Е.И. Герасимова¹, И.В. Пеков², Н.Н. Кононкова³, М.Ф. Вигасина⁴, Н.В. Чуканов⁵, Е.В. Гусева⁶

БОР В МАГНЕЗИАЛЬНЫХ МИНЕРАЛАХ ГРУППЫ ГУМИТА⁷

По результатам изучения представительной коллекции магнезиальных членов группы гумита (282 образца из 80 проявлений всего мира, относящихся к разным геолого-генетическим типам) методами электронно-зондового микроанализа и ИК-спектроскопии впервые показано, что эти минералы — характерные концентраторы примесного бора: в 63 образцах установлено от 0,5 до 4,9 мас.% В₂O₃. Диагностические полосы валентных колебаний В–О в ИК-спектрах магнезиальных минералов группы гумита лежат в диапазонах 1170–1190, 1262–1289 и 1306– 1331 см⁻¹ и закономерно сдвигаются к низким частотам в ряду норбергит–хондродит–гумит– клиногумит. Бор изоморфно замещает кремний в тетраэдрах, вероятно, по «перцевитовой» схеме: Si⁴⁺ + O²⁻ => B³⁺ + (F,OH)⁻.

Ключевые слова: группа гумита, гумит, хондродит, клиногумит, норбергит, бор в природных силикатах, ИК-спектроскопия.

A representative collection of magnesium humite-group minerals (282 samples from 80 localities of different geological types) was studied. For the first time it was showed using the electron microprobe analyses and IR-spectroscopy that these minerals are typical concentrators of admixed boron: from 0,5 to 4,9 wt% B₂O₃ was detected in 63 samples. Characteristic bands of B–O stretching vibrations are within the ranges of 1170–1190, 1262–1289, 1306–1331 cm⁻¹ in the IR-spectra of magnesium humite-group minerals; its shift regularity to low frequencies in the series of norbergite–chondrosite–humite–clinohumite was observed. Boron substitutes silicon in tetrahedrals, probably according to the "pertsevite" scheme: Si⁴⁺ + O²⁻ => B³⁺ + (F,OH)⁻.

Key words: humite group, humite, chondrodite, clinohumite, norbergite, boron in natural silicates, IR-spectroscopy.

Введение. К минералам группы гумита (МГГ) относятся моноклинные и ромбические ортосиликаты с дополнительной анионной позицией, имеющие обшую формулу nA_2 SiO₄·*AR*₂, где A = Mg, Mn, Ca, Fe, Ti; R = F, OH, O; n = 1, 2, 3, 4, где Mg, Mn, Ca, F, OH видообразующие компоненты. По составу катионов в группе гумита выделяются марганцовистая, кальциевая и магнезиальная подгруппы. Магнезиальные МГГ наиболее распространены в природе в контактовых метасоматитах (магнезиальных скарнах, скарновогрейзеновых образованиях), кальцифирах разного генезиса, щелочно-ультраосновных породах и ряде других формаций, где могут быть как акцессорными (чаще), так и породообразующими. Эта подгруппа объединяет 6 минеральных видов: 4 ее фторных члена известны давно — это норбергит Mg₃[SiO₄]F₂, хондродит $Mg_5[SiO_4]_2F_2$, гумит $Mg_7[SiO_4]_3F_2$ и клиногумит Mg₉[SiO₄]₄F₂, а два гидроксильных члена описаны в последние годы как самостоятельные минералы — гидроксилклиногумит $Mg_{9}[SiO_{4}]_{4}(OH)_{2}$ [Гекимянц и др.,

1999] и гидроксилхондродит $Mg_5[SiO_4]_2(OH)_2$ [Пеков и др., 2011]. Структуру магнезиальных МГГ в общем виде принято представлять как чередование вдоль оси *a* слоев Mg(F,OH)₂ и *n* слоев Mg₂[SiO₄]. Мощность блоков Mg₂[SiO₄], имеющих оливиноподобное строение, возрастает с увеличением *n* от норбергита к клиногумиту [Jones et al., 1969; Cámara, 1997].

