениями.

Рентгеновский анализ микрообразцов серовато-беловатого цвета плотной глины в камере УРС-55 показал, что она представлена минералом из группы монтмориллонита. Под микроскопом в ней обнаружены мелкие обломки полевых шпатов и кварца. В отличие от фракции >0,1 мм станции 651 здесь устанавливаются микроконкреции ІІ типа, зато в больших количествах обломки водяно-прозрачного кварца, плаганитизированного базальта, долерита, обломки и целые формы скелетов кремнистых организмов (спикул губок, радиолярий). Единично встречены мелкие металловидные магнитные шарики и обломки (желтовато-серого цвета) гипса.

Сравнение фракций >0,1 мм осадков станций 651 и 645 свидетельствует, что хотя они и имеют в общем разный состав, большое место в них занимают перемещенные образования, такие, как обломки яшмо-кварцитов, твердые полуокатанные и неправильной формы обломки глин, обломки палагонитов и др., являющиеся явно чужеродными (Штеренберг, Васильева, 1979; Штеренберг и др., 1980, 1985).

Наиболее детально изучен нами крупный образец, поднятый на станции 651 (см. рисунок, б). Как видно на фотографиях под оптическим (см. рисунок, в) и сканирующим (см. рисунок, г) микроскопами, темно-серые образования представлены частицами очень небольшого размера, разной формы, чаще всего удлиненными, несцементированными. Рентгеновский анализ образца (табл. 1) с экспонированием в течение 1 ч показал, что он представлен самородным алюминием. При экспонировании в течение 4 ч на пленке появляются слабые линии — 2,56 Å (интенсивность — 2); 2,24; 2,07; 1,90 Å (все с интенсивностью, равной 1), присутствие которых не дает нам возможности судить о том, с какими минеральными выделениями они связаны.

Химический состав образца определен с помощью "Самевах" (фирма Cameka, Франция). Основным элементом в нем является алюминий, содержание которого меняется от 47 до почти 73% от точки к точке на относительно небольших расстояниях в препарате. Содержание магния колеблется от 0,48 до 1,37%. Меди на четырех из пяти анализированных точек содержится весьма близкое коли-

чество — 2,93—2,94%, и только в одной точке оно доходит до 6,37%. Весьма низки количества кремния и хрома — сотые доли процента. Очень неравномерно распределение общего железа — от точки к точке изменяется в весьма широких пределах (0,10-17,06%). Сумма содержаний элементов по отдельным точкам, однако, однозначно указывает на обязательное присутствие еще какого-то элемента или рентгеноаморфного соединения, поскольку она значительно меньше 100%. На кристалл-анализаторе было проведено полуколичественное определение содержаний кислорода. Анализы показали, что в темно-сером мягком образце содержатся большие количества последнего. Углерод в темно-сером образце, судя по качественным определениям, либо отсутствует совсем, либо его чрезвычайно мало. Пересчитав содержания всех элементов (исключая кремний и хром) на окислы и приведя результаты к 100%, мы пришли к выводу о наличии, помимо самородного алюминия, еще и рентгеноаморфного соединения типа Al2O3. Как видно в табл. 2, содержания этого окисла почти всегда (за исключением 5-й точки) в 2-3 раза преобладают над содержанием металлического алюминия, тем самым свидетельствуя о глубоком окислении последнего.

Характер распределения элементов устанавливался путем сканирования по площади 200×200 мкм. Судя по полученным данным, главный элемент — алюминий распределяется по площади довольно равномерно. Медь концентрируется только на отдельных, небольших по размеру, участках, а на остальной площади распределяется, как и алюминий, равномерно. Небольшие по размеру пятна повышенных концентраций железа встречаются почти на всем изученном поле. Медь, железо и другие рассматриваемые нами элементы, как правило, приурочиваются к тем же участкам, на которых устанавливается и алюминий.

