ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ ТИПОВ ПОДВИЖЕК В ОЧАГАХ В ОБЛАСТЯХ ПОДГОТОВКИ И РЕАЛИЗАЦИИ СИЛЬНЕЙШИХ ЗЕМЛЕТРЯСЕНИЙ

Ольга Анатольевна Кучай

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат физико-математических наук, старший научный сотрудник, тел. (383)330-87-05, e-mail: KuchayOA@ipgg.sbras.ru

Пётр Георгиевич Дядьков

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3; Новосибирский государственный университет, 630090, Россия, г. Новосибирск, ул. Пирогова, 2, кандидат геолого-минералогических наук, доцент, ведущий научный сотрудник, тел. (383)333-03-99, e-mail: DyadkovPG@ipgg.sbras.ru

Юлия Михайловна Романенко

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, научный сотрудник, тел. (383)333-03-99, e-mail: RomanenkoYM@ipgg.sbras.ru

Зарина Джумагалиева

Новосибирский государственный университет, 630090, Россия, г. Новосибирск, ул. Пирогова, 2, студент

Выполнен анализ распределения землетрясений и афтершоков с разными типами подвижек в очагах до и после сильнейших землетрясений: Суматра-Андаманского землетрясения 2004 года (Mw = 9.0), землетрясения 2010 года (Mw = 8.8) в регионе Мауле (Чили) и землетрясения Тохоку (Япония), 2011 года (Mw = 9.0). Сильнейшие землетрясения создают условия для возникновения очагов сбросового типа с M > 4.8 вдоль зон разрывов под глубоководными океаническими желобами. По данным механизмов очагов, произошедших с 1976 года по настоящее время, произведен расчет сейсмотектонических деформаций в сегменте земной коры и подкоровой области зон контакта литосферных плит районов сильнейших землетрясений.

Ключевые слова: сейсмотектонические деформации, сильное землетрясение, механизм очага землетрясения, афтершоки.

FEATURES OF DISTRIBUTION OF TYPES OF SHIFTS IN THE FOCI IN THE AREAS OF PREPARATION AND IMPLEMENTATION OF THE STRONGEST EARTHQUAKES

Olga A. Kuchay

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Ph. D., Senior Researcher, tel. (383)333-37-92, e-mail: KuchayOA@ipgg.nsc.ru

Peter G. Dyadkov

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect; Novosibirsk State University, 630090, Russia, Novosibirsk, 2 Pirogova St., Ph. D., Lead Senior, Associate Professor, tel. (383)333-03-99, e-mail: DyadkovPG@ipgg.sbras.ru

Yuliya M. Romanenko

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 630090, Russia, Novosibirsk, 3 Koptyug Prospect, Research Scientist, tel. (383)333-03-99, e-mail: RomanenkoYM@ipgg.sbras.ru

Zarina Jumagalieva

Novosibirsk State University, 630090, Russia, Novosibirsk, 2 Pirogova St., student

The analysis of the distribution of earthquakes and aftershocks with different types of shifts in the centers before and after the strongest earthquake: Sumatra-Andaman earthquake of 2004 (Mw = 9.0), 2010 earthquake (Mw = 8.8) in the region of Maule (Chile) and the Tohoku earthquake (Japan), 2011 (Mw = 9.0). The strongest earthquakes create conditions for the emergence of foci of fault-type with M > 4.8 zones along fractures under deep ocean trenches. According to the focal mechanisms that occurred from 1976 to the present time, the calculation of seismotectonic deformations in a segment of the earth's crust and podkrovi region of the contact areas of tectonic plates areas of strongest earthquakes.

Key words: seismotectonic deformations, strong earthquake, earthquake focal mechanism, aftershocks.

Рассмотрены три крупнейших землетрясения начала нашего столетия: Суматра-Андаманское землетрясение 2004 года (Мw=9.0), землетрясение 2010 года (Мw=8.8) в регионе Мауле (Чили) и землетрясение Тохоку, 2011 года (Мw=9.0). Каждому из этих землетрясений было посвящено большое количество статей как за рубежом [7, 9, 11, 12], так и в России [2–4, 6]. В работе анализируются типы подвижек в очагах до и после сильнейших сейсмических событий и сопоставляются сейсмотектонические деформации, полученные по данным механизмов очагов землетрясений с M>4.8 [www.globalcmt.org/CMTsearch.html] на участках зон субдукции, где произошли наибольшие дислокационные смещений за счет сильнейших землетрясений.