Постановка проблемы. За два столетия, на протяжении которых известны магнезиальные МГГ, о них опубликовано очень много работ, в том числе посвященных их химическому составу. В результате представления о минералах этой группы вполне устоялись. В частности, никто до настоящего времени не рассматривал их в качестве концентраторов бора, а систематические работы, посвященные его нахождению в этих минералах, не проводились. В свете этого неожиданными оказались результаты наших недавних исследований, выполненных на обширной коллекции магнезиальных МГГ из проявлений разных геолого-генетических типов и показавших,

¹ Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН), мл. науч. с.; *e-mail:* ekaterina-gera@inbox.ru

² Московский государственный университет имени М.В. Ломоносова, геологический факультет, проф., докт. геол.-минер. н.; *e-mail:* igorpekov@mail.ru

³ Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН), Центральная лаборатория анализа вещества, аналитический отдел, и.о. зав. лаб.

⁴ Московский государственный университет имени М.В. Ломоносова, кафедра минералогии, ст. науч. с.

⁵ Институт проблем химической физики РАН, вед. науч. с.; *e-mail:* chukanov@icp.ac.ru

⁶ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра петрологии, вед. инж.

⁷ Работа выполнена при поддержке РФФИ (гранты 11-05-00407-а и 12-05-00250-а).

Таблица 1

Борсодержащие магнезиальные минералы группы гумита (данные авторов, включены только образцы с содержанием B₂O₂ ≥ 0,5 мас.%)

Местонахождение	Минерал	В ₂ О ₃ , мас.%
Монте Сомма, Везувий (Италия)	Хондродит	4,9
То же	То же	4,8
Перовскитовая копь, Южный Урал (Россия)	Гидроксилхон- дродит	2,7
Фонтенанс, Онтарио (Канада)	Гумит	2,4
Боден, Мариенберг, Саксония (Германия)	Хондродит	1,9
Тилли Фостер, Брюстер, шт. Нью- Йорк (США)	Гумит	1,8
Боднер, Нью Джерси (США)	Норбергит	1,7
Шт. Нью-Йорк (США)	Хондродит	1,4
Изумрудные копи, Средний Урал (Россия)	То же	1,2
Кавельторп (Швеция)	_ " _	1,2
П-ов Ристиниеми, Питкяранта, Южная Карелия (Россия)	_ " _	1,0
Крестмор, Калифорния (США)	Клиногумит	0,9
Паргас (Парайнен) (Финляндия)	Хондродит	0,8
Куса, Южный Урал (Россия)	Гидроксилкли- ногумит	0,7
Люпикко, Питкяранта, Южная Карелия (Россия)	Хондродит	0,7
Изумрудные копи, Средний Урал (Россия)	То же	0,7
Кухилал, Юго-Западный Памир (Таджикистан)	Гидроксилкли- ногумит	0,7
Карьер Лаймстоун, Спарта, Сассекс, Нью Джерси (США)	Норбергит	0,7
Паргас (Парайнен) (Финляндия)	Хондродит	0,6
То же	Норбергит	0,6
Остров Ёто, оз. Лойя (Финляндия)	Хондродит	0,6
Кугда, Маймеча-Котуйская щелочная провинция, Сибирь (Россия)	То же	0,6
Рудник «Слюда», Ковдор, Кольский п-ов (Россия)	Гумит	0,6
Кавельторп (Швеция)	Хондродит	0,6
Персберг (Швеция)	То же	0,6
Спарта, Сассекс, Нью Джерси (США)	_ " _	0,6
Тилли Фостер, Брюстер, шт. Нью- Йорк (США)	_ " _	0,5

что бор отнюдь не экзотический компонент в этих минералах, а его концентрация в них может достигать значительных величин — нескольких массовых процентов. Исследованию бора в магнезиальных МГГ и посвящена статья.