Несомненно, что образование самородного алюминия происходило в сильновосстановительных условиях, обусловленных присутствием водорода, играющего одну из главных ролей, в потоках флюндов, богатых разными компонентами. Выносимые в близповерхностные участки морского дна частички металлического алюминия, по-видимому, в рассматриваемом нами случае "застряли" и поэтому скопились в трещиноватой зоне. При последующих тектонических движениях они были перетерты и поэтому быстро подвергались значительному окислению. Медь, железо и другие соединения, вероятно, также окислялись на частицах и между частицами перетертого алюминия.

Для того чтобы установить, присутствуют ли окислые соединения алюминия в рассматриваемом нами образце, последний был помещен в кварцевый стаканчик и в приборе для определения микроколичеств С и Н прокален до 900° С. Полученный после прогревания образец просмотрен под бинокулярной лупой. После прокаливания в исследуемом образце можно было выделить ряд фаз: мягкие темно-серые порошковатые выделения (развиты очень незначительно), отличающиеся от исходных довольно отчетливым металлическим блеском, также редко встречающиеся мелкие (сотые доли миллиметров) металлические шарики и весьма плотные, крепкие на излом, часто спаянные с металлическими шариками темно-серые тонкозернистые образования. Результаты их рентгеновских анализов приведены в табл. 1. Как видно из данных этой таблицы, порошковатые выделения, обладающие металлическим блеском, принадлежат самородному алюминию с незначительной примесью, которую нам не удалось идентифицировать из-за небольшого количества и низкой интенсивности линий на дебаеграмме. Металлический шарик в основном тоже сложен маталлическим алюминием и также содержит небольшие количества минеральной примеси. По-видимому, в результате плавления алюминий приобрел несколько иное структурное состояние, поскольку на рентгенограмме вместо сплошных появились прерывистые линии, как и у кристаллов. Рентгенограмма темно-серого плотного образования достаточно четко совпала со смесью двух минералов; корунда (Al<sub>2</sub>O<sub>3</sub>), который

Таблица 1 Интенсивности линий (I) и межплоскостные расстояния (d) исходного и прокаленного (900°C) темно-серого образца [станция 651]

| Темно-се | рый исходный | образец экспо | нировался | Алюминий с | амородный* | Образец прокален до 900° ( |      |  |
|----------|--------------|---------------|-----------|------------|------------|----------------------------|------|--|
| 1 4      |              | 4 <b>4</b>    |           | 1          |            | мягкий как исходи          |      |  |
| /        | d            | I             | d         | 1          | d          | 1                          | d    |  |
|          |              |               |           |            |            | 1                          | 3,02 |  |
|          |              | 2             | 2,56      |            |            | 2                          | 2,56 |  |
| 10       | 2,33         | 10            | 2,34      | 10         | 2,34       | 10                         | 2,33 |  |
|          |              | 1             | 2,24      |            |            | 1                          | 2,33 |  |
| 5        | 2,04         | 1             | 2,07      |            |            |                            |      |  |
|          |              | 6             | 2,02      | 9          | 2,03       | 8                          | 2,01 |  |
|          |              | 1             | 1,90      |            |            | 1                          | 1,91 |  |
| 4        | 1,43         | 4             | 1,43      | 8          | 1,43       | 6                          | 1,43 |  |
|          | -,           | •             | -•        | -          | -,         | -                          | -,   |  |
| 4        | 1,22         | 6             | 1,22      | 10         | 1,22       | 8                          | 1,21 |  |
| 2        | 1,17         | 3             | 1,16      | 5          | 1,16       | 9                          | 1,16 |  |
| Михесв   | 1067         |               |           |            |            |                            |      |  |

явно преобладает, и шпинели (MgAlO<sub>4</sub>). Напомним, что в исходном образце нами установлено присутствие магния (см. табл. 2). Следовательно, эти данные подтвердили наше предположение о наличии вокруг мелких обломков самородного алюминия окисленного слоя, представленного рентгеноаморфными окислами алюминия.