Суматра-Андаманское землетрясение произошло в районе Зондской дуги, которая является проявлением конвергентной границы и отражает процессы взаимодействия при встречном движении Индо-Австралийской и Евразийской литосферных плит. Субдукционная зона высокосейсмична, с глубиной плотность гипоцентров землетрясений с М>4.8 убывает, и на глубинах ниже 200 км отмечены редкие отдельные сильные события. Гипоцентры сейсмических событий смещаются от глубоководного желоба в сторону острова Суматра и острова Ява. Наиболее глубокие сейсмические события располагаются под хребтом Барисан, где проявляется современный вулканизм. Следующее сильнейшее землетрясение, зарегистрированное в начале 21 века, (произошло) в регионе Мауле (Чили) на контакте тектонических плит Наска, движущейся в В-СВ направлении со скоростью 8 см/год, и Южно-Американской плиты, смещающейся на 3-С3 со скоростью 1 см/год [10]. Основная сейсмичность сосредоточена

в коре и подкоровом слое до 300 км [8]. Небольшая часть землетрясений происходит на глубинах до 600–700 км. Землетрясение Тохоку является вторым по интенсивности событием (после Суматра-Андаманского землетрясения 26 декабря 2004 года) очередной глобальной активизации начала нашего века. Оно произошло близ острова Хонсю (Япония), в зоне субдукции – поддвига Тихоокеанской плиты под Евроазиатскую континентальную плиту.

В данной работе механизмы очагов землетрясений и афтершоков разделялись на два типа: в очагах первого типа осуществляется надвиговая и сдвигонадвиговая подвижка, второго типа – сбросовая и сдвиго-сбросовая подвижка. На рис. 1 приведены очаги землетрясений до возникновения сильнейшего Суматра-Андаманского события и после. Рассматриваются два слоя (0–35 км и 36–70 км), в которых зафиксированы землетрясения и афтершоки. Из анализа распределения подвижек в очагах землетрясений и афтершоках наблюдается следующее: до сильного события в зонах конвергентной границы двух плит очень редко возникают землетрясения сбросового и сдвиго-сбросового типа. Но после сильнейших главных сейсмических событий вдоль их плоскостей разрыва регистрируются афтершоки со сбросовым и сдвиго-сбросовым типом механизма очага (рис. 1, A, B, C).

Рис. 1. Типы подвижек в очагах, произошедших в 1976–2013 гг. в афтершоковой области Суматра-Адаманского землетрясения 2004 года (А); в 1976–2015 гг. в афтершоковой области землетрясения в регионе Мауле (Чиле) 2010 года (В); в 1976–2015 гг. в афтершоковой области землетрясения Тохоку (Япония) 2011 года (С).

1–4 – землетрясения, зарегистрированные до главного события; 5–8 – афтершоки и землетрясения, зарегистрированные после главного события. Кружком показаны землетрясения с глубиной 0–35 км, крестиком отмечены землетрясения, произошедшие глубже 35 км (*H*=36–70км). Оливковый и красный цвета соответствуют очагам с надвиговой и сдвиго-надвиговой подвижками в очагах. Бирюзовый и синий цвета указывают на очаги со сбросовой и сдвиго-сбросовой подвижками в очагах. Звездочкой указан эпицентр главного землетрясения

Таким образом, наибольшая величина надвиговой подвижки в каждом из главных событий [http://earthquake.usgs.gov/earthquakes/eqarchives/year/] осуществляется вблизи эпицентра и стимулирует возникновение не только афтершоков с надвиговым типом подвижки, но и афтершоков сбросового типа, располагающихся к западу, вдоль зон разрывов Суматра-Андаманского (рис. 1, А) и землетрясения в районе Мауле (рис. 1, В), в области прилегающего океанического поднятия, и к востоку при землетрясении в районе Тохоку (рис. 1, С).