Нам удалось обнаружить всего 6 публикаций, в которых для МГГ отмечено присутствие бора. Впервые об этом упоминается в работе [Jones et al., 1969], но бор установлен только качественно. В более поздних работах приводятся уже количественные данные о содержании бора в МГГ. С помощью ионного микрозонда в норбергите определено 0,2 мас.% В₂О₃ [Cáтага, 1997; Ottolini et al., 2000], в хондродите — 1,2; 0,7 и до 0,4 мас.% [Hinthorne, Ribbe, 1974; Ottolini et al., 2000; Дубинчук, Малинко, 1980] и в клиногумите — 0,13 мас.% [Ottolini et al., 2000]. В работе [Дубинчук, Малинко, 1980] приводятся данные количественного спектрального анализа хондродита ($\leq 0,2$ мас.% В₂O₃) и радиографии клиногумита ($\leq 0,04$ мас.% В₂O₃). В статьях [Galuskina et al., 2008; Schreyer et al., 2003], посвященных борату перцевиту, попутно приводятся результаты, полученные с помощью электроннозондового микроанализа: 0,5–1,6 мас.% В₂O₃ в клиногумите и 0,5 мас.% в хондродите.

Материалы и методы исследования. Нами исследованы 282 образца магнезиальных МГГ из 80 проявлений, 1/3 из которых расположена в России, а остальные — в Австрии, Бирме, Бразилии, Великобритании, Вьетнаме, Германии, Италии, Казахстане, Киргизии, Канаде, Намибии, Норвегии, Пакистане, США, Таджикистане, Финляндии, Франции, Чехии, Швейцарии, Швеции, ЮАР, Японии. Они представляют практически все разнообразие генетических типов, в которых встречаются эти минералы [Герасимова, 2011].

Для определения бора в МГГ эффективным оказалось сочетание двух методов — волнового электроннозондового микроанализа и ИК-спектроскопии.

Наши данные показали, что бор — характерный примесный элемент в МГГ из проявлений всего мира (табл. 1), относящихся к разным геологогенетическим типам. Наиболее детально изучено несколько «опорных» образцов, химические составы которых приведены в табл. 2.

Для исследуемых образцов получены фотографии в отраженных электронах с помощью сканирующего электронного микроскопа «Jeol JSM-6480LV» (кафедра петрологии МГУ), затем с помошью электроннозондового микроанализатора «Camebax SX 100» (ГЕО-ХИ РАН) при ускоряющем напряжении 15 кВ и силе тока 30 нА определен химический состав минералов, включая определение содержания бора. В качестве кристалла-анализатора выбран PC2 (2d = 97,46 Å). При расчете концентрации элементов применяли метод РАР-коррекции. Методика анализа бора отработана на нескольких стандартных образцах, в качестве которых использованы высокотемпературная керамика BN (43,56 мас.% В), данбурит (9,93 мас.% В), а также силикатные стекла с содержанием В от 1 до 15 мас.%. Исследования показали, что нижний предел, при котором указанным методом надежно обнаруживается бор, составляет 0,2 мас.%, что соответствует 0,5 мас. % В₂О₃. При содержании В₂О₃ в интервале 0,5-1 мас.% погрешность определения составляет около 50 отн.%, а для интервалов 1-2,5 и 3-5 мас.% В₂О₃ ее можно оценить в 20 и 10 отн.% соответственно.

ИК-спектры получены в двух лабораториях — на кафедре минералогии МГУ и в Институте проблем химической физики РАН. Кроме того, для дополни-