Насколько известно, в современную эпоху металлоносные и рудоносные отложения наиболее ярко проявляют себя в тектонически активных участках океанического дна. Нам неоднократно приходилось отмечать, что в осадках, под-

Таблица 2 Содержание элементов (%) в темно-сером образце станции 651

| Ном <b>ер</b><br>гочки | Мg<br>(замер.) | MgO* | Si<br>(замер.) | Ст<br>(замер.) | Fc<br>(замер.) |
|------------------------|----------------|------|----------------|----------------|----------------|
| 1                      | 0,99           | 1,64 | 0,04           | 0,03           | 0,10           |
| 2                      | 0,85           | 1,41 | 0,03           | 0,03           | 5,85           |
| 3                      | 0,48           | 0,80 | 0,09           | 0,03           | 0,24           |
| 4                      | 1,37           | 2,27 | 0,06           | 0,07           | 17,06          |
| 5                      | 0,70           | 1,16 | 0,07           | 0,04           | 2,93           |

•Получено расчетным путем.

| Образец прокален до 900°C |             |     | Корунд* |    | Шпинель* |    |       |
|---------------------------|-------------|-----|---------|----|----------|----|-------|
| металлич                  | еский шарик | тве | рдый    |    |          |    |       |
| 1                         | đ           | 1   | d       | I  | d        | I  | d     |
|                           | 1           |     | T       |    | 1        | 3  | 4,66  |
|                           |             | 4   | 3,45    | 3  | 3,43     | •  | .,,,, |
| 2                         | 3,06        | 4   | 3,04    |    | -, -     |    |       |
|                           |             | 2   | 2,86    |    |          | 6  | 2,86  |
|                           |             | 1   | 2,80    |    |          |    |       |
|                           |             | 8   | 2,55    | 6  | 2,54     |    |       |
|                           |             | 6   | 2,46    |    |          | 9  | 2,44  |
|                           | 2,33        | 6   | 2,32    |    |          |    |       |
| 1                         | 2,10        | 4   | 2,07    | 9  | 2,08     |    |       |
|                           | 2,02        | 3   | 2,00    |    |          | 9  | 2,02  |
| 2                         | 1,90        | 1   | 1,91    |    |          |    |       |
|                           |             |     |         |    |          | 2  | 1,81  |
|                           |             | 4   | 1,73    | 5  | 1,73     |    |       |
|                           |             | 10  | 1,60    | 10 | 1,59     | 5  | 1,64  |
|                           |             | 2   | 1,52    | 5  | 1,51     | 9  | 1,55  |
|                           | 1,42        | 2   | 1,42    |    |          | 10 | 1,42  |
|                           |             | 10  | 1,40    | 6  | 1,40     |    |       |
| 1                         | 1,35        | 2   | 1,37    | 7  | 1,37     |    |       |
|                           |             | 1   | 1,35    |    |          |    |       |
|                           | 1,21        | 2   | 1,21    | 2  | 1,23     | 7  | 1,23  |
|                           |             | 2   | 1,17    | 2  | 1, 19    |    |       |
|                           |             | 1   | 1,16    |    |          | 6  | 1,16  |
|                           |             | 2   | 1,13    | 3  | 1,14     | 5  | 1,13  |

нятых на станциях, располагающихся вблизи разломной зоны Кларион, среди практически однородных тонкозернистых глинистых илов встречаются механически перемещенные образования, в том числе и самородные металлы (алюминий, железо, золото, серебро, цинк, свинец и др.), а также интерметаллические соединения, сульфиды, сульфаты, карбонаты и др. (Штеренберг, Васильева, 1979; Штеренберг и др., 1980). Они, как нам представляется, свидетельствуют, что в этой неактивной в настоящее время тектонической зоне ранее существовали активные участки; на них, возможно, были черные и белые "дымоходы" и другие

| Fe <sub>2</sub> O <sub>3</sub> * | Си<br>(замер.) | CuO* | АI<br>(замер.) | Al*<br>(металл.) | Ai <sub>2</sub> O <sub>3</sub> • |
|----------------------------------|----------------|------|----------------|------------------|----------------------------------|
| 0,14                             | 6,37           | 7,97 | 57,93          | 21,55            | 68,63                            |
| 8,36                             | 2,94           | 3,68 | 56,93          | 23,59            | 62,90                            |
| 0,34                             | 2,94           | 3,68 | 55,13          | 21,37            | 73,69                            |
| 24,39                            | 2,95           | 3,60 | 47,27          | 22,18            | 47,33                            |
| 4, 19                            | 2,93           | 3,68 | 72,82          | 52,47            | 38,39                            |