В зонах контакта литосферных плит, где проявлялись землетрясения большой магнитуды, проводилось достаточно много исследований по анализу параметров механизмов очагов землетрясений. Наиболее интересные работы связаны с восстановлением поля напряжений перед сильнейшими сейсмическими событиями [2-4]. Были попытки восстановить поле напряжений и деформаций различных участков территории [6], но работ, посвященных детальному анализу сейсмотектонических деформаций для разных глубинных слоев, не проводилось. Мы оценили деформирование объемов горных масс на разных глубинах за счет землетрясений и афтершоков, используя методику [1, 5], и сопоставили результаты, полученные в зонах контактов плит, где произошли сильнейшие землетрясения. В нашем случае деления на время не осуществлялось, а рассчитывалась суммарная сейсмотектоническая деформация за весь период наблюдения на разных глубинных уровнях. При построении карт для нас важным были не сами величины деформаций, а их знак, т. е. относительные удлинения и укорочения деформаций за счет землетрясений, положительные значения деформаций соответствовали относительному удлинению, отрицательные значения – относительному укорочению линейных размеров элементарных объемов земной коры в соответствующих направлениях. В работе исследуются поля вертикальных, меридиональных и широтных компонент сейсмотектонических деформаций.

Расчет сейсмотектонических деформаций, по данным механизмов очагов землетрясений в районе Суматра-Андаманского землетрясения, показал, что на всех глубинах наиболее устойчиво ведет себя компонента сейсмотектонических деформаций, отвечающая за вертикальное удлинение объемов горных масс. Участки земной коры (0–35 км) в окраинных районах с западной и восточной сторон Зондской дуги характеризуются деформациями противоположного знака по отношению к центральной части. В слое 70–150 км под эпицентральной областью Суматра-Андаманского землетрясения происходят деформации противоположного знака по отношению к деформациями рассматриваемой части Зондской дуги. В области очага землетрясения Мауле и севернее характер поля деформаций (H=0–70 км) является обычным для зон субдукции: наблюдается укорочение в направлении погружения океанической плиты. Ниже глубины 70 км характер деформация резко меняется на горизонтальное растяжение.

Работа выполнена при частичной поддержке Программы ФНИ IX.128.2 и IX.128.1, гранта РФФИ № 17-05-01234а.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Костров Б. В. Механика очага тектонического землетрясения. – М.: Наука, 1975. – 174 с.

2. Ребецкий Ю.Л., Маринин А.Б. Напряженное состояние земной коры западного фланга Зондской субдукционной зоны перед Суматра-Андаманским землетрясением 26.12.2004г. // Доклады РАН. – 2006. – Т. 407, № 1. – С. 106–110.

3. Ребецкий Ю.Л., Маринин А.В. Поле напряжений до Суматра-Андаманского землетрясения 26.12.2004. Модель метастабильного состояния горных пород // Геология и геофизика. – 2006а. – № 11. – С. 1192–1206.

4. Ребецкий Ю.Л., Полец А.Ю Напряженное состояние литосферы Японии перед катастрофическим землетрясением Тохоку 11.03.2011г. // Геодинамика и тектонофизика. – 2014. – № 5(2). – С. 469–506.

5. Ризниченко Ю.В. Проблемы сейсмологии. – М.: Наука, 1985. – 407 с.

6. Шевченко В.И., Лукк А.А., Прилепин М.Т. Суматранское землетрясение 26.12.2004 – проявление неплейттектонического процесса в литосфере // Физика Земли. – 2006. – № 12. – С. 55–76.

7. Seismicity Associated wich the Sumatra-Andaman Island Earthquake of 26 Dezember 2004 / Dewey J.W., Choy G., Presgrave B. et al. // Bulletin of the Seismological Society of America. – 2007. – Vol. 97, N 1A. – S25-S41.

8. Bilek S.L. Seismicity along the South American subduction zone: Review of large earthquakes, tsunamis, and subduction zone complexity // Tectonophysics. TECTO-124532. – 2009.

9. Rebetsky Yu.L., Tatevossian R.E. Rupture propagation in strong earthquake sources and tectonic stress field // Bull. Soc. Geol. Fr. – 2013. – Vol. 184, N 4–5. – P. 335–346.

10. Sánchez L., Seitz M. Recent activities of the IGS Regional Network Associate Analysis Centre for SIRGAS // DGFI Report No. 87. – 2011. – P. 0–46.

11. Coseismic Slip and Afterslip of the Great Mw 9.15 Sumatra–Andaman Earthquake of 2004 / Chlieh M., Avouac Jean-Philippe, Hjorleifsdottir Vala et al. // Bulletin of the Seismological Society of America. – 2007. – Vol. 97, N 1A. – S152–S173.

12. Vallee M. Rupture Properties of the Giant Sumatra Earthequake Imaged by Empirical Greens Function Analysis // Bulletin of the Seismological Society of America. -2007. - Vol. 97, N 1A. - S103–S114.

© О. А. Кучай, П. Г. Дядьков, Ю. М. Романенко, З. Джумагалиева, 2017