Coorer	Норбергит	Хондродит					Гумит		Клиногумит	уумит Гидроксилклиногумит	
COCTAB	1	2	3	4	5	6	7	8	9	10	11
Mac.%											
SiO ₂	28,30	27,30	33,63	33,02	33,26	33,99	35,13	32,75	38,62	36,65	37,54
TiO ₂	0,04	0,35	0,58	0,16	0,01	0,02	0,08	0,52	0,77	0,44	0,32
Al ₂ O ₃	0,01	0,05	0,01	0,01	0,02	0,04	0,01	0,02	0,03	0,03	0,04
MgO	59,07	55,50	48,05	51,17	54,78	58,85	50,50	59,04	56,38	53,29	56,96
CaO	н/а	0,17	0,03	0,10	н/а	н/а	н/а	0,04	н/а	н/а	н/а
MnO	0,02	0,99	0,54	0,09	0,06	0,10	0,20	0,03	0,10	0,28	н,п,о,
FeO	0,75	2,85	12,73	6,16	6,49	0,90	10,03	1,57	1,14	2,71	0,09
ZnO	н,п,о,	0,12	0,10	0,02	0,04	н,п,о,	0,21	0,04	0,07	0,24	н,п,о,
B ₂ O ₃	1,74	4,87	0,97	1,88	0,78	0,57	0,54	2,35	0,93	0,72	0,73
F	15,41	8,96	7,17	8,67	7,83	5,85	4,30	7,99	3,14	0,11	2,54
H ₂ O	1,71	1,00	1,22	0,61	1,51	2,52	1,57	0,02	1,00	2,50	1,65
-0=F ₂	6,49	3,77	3,02	3,65	3,30	2,46	1,81	3,36	1,32	0,05	1,07
Сумма	100,56	98,39	102,01	98,24	101,75	100,38	100,76	101,01	100,86	96,92	98,80
			Форму	льные коэф	фициенты ((способ расч	иета см. в п	пексте)			
Si	0,94	1,56	1,99	1,96	1,91	1,92	2,92	2,59	3,99	3,96	3,93
Ti	_	0,02	0,03	0,01	_	_	-	0,03	0,06	0,04	0,02
Mg	2,93	4,74	4,23	4,52	4,69	4,97	6,27	6,95	8,67	8,58	8,90
Ca	-	0,01	-	0,01	-	_	-	_	_	—	-
Mn	-	0,05	0,03	_	-	0,01	0,01	_	0,01	0,03	-
Fe	0,02	0,14	0,63	0,31	0,31	0,04	0,70	0,10	0,10	0,24	0,01
Zn	-	0,01	0,01	_	_	_	0,01	-	0,01	0,02	-
В	0,10	0,48	0,10	0,19	0,08	0,06	0,08	0,32	0,17	0,14	0,13
OH _{расчет}	0,42	0,72	0,48	0,24	0,70	1,05	0,97	0,47	0,69	1,80	1,15
F	1,62	1,62	1,34	1,63	1,42	1,05	1,13	1,99	1,02	0,04	0,84
Одоп. анион	_	_	0,18	0,13	_	_	-	_	0,29	0,16	0,01
O _{retp}	3,96	7,66	8,00	8,00	7,88	7,90	11,90	11,54	16,00	16,00	16,00

Химический состав борсодержащих магнезиальных МГГ

Таблица 2

Примечание: н.п.о. — ниже предела обнаружения; н/а — компонент не анализировался; прочерк — значение составляет 0,00; О_{доп. анион} — рассчитанное содержание О²⁻ в дополнительном анионе; О_{тетр} — рассчитанное содержание О²⁻ в вершинах Si-тетраэдров. Способ расчета формул описан в тексте; 1–11 образцы: Боднер, Нью Джерси (США), 2 — Монте Сомма, Везувий (Италия); 3 — п-ов Ристиниеми, Питкяранта, Южная Карелия (Россия); 4 — Боден, Мариенберг, Саксония (Германия); 5 — Паргас (Финляндия); 6 — Спарта, Сассекс, Нью Джерси (США); 7 — Тилли Фостер, Брюстер, шт. Нью-Йорк (США); 8 — Фонтенанс, Онтарио (Канада); 9 — Крестмор, шт. Калифорния (США); 10 — Куса, Южный Урал (Россия); 11 — Кухилал, Юго-Западный Памир (Таджикистан).

тельного контроля исследованы одни и те же образцы, результаты оказались хорошо воспроизводимы. Использованы навески образцов (3–5 мг) и навески КВг (250 мг), из которых готовили запрессовки в виде таблеток. Съемку проводили при комнатной температуре на ИК фурье-спектрометре «ФСМ 1201» (кафедра минералогии МГУ) и спектрофотометре «Specord 75 IR» (ИПХФ РАН).

Химический состав. В 63 образцах из 282 (22% от всей изученной коллекции) обнаружен бор в количестве, достоверно определяемом этим методом (не менее 0,5 мас.% B_2O_3 : табл. 1).