очаги, через которые поступали на дно продукты вулканизма. При затухании этих процессов продукты вулканизма размывались и захоронялись в областях, располагающихся вблизи разломной зоны Кларион. Поэтому, вероятно, мы и находим среди красных глубоководных глин, поднятых на станциях, расположенных вблизи этого субширотного разлома, мелкие обломки металлов и др. Можно высказать предположение о возможном нахождении подобных образований и вблизи других разломов, контактирующих или пересекающих ВТП.

Насколько нам известно, находки в океанах специфических образований типа самородных металлов, особенно алюминия, встречают определенное недоверие многих советских и особенно зарубежных исследователей. По нашему убеждению, такое отношение связано с различной степенью детальности изучения современных океанских отложений. Часто (если не сказать обычно) наибольшее внимание исследователи уделяют более крупным по размеру или наиболее широко распространенным образованиям. С одной стороны, это связано с поисками перспективных новых площадей полезных ископаемых, а с другой — с возможностью отбора образцов для анализов привычными способами. Совершенно неоправданно, на наш взгляд, упускается возможность выявления среди осадков мельчайших образований, позволяющих подойти к решению вопросов, связанных с рудообразованием в океанских бассейнах настоящего и прошлого.

## ЛИТЕРАТУРА

- Михеев В.И. Рентгенометрический определитель минералов. М.: // Госгеолтехиздат, 1957. 868 с.
- Олейников Б.В., Округин А.В., Лескова Н.В. Петрологическое значение находок самородного алюминия в базитах // Докл. АН СССР. 1978. Т. 243, Т 1. С. 191—194.
- Хворова И.В., Ильинская М.Н. Сравнительная характеристика двух вулканогенно-осадочных формаций Южного Урала // Вулканогенно-осадочные и терригенные формации. М.: Наука, 1983. С. 87—160. (Тр. ГИН АН СССР; Вып. 81).
- Штеренберг Л.Е., Александрова В.А., Сивцов А.В. и др. Состав, строение и особенности распределения Fe—Мп-микроконкреций в осадках северо-востока Тихого океана (9-й рейс НИС "Дмитрий Менделеев") // Литология и полезные ископаемые. 1985. N 6. C. 58—70.
- Штеренберг Л.Е., Васильееа Г.Л. Самородные металлы и интерметаллические соединения в осадках северо-восточной части Тихого оксана // Там же. 1979. N 2. C. 133—138.
- *Штеренберг Л.Е., Васильева Г.Л., Воронин Б.И.* и др. Продукты вулканизма в осадках ст. 655 (северо-восточная часть Тихого океана) // Там же. 1980. N 2. C. 17—32.
- Штеренберг Л.Е., Кузьмина О.В., Лапутина И.П., Цепин А.И. О находке самородного алюминия в ассоциации с ZnO и ZnCl<sub>2</sub> среди осадков ст. 647 (северо-восток Тихого океана) // Там же. 1986. N 1. C. 137—140.

УДК 551.793+551.8

В.Н. СТАНКО, Ю.С. СВЕЖЕНЦЕВ

## ХРОНОЛОГИЯ И ПЕРИОДИЗАЦИЯ ПОЗДНЕГО ПАЛЕОЛИТА И МЕЗОЛИТА СЕВЕРНОГО ПРИЧЕРНОМОРЬЯ

Вопросы хронологии и периодизации памятников палеолита и мезолита степного Причерноморья крайне спорны и сложны. Датировка большинства объектов до недавнего времени основывалась преимущественно на анализе кремневого инвентаря. Лишь в последние годы значительно увеличилось число раскопанных памятников, получены новые данные по стратиграфии, палинологии и радиоуглеродному датированию (таблица). С учетом новых материалов построена предлагаемая схема периодизации памятников позднего палеолита и мезолита южнорусских степей.

І. Наиболее ранний, достоверно датированный горизонт палеолитической индустрии изучен по материалам стоянки Сагайдак I, расположенной на первой