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At the latest geodynamic stage that is characterized 
by forces and processes of the last 90 Ma the litho-
sphere of Asia has been reactivated due to four main 
force factors: 1) mantle melting anomalies, 2) subduc-
tion-related interaction between the Pacific plates and 
the continental eastern margin, 3) convergent inter-
action between India and the continental southern 
margin, and 4) quasiperiodic orbital variations of the 
Earth. The starting point of the latest geodynamic stage 
[Rasskazov, Chuvashova, 2013] is consistent with the 
change of the Earth’s rotation due to the resonant in-

teraction of its orbit with the orbit of the Mars in the 
time interval of 87–85 Ma [Ma et al., 2017]. 

A mantle melting anomaly is expressed by volcanic 
eruptions on the earth's surface and low-velocity root 
in the mantle. Convective instability of the lower man-
tle at its lower or upper boundary generates a melting 
anomaly of the plume or transition layer type, respec-
tively. Each is supposed to be primary, because of ener-
getic relation to the original source that causes in-
stability. A primary melting column might change due 
to relative motions of the lithosphere and underlying  
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levels of sub-lithospheric mantle. The low-velocity re-
gion of the upper mantle can be explained when con-
sidering its origin as probable derivative of a primary 
melting anomaly. Such an upper mantle region acquires 
the status of a secondary melting anomaly. 

Melting anomalies can provide thermal thinning of 
the lithosphere, corresponding, by definition, to “ac-
tive” rifting. In this definition, the term “active” is not a 
rift structure, but a melting anomaly that affects the 
base of the lithosphere. Besides, there is a “passive” 
deformation of the lithosphere with extension (rifting) 
(in a particular case, extension with strike-slip i.e. 
transtension) or with compression (orogeny) (in a par-
ticular case, contraction with strike-slip i.e. transpres-
sion). In this definition, “passive” means not a rift or 
orogenic structure, but a melting anomaly resulted 
from deformations of the lithosphere (Fig. 1). Such a 
melting anomaly gets the status of an autonomous, i.e. 
not having a direct connection with the primary mel-
ting anomaly. As a result of tectonically-induced litho-
spheric processes, an autonomous melting anomaly can 
originate in the lithosphere without connection to any 
primary or secondary melting anomaly. 

At the latest dynamics stage of Asia, there were the 
Gobi and West-Transbaikal primary melting anomalies 
of the transition layer that evolved into secondary up-
per mantle domains of 200–410 and 50–200 km [Chu-

vashova et al., 2017b]. At least two melting anomalies 
(Wudalianchi and Udokan) were clearly controlled by 
transtension structures. In this paper, we demonstrate 
differences between the melting patterns, evolved from 
the transition layer and displayed autonomously. 

Melting anomalies generated from the transition 
layer. The primary melting anomalies, associated with 
the Late Cretaceous volcanic events in Asia, are recor-
ded from low S-wave velocities at the transition layer 
beneath Gobi and Western Transbaikal. Similar anoma-
lies were generated beneath Northern Transbaikal, 
Dariganga, and Changbai but were destroyed by subse-
quent subduction [Chuvashova et al., 2017b]. The vol-
canic fields have been shifted from the sites of initial 
instabilities at the transition layer east-southeastwards 
for 400–600 km due to subsequent motion of the litho-
sphere. The related secondary melting anomalies are 
marked by spatial-temporal evolution of the late Creta-
ceous through Cenozoic volcanism and by various 
combinations of low- and high-velocity upper mantle 
regions.  

In the interpretation, which takes into account the 
latest motion of the Asian lithosphere, orogenic and 
rifting processes are explained by dynamics of astheno-
spheric flows within the Japan-Baikal corridor that was 
limited by the lateral zones of the convergent inter-
actions between India and Asia in the south-west  
 

 
 

Fig. 1. Designation of processes in the lithosphere and sub-lithospheric mantle, associated with the evolution of a primary 
melting anomaly, and autonomous, developed independently. Primary melting anomaly, evolving into secondary ones, con-
tributes to riftogenic and orogenic deformations of the lithosphere. Autonomous melting anomaly might develop in a litho-
spheric transtension zone. 
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and between North America and Asia in the northeast. 
This geodynamic corridor is considered as a melting 
structure a one-order to the convergent Central Asian 
region originated in front of the Indian indenter. The 
secondary melting anomalies that are spatially associ-
ated with the development of lithospheric transtension 
play a key role in both orogenic and rifted areas. In the 
southwestern part of the Baikal rift system, the Sayan-
Mongolian low-velocity domain was formed at depths 
of 50–200 km in Central Mongolia and Eastern Sayans. 
The Late Cenozoic lithospheric-asthenospheric magma-
tism of these areas was derived through the natural 
course of the upper mantle evolution related to the  
Gobi and West Transbaikal transition layer melting 

anomalies and were only locally controlled by the litho-
spheric transtension zones of Central Mongolia and 
Southwestern Pribaikal (Fig. 2). 