Расчет эмпирических формул МГГ мы проводили на сумму всех катионов (включая Si и B), равную 13, 10, 7 и 4 для клиногумита, ходродита, гумита и норбергита соответственно. Отношение OH:O рассчитывали по балансу зарядов. Отнесение к тому или иному минеральному виду проводили по данным монокристального рентгеновского исследования [Герасимова, 2011].

Максимальное зафиксированное в исследованных нами образцах количество B_2O_3 составило 4,9 мас.% (табл. 1, 2), что намного превышает известные ранее величины.

Характернейшей особенностью В-содержащих МГГ оказалось крайне неравномерное распределение бора в объеме кристаллов: нередко одни участки индивидов минерала оказываются высокоборными, другие же практически не содержат этого элемента. Отметим, что на картинах в отраженных электронах хорошо видна зональность кристаллов МГГ — концентрическая или секториальная. С помощью профилирования микрорентгеноспектральным методом нами изучено несколько таких кристаллов (рис. 1–3, табл. 3). Оказалось, что эта зональность обусловлена различиями в содержании тяжелых (относительно

Рис. 1. Зональный кристалл гидроксилклиногумита из рудника «Слюда», Ковдор, Кольский п-ов, Россия: а — менее контрастное изображение; б — более контрастное изображение. Состав (мас. %): точка 1: TiO₂ 3,8; FeO 1,9; B₂O₃ 1,1; точка 2: TiO₂ 4,2; FeO 2,5; B₂O₃ 0,4 (ниже достоверно определяемой величины 0,5 мас.%); точка 3: TiO₂ 3,8; FeO 2,3; B₂O₃ 0,0; точка 4: TiO₂ 3,9; FeO 2,7; B₂O₃ 0,0. Фото в отраженных электронах. Концентрическая зональность обусловлена различным содержанием Fe и Ti

Рис. 2. Зональный кристалл гидроксилхондродита из рудного поля Люпикко, Питкяранта, Южная Карелия, Россия (образец Лю 2528b). Номера точек соответствуют номерам анализов, приведенных в табл. 3. Фото в отраженных электронах

Mg) примесных элементов — Ті, Fe, реже Mn — и не зависит от бора, распределение которого носит мозаичный характер и, вероятно, связано с микроблочным строением кристаллов.

ИК-спектроскопия. Метод инфракрасной спектроскопии (ИКС) оказался очень эффективным и экспрессным для выявления присутствия бора в МГГ. Он обладает высокой чувствительностью и, в отличие от локального электронно-зондового анализа, позволяет анализировать валовую пробу, в которую с большой вероятностью попадут и обогащенные бором участки кристалла, если они есть.

На рис. 4 и 5 приведены типичные ИК-спектры борсодержащих МГГ, а для сравнения на рис. 5 –

Таблица З

Химический состав гидроксилхондродита и хондродита из рудного поля Люпикко, Питкяранта, Южная Карелия (Россия)

Примечание: н.п.о. — ниже предела обнаружения; * значение B_2O_3 ниже достоверно определяемой величины (0,5 мас.%).

спектры образцов, не содержащих бора.

В ИК-спектрах борсодержащих магнезиальных МГГ наблюдается от 2 до 3 отчетливых полос поглощения (назовем их условно 1, 2, 3), соответствующих валентным колебаниям В-О. Эти полосы находятся в диапазонах волновых чисел 1170-1190, 1262-1289 и 1306-1331 см⁻¹. Полоса 2, как правило, самая интенсивная, а полосы 1 и 3 обычно имеют близкую интенсивность, но иногда одна из них может отсутствовать (рис. 4, 5). Максимумы самой сильной полосы 2 и сопутствующей ей полосы 3 закономерно сдвигаются в область более низких частот с увеличением отношения Si:(F+OH), т.е. в ряду от норбергита к клиногумиту (табл. 4, рис. 4). Иногда в ИК-спектрах борсодержащих МГГ полоса 2 осложнена плечом при 1209-1223 см⁻¹.

Такой набор полос не встречен в спектрах других минералов, что вкупе с закономерным изменением частоты колебаний при возрастании *n* в ряду $nMg_2SiO_4 \cdot Mg(F,OH)_2$ от норбергита к клиногумиту позволяет однозначно говорить о том, что эти полосы принадлежат боратным группам, входящим в структуру МГГ, а не субмикровросткам примесных фаз.

Обсуждение результатов. Данные электроннозондового анализа и ИК-спектроскопии хорошо согласуются: если бор обнаружен хотя бы в одной точке при микрозондовом исследовании образца МГГ, то в его ИК-спектре обязательно наблюдаются полосы валентных колебаний В–О, даже если в других точках анализов этого же образца нет бора. Интенсивность этих полос прямо коррелирует с количеством бора. На рис. 5 показано различие ИК-спектров борсодержащих хондродитов с ИК-спектров борсодержащих хондродитов с ИК-спектров бор не установлен ни в одной точке при электронно-зондовом анализе.

Отметим, что волновые числа полос 2 и 3 в целом слишком высокие для типичных колебаний B-O в тетраэдрах BO_4 . Предположение, что они соответствуют треугольникам BO_3 , не имеет серьезных оснований. Вероятно, указанный высокочастотный сдвиг обусловлен тем, что эти полосы отвечают колебаниям B-OH или B-(OH,F), подобно тому, как в силикатах протонирование даже одной вершины тетраэдра SiO_4 с образованием силанольной группы Si-OH приводит к весьма значительному увеличению частоты валентных колебаний Si-O [Чуканов, Пеков, 2012]. Аналогичное явление отмечено нами и для дру-

Рис. 3. Зональный кристалл хондродита из рудного поля Люпикко, Питкяранта, Южная Карелия, Россия (образец Лю 2528/1). Номера точек соответствуют номерам анализов, приведенных в табл. 3. Фото в отраженных электронах

	Образец									
C		Лю 2528b					Лю 2528/1			
Состав	Номер точки анализа									
	1	2	3	4	5	1	2	3		
SiO ₂	34,52	34,07	33,67	33,64	34,04	33,74	34,02	33,75		
TiO ₂	0,03	0,03	0,02	0,01	0,04	0,05	0,05	0,05		
MgO	54,48	54,80	54,29	53,77	54,25	54,04	54,38	53,83		
MnO	0,83	0,92	0,88	0,93	0,84	0,93	1,06	0,90		
FeO	6,34	6,15	5,98	5,89	6,28	6,70	6,68	6,88		
B ₂ O ₃	1,64	1,12	н,п,о,	0,31*	н,п,о,	0,86	н,п,о,	0,51		
F	5,03	4,84	4,33	5,06	5,28	6,69	6,02	5,97		
H ₂ O	2,85	2,98	3,09	2,75	2,67	2,07	2,34	2,36		
$-O=F_2$	2,12	2,04	1,82	2,13	2,22	2,82	2,54	2,51		
Сумма	103,60	102,87	100,44	100,23	101,18	102,26	102,01	101,74		
Формульные коэффициенты										
Si	1,94	1,93	1,96	1,96	1,97	1,93	1,96	1,95		
Mg	4,56	4,62	4,71	4,67	4,68	4,61	4,67	4,63		
Mn	0,04	0,04	0,04	0,05	0,04	0,05	0,05	0,04		
Fe	0,30	0,29	0,29	0,29	0,30	0,32	0,32	0,33		
В	0,16	0,11		0,03		0,09		0,05		
F	0,89	0,87	0,80	0,93	0,97	1,21	1,10	1,09		
О _{расчет}	0,04	7,95	7,92	7,95	7,92	7,95	7,92	7,95		
OH _{pacyer}	1,07	1,18	1,28	1,12	1,11	0,84	0,98	0,96		

Рис. 4. ИК-спектры борсодержащих образцов норбергита (N) из Паргаса (Финляндия), хондродита (Ch) из Монте Соммы (Италия), гумита (Hu) из Фонтенанс (Канада) и клиногумита (Cl) из Михаса (Испания). Вертикальные линии соединяют максимумы боратных полос

гих солей с тетраэдрическими анионными группами, в частности для фосфатов и арсенатов (дорфманит $Na_2[PO_4OH] \cdot 2H_2O$, фармаколит Ca[AsO_4OH] \cdot 2H_2O и др.), и, по-видимому, носит схожий характер. Присутствие в диапазоне 3300–3700 см⁻¹ полос, отвечающих OH-группам, характерно для ИК-спектров подавляющего большинства образцов магнезиальных МГГ, включая все борсодержащие (рис. 4). В основном они относятся к гидроксильным анионам, замещающим F⁻ на мостиках Mg–R–Mg [Герасимова, 2011], но не исключено, что некоторые из слабых полос в этом диапазоне отвечают колебаниям O–H в боратных группах.