In the Japan-Baikal geodynamic corridor, there are 
three melting regions, distributed relative to the subduc-
ted Pacific slab edge: 1) the distant, Baikal-Mongolian, 
which spatially corresponds to the late Cenozoic Baikal 
rift system and adjacent areas, 2) the middle, Hannuoba-
Heilongjiang, which comprises volcanic fields of the 
North and North-Eastern China and adjacent Eastern 
Mongolia, and 3) the close, Tanlu-Primorye, which in-
cludes volcanic fields of Eastern China in the Tanlu fault 
zone north of Bohai Gulf and the continental part that 
extends eastwards to Southern Primorye of Russia. 

 
 

Fig. 2. Distribution of volcanically active transtension zones relative to the axis of the Japan-Baikal geodynamic corridor. 

The transtension structures: VU – Vitim-Udokan, K – Kultuk, CM – Central Mongolia, Wd – Wudalianchi, SHN – Shanxi. The Japan Sea (JS) 
pull-apart structure, its transtension zones: SHJ – Sakhalin-Hokkaido-Japan Sea, TS – Tsushima. Volcanic fields (in circles): axis of the Ja-
pan-Baikal corridor (Vt – Vitim, ShSh – Shkotov-Shufan), its southern flank (Uc – Upper-Chulutyn, Tc – Taryat-Chulutyn, Uo – Upper-
Orkhon, Un – Ugii-Nur, Dr – Dariganga, Dt – Datong, Ch – Changbai), and its northern flank (Ud – Udokan, Wd – Wudalianchi). Large in-
termontane basins: Orkhon-Selenga (OS), Vitim Plateau (VP). The structures of the Sea of Japan and the Tatar Strait are shown after  
[Jolivet et al., 1994]. 
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Autonomous melting anomalies. The Udokan au-
tonomous melting anomaly is located on the northern 
flank of the Japan-Baikal geodynamic corridor. The spa-
tial-temporal evolution of the magmatic liquids of this 
area responded to the activity of the Vitim-Udokan 
transtension structure. In the middle Miocene, high-Mg 
(high-temperature) volcanism first displayed in the 
Vitim and then in the Udokan volcanic fields. Later on, 
there were three intervals of the delayed responses of 
volcanism in the Udokan field after volcanic events in 
the Vitim field (Fig. 3). Unlike the Vitim and other vol-
canic fields of Inner Asia, the Udokan area was charac-
terized by eruptions of trachytes that were strictly con-
trolled by tectonic zones. 

Similar to the tectonically-induced Udokan melting 
anomaly, the Wudalianchi one is also located on the 
northern flank of the Japan-Baikal geodynamic corri-
dor. It is defined due to specific high-potassic composi-
tions of erupted liquids. The uniqueness of volcanic 
sources from the Wudalianchi zone for the whole East 
China was emphasized in multiple papers [Zhang et al., 
1995; Chuvashova et al., 2009; Chu et al., 2013; Ras-
skazov et al., 2016; and other]. The established spatial-
temporal variations of rock compositions in the Wuda-
lianchi volcanic field are explained in terms of the 
magma generation control by the north-south transten-
sion zone in the layer of the lithospheric base that 
shielded the underlying sub-lithospheric convective 
mantle from the overlying more enriched lithosphere. 
Sub-lithospheric liquids were distinct due to the initial 
87Sr/86Sr ratio of about 0.7052, melts from the bounda-
ry shielding layer due to the same and lower ratios, and 
those from the overlying enriched lithosphere due to 
the same and higher ratios. 

It was proposed that the local venue of the convec-
tive mantle material from below the shielding layer and 
the melting enriched background material above was 
governed by transtension deformations. The eruptions 
of sub-lithospheric melts from the axial part of the 
main transtension zone, which took place at 2.5– 
2.0 Ma, were followed by the propagation of the back-
ground liquids from the wider segment of the enriched 
lithospheric region at 1.3–0.8 Ma. In the past 0.6 Ma, 
background melting progressed at the margins of the 
transtension segment simultaneously with local mel-
ting along the crack that propagated in the boundary 
shielding layer under the central part of the back-
ground melting region [Rasskazov et al., 2016]. 