Дж. Хинторн и П. Риббе [1974] предполагали, что бор занимает в структуре хондродита тетраэдрические позиции, замещая кремний. Это предположение подтверждается нашими данными. При расчете формул борсодержащих образцов МГГ в большинстве случаев обнаруживается дефицит Si (табл. 2). Это позволяет предположить, что В изоморфно замещает Si по схеме Si⁴⁺ + O²⁻ => B³⁺ + (F,OH)⁻ аналогично тому, как

Таблица 4

Разброс (над чертой) и средние значения (под чертой) волновых чисел максимумов полос, соответствующих валентным колебаниям В-О, в ИК-спектрах магнезиальных МГГ, см⁻¹

№ п/п	Норбергит	Хондродит и гидроксилхон- дродит	Гумит	Клиногумит и гидроксил- клиногумит
1	1171-1190	1170-1188	1175-1190	1173-1190
1	1180	1176	1178	1175
2	1279-1289	1267-1281	1267-1275	1262-1275
	1285	1274	1270	1265
3	1325-1331	1314-1329	1314-1321	1306-1310
	1328	1318	1315	1309

это происходит в перцевите $Mg_2(B,Si)O_3(F,OH,O)$. Этот минерал (ассоциирующий с B-содержащим клиногумитом) близок по структуре к оливину и образует с форстеритом Mg_2SiO_4 ряд твердых растворов с широко варьирующими величинами отношений B:Si и (F,OH):O [Schreyer et al., 2003; Шрайер и др., 2007]. Перцевит и МГГ обладают явно выраженным структурным родством, что позволяет предположить одинаковый механизм замещений Si <=> B. Эта схема косвенно подтверждается данными ИК-

Рис. 5. Сопоставление ИК-спектров борсодержащего хондродита из Монте Соммы (Италия) и Монро (США) (две верхние линии соответственно) с ИК-спектрами хондродита из Ковдора (Россия) и гидроксилхондродита из Фалуна (Швеция), не содержащими полос боратных групп (две нижние линии соответственно)

спектроскопии, показывающими, что B^{3+} в МГГ скорее связан с (OH,F)⁻, а не только с O^{2-} .

Впрочем, можно допустить и другие схемы изоморфизма, учитывая, в частности, существование синтетического боратного аналога норбергита Fe_3BO_6 [White et al., 1965].

Мы предполагаем три возможные схемы изоморфизма в МГГ:

1) «перцевитовая»:

$$Si^{4+} + O^{2-} => B^{3+} + (F,OH)^{-};$$

2) без участия анионов O²⁻, OH⁻, F⁻:

2a)
$$Si^{4+} + Mg^{2+} => B^{3+} + Fe^{3+},$$

26)
$$2Si^{4+} + Mg^{2+} => 2B^{3+} + Ti^{4+};$$

3) с участием катионов металлов и анионов O^{2-} , OH^- , F^- :

3a)
$$Si^{4+} + 2Mg^{2+} + (F,OH)^{-} = 3$$

 $B^{3+} + 2Fe^{3+} + O^{2-}$

СПИСОК ЛИТЕРАТУРЫ

Гекимянц В.М., Соколова Е.В., Спиридонов Э.М и др. Гидроксилклиногумит $Mg_9(SiO_4)_4(OH, F)_2$ – новый минерал из группы гумита // Зап. ВМО. 1999. № 5. С. 64–70.

Герасимова Е.И. Магнезиальные минералы группы гумита: химико-структурные вариации и их связь с обстановками формирования: Автореф. канд. дисс. М., МГУ, 2011.

Дубинчук В.Т., Малинко С.В. К вопросу о вхождении бора в минералы группы гумита // Упорядочение и распад твердых растворов в минералах. М.: Наука, 1980. С. 63–67.

Пеков И.В., Герасимова Е.И., Чуканов Н.В. и др. Гидроксилхондродит $Mg_5(SiO_4)_2(OH)_2$ – новый минерал группы гумита и его кристаллическая структура // Докл. РАН. 2011. Т. 436. С. 521–527.

Пеков И.В., Зубкова Н.В., Чуканов Н.В. и др. Егоровит Na₄[Si₄O₈(OH)₄]·7H₂O — новый минерал из Ловозерского щелочного массива (Кольский полуостров) // Зап. РМО. 2009. № 3. С. 82–89.

Чуканов Н.В., Пеков И.В. Инфракрасная спектроскопия кислых солей. I // Минералы класса силикатов // Зап. РМО. 2012. № 3. С. 129–143.

Шрайер В., Бернхард Х.-Ю., Меденбах О. и др. Новые находки перцевита // Новые данные о минералах. 2007. Вып. 42. С. 28–32.

Cámara F. New data on the structure of norbergite: location of hydrogen by X-ray diffraction // The Canad. Mineral. 1997. Vol. 35. P. 1523–1530.

36)
$$\operatorname{Si}^{4+} + 3\operatorname{Mg}^{2+} + 2(F,OH)^{-} =>$$

=>B³⁺ + 3Fe³⁺ + 2O²⁻.

Таким образом, наши данные показывают, что бор в магнезиальных МГГ встречается не очень редко. Его можно считать характерным примесным компонентом в этих минералах. С помощью ИК-спектроскопии и электронно-зондового анализа мы можем уверенно диагностировать бор в этих минералах при содержании B_2O_3 выше 0,5 мас.%.

Отметим, что МГГ и близкие к ним в структурном отношении OH-содержащие магнезиальные силикаты рассматриваются как важнейшие аккумуляторы воды в мантии Земли [Papike, Cameron, 1976]. Не исключено, что они же концентрируют и дефицитный в мантии бор.

Авторы выражают благодарность Минералогическому музею им. А.Е. Ферсмана (Москва), Геологическому музею им. В.И. Вернадского (Москва) и Гудзонскому институту минералогии (Нью-Йорк, США) за предоставление образцов МГГ для изучения. Авторы признательны Д.Г. Кощугу за полезные замечания.

Galuskina I.O., Kadiysky M., Armbruster T. et al. A new natural phase in the system $Mg_2SiO_4-Mg_2BO_3F-Mg_2BO_3(OH)$: composition, paragenesis and structure of OH-dominant pertsevite // Eur. J. Mineral. 2008. Vol. 20. P. 951–964.

Hinthorne J., Ribbe P. Determination of boron in chondrodite by ion microprobe mass analysis // Amer. Mineral. 1974. Vol. 59. P. 1123–1126.

Jones N.W., Ribbe P.H., Gibbs G.V. Crystal chemistry of the humite minerals // Amer. Mineral. 1969. Vol. 54. P. 391-411.

Ottolini L., Cámara F., Bigi S. An investigation of matrix effects of fluorine in humite-group minerals by EMPA, SIMS, and SREF // Amer. Mineral. 2000. Vol. 85. P. 89–102.

Papike J.J., Cameron M. Crystal chemistry of silicate minerals of geophysical interest // Rev. Geophys. 1976. Vol. 14, $N \ge 1$. P. 37–80.

Povarennykh A.S. The use of infrared spectra for the determination of minerals // Amer. Mineral. 1978. Vol. 63. P. 956–959.

Schreyer W., Armbruster T., Bernhardt H.-J., Medenbach O. Pertsevite, a new silicatian magnesioborate mineral with an endmember composition Mg_2BO_3F , in kotoite marble from east of Verkhoyansk, Sakha-Yakutia, Russia // Eur. J. Miner. 2003. Vol. 15. P. 1007–1018.

White J.G., Miller A., Nielsen R.E. Fe_3BO_6 , a borate isostructural with the mineral norbergite // Acta Crystallogr. 1965. Vol. 19. P. 1060–1061.

Поступила в редакцию 12.05.2012