Discussion. Due to subduction along the Hokkaido-
Amur and Honshu-Korean flexure of the Pacific slab 
and inverse flow of the asthenospheric material under 
the margin of the continent, the lithosphere was rifted 
and a moment of its motion, directed towards the sub-
ducted slab, was created. The convergence between 
India and Asia, on the contrary, led to the shrinking 
lithosphere and orogenesis. Sub-lithospheric and litho-

spheric force factors were complicated by superim-
posed quasiperiodic effects on the Earth's layers cau-
sed by its orbital motion. 

At the latest geodynamic stage, volcanic responses 
of Inner Asia did not occur in the Late Cretaceous, Early 
and Middle Cenozoic and affected the lithosphere only 
in the Late Cenozoic. Under prevailing compression, 
volcanism accompanied the formation of the Hangay 
orogen in Central Mongolia with orbital cyclicity. Cyclic 
variations of Earth's orbital parameters are recorded in 
the Late Cenozoic at the most sensitive transtension 
structures of the lithosphere: within the Chulutyn seg-
ment of the Hangay orogen on the southern flank of the 
Japan-Baikal corridor, and in the northeastern part of 
the Baikal rift system, on its northern flank. 

 
 

Fig. 3. Comparisons between volcanic episodes of the 
Vitim and Udokan fields. The arrows show the lags of the 
Udokan volcanic episodes relative to the Vitim ones. Two-
sided arrows denote synchronous episodes. 

 
 
 

  438 



Geodynamics & Tectonophysics 2017 Volume 8 Issue 3 Pages 435–440 

Under prevailing extension, volcanism with orbital 
cyclicity took place in the north-south Tsipa-Muyakan 
and west-east Muya-Udokan segments of the Vitim-
Udokan transtension structure. Volcanic evolution in 
the Vitim field of the Tsipa-Muyakan segment was af-
fected by the deformation of the lithosphere at the axial 
part of the Japan-Baikal geodynamic corridor, volcanic 
evolution in the Udokan field of the Muya-Udokan seg-
ment was due to deformation of the lithosphere on the 
northern periphery of this corridor. From isotopic-
geochemical study of volcanic rocks [Chuvashova et al., 
2017a], it was found that the primary lithospheric 
transtension at the southern part of the Vitim- Udokan 
structure resulted in eruptions of the sub-lithospheric 
liquids, not contaminated by lithospheric material, in 
the Vitim field. The responses of lithospheric transten-
sion in the eastern part of the Vitim-Udokan structure 
led to eruptions of liquids in the Udokan field from 
sources that belong to the mantle portion of the litho-
sphere and crust. 

The activities of lithospheric-asthenospheric sour-
ces were governed by quasiperiodic orbital variations. 
In Hangay, where background lithospheric compres-
sion predominated, volcanic eruptions responded to 
the 2.4 million-years cyclic variations of the Earth's ec-
centricity with a transition in the Quaternary to those 
of the 0.4 million-years eccentricity. In the north-
eastern part of the Baikal rift system, which was affect-
ed with prevailing stretching since the Middle Miocene, 
the eruptions were shifted from the axis to the peri-
phery of the geodynamic corridor with quasiperiodic 
responses to the 2.4 million-years cyclic variations of 

the Earth's eccentricity from about 10 Ma, including the 
Quaternary. 

Conclusion. It was shown that the Japan-Baikal cor-
ridor was active at the latest geodynamic stage, in 
which primary melting anomalies were generated due 
to instability of the mantle transitional layer in the Late 
Cretaceous and were evolved into the upper mantle 
flows responsible for creating secondary melting do-
mains. We infer that in the late Cenozoic, the tectonical-
ly initiated magmatic processes became more intensive 
in the geodynamic corridor that resulted in regular re-
sponses of lithospheric-asthenospheric sources to qua-
siperiodic orbital variations of the Earth.  

From general examination of volcanic evolution, the 
structural pattern of the southwestern part of the 
Baikal rift system was explained by dominated sub-
lithospheric processes related to evolution of the Gobi 
and West Transbaikal transition layer melting anoma-
lies. There was evidence on local lithospheric transten-
sion displayed in Central Mongolia and southwestern 
Baikal area. We showed that on the northern flank of 
the Japan-Baikal geodynamic corridor, transtension 
deformations of the lithosphere were persistently in-
duced from its axial part that resulted in autonomous 
responses of volcanic eruptions from lithospheric-
asthenospheric sources in the Udokan field and Wuda-
lianchi zone. 
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