УДК 550.424.6; 631.4

Ю.В. Алёхин¹, О.Ю. Дроздова², Ю.А. Завгородняя³, Г.В. Мотузова⁴

МИГРАЦИЯ ЭЛЕМЕНТОВ В ПОДЗОЛИСТОЙ ПОЧВЕ ВЛАДИМИРСКОЙ МЕЩЁРЫ: ЛАБОРАТОРНЫЙ ЭКСПЕРИМЕНТ⁵

Изучение подвижности элементов в динамических условиях, когда материал каждого почвенного горизонта рассматривается как отдельная адсорбционно-осадительная хроматографическая колонка, позволяет количественно оценить миграцию элементов (с использованием коэффициентов взаимодействия в качестве коэффициентов экстракции и задержки). Это дает возможность построить ряды подвижности элементов в почвенных горизонтах в условиях модельного эксперимента. Полученные ряды подвижности однотипны для большинства элементов, как для режима десорбции, так и для режима адсорбции.

Ключевые слова: микроэлементы, миграция, подзолистые почвы, фильтрация, адсорбция, десорбция.

Studying of mobility of elements in dynamic conditions when the material of each of soil horizons is considered as separate adsorption-precipitation chromatography column, allows to estimate quantitatively migration of elements (using coefficients of interaction as coefficients of the extraction and retention). It gives the chance to construct numbers of mobility of elements in soil horizons in the conditions of modeling experiment. The received numbers of mobility are same for most elements, both for a desorption mode, and for an adsorption mode.

Key words: trace elements, migration, podzolic soils, filtration, adsorption, desorption.

Введение. Поровые растворы из разных почвенных горизонтов сушественно различаются по концентрации элементов [Караванова, Тимофеева, 2009; Алехин и др., 2013а]. Состав поровых растворов отдельных горизонтов почвенного профиля формируется при инфильтрации атмосферных осадков через почвенную толщу и зависит как от способности вышележащих горизонтов поглощать химические элементы, так и от способности этих элементов к адсорбции. Известно существенное влияние миграционной способности микроэлементов в почве на формирование экологического состояния ландшафта. Подвижность микроэлементов в почвах часто оценивают по их способности переходить в солевые вытяжки в статических условиях лабораторных опытов [Tessier, Campbell, 1979]. При этом, как правило, не уделяется внимания общим показателям состава экстрагируемых растворов, в частности присутствию в них гумусовых и низкомолекулярных карбоновых кислот. Недостаточно сведений и о динамике адсорбционо-десорбционных процессов при фильтрации через почву природных и модельных растворов, что затрудняет оценку подвижности химических элементов.

К настоящему времени имеется необходимое физико-химическое обеспечение для описания сорбционных процессов на поверхностях раздела систем водные растворы — конденсированные фазы и верифицирован ряд моделей, описывающих максимальную сорбцию и селективность сорбции элементов различными природными фазами [Пинский, Подгорина, 1986; Пинский, 1995; Forbes et al., 1976; Kinneburgh et al., 1976; Brummer et al., 1983; 1988; Kinneburgh, 1986; Barrow et al., 1989]. Но очевидно, что полученные в статических лабораторных условиях показатели сорбции микроэлементов на поверхности минеральных фаз даже с определенными свойствами их поверхности [Алёхин, 2000; Караванова, Тимофеева, 2009; Pivovarov, 1998] не могут быть эффективно применены к природным динамическим системам, в том числе к почвам. Использование в эксперименте минеральных препаратов и природных образцов с известными коллоидно-химическими свойствами, когда суммарная сорбционная емкость определяется эффективной удельной поверхностью и структурными характеристиками отдельных фаз, обычно не предполагает учет скорости появления минеральных новообразований и их перекристаллизации.

Статья посвящена развитию методов определения относительной подвижности микроэлементов в динамических условиях, когда материал каждого

¹ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра геохимии, заведующий лабораторией экспериментальной геохимии, канд. геол.-минер. н.; *e-mail*: alekhin@geol.msu.ru

² Московский государственный университет имени М.В. Ломоносова, факультет почвоведения, кафедра химии почв, аспирант; *e-mail:* drozdova olga@yahoo.fr

³ Московский государственный университет имени М.В. Ломоносова, факультет почвоведения, кафедра химии почв, ассистент, канд. биол. н.; *e-mail*: zyu99@mail.ru

⁴ Московский государственный университет имени М.В. Ломоносова, факультет почвоведения, кафедра химии почв, профессор, докт. биол. н.; *e-mail*: motuzova@mail.ru

⁵ Работа выполнена при финансовой поддержке РФФИ (гранты № 11-05-00464-а, 11-05-00638-а, 11-05-93111-НЦНИЛ-а, 12-05-00509-а, 12-04-31796-мол_а).

почвенного горизонта рассматривается как хроматографическая адсорбционно-осадительная колонка, а также применению этих методов для характеристики миграционной способности широкого ряда элементов в почвах юга таежной зоны.

Материалы и методы исследования. Для лабораторных опытов использована подзолистая почва первой надпойменной террасы р. Клязьма (Мещерская низменность) супесчаного гранулометрического состава с pH суспензии гумусового горизонта 4,7 (табл. 1). В эксперименте использованы образцы из четырех горизонтов: гумусового (А), элювиального (Е), иллювиально-железистого (Bf) и оглееного переходного горизонта от иллювиального горизонта к материнской породе — флювиогляциальным отложениям (BCg). Из почвенного материала составлены четыре колонки, каждая из которых заполнена отдельным почвенным горизонтом. Через колонки

Содержание микроэлементов в почвенных горизонтах (мкг/кг), природном растворе (ПВ) и растворе с добавлением ПЭС (мкг/л)

Таблица 1

последовательно фильтровали водные растворы разного состава:

I — дистиллированная вода (имитация инфильтрации пресных метеорных осадков), IA — дистиллированная вода с добавлением азида натрия (для подавления жизнедеятельности биоты почв);

II — почвенная вода (ПВ), которая отобрана из канавы, дренирующей исследуемую почву, и подготовлена к работе путем фильтрации через фильтр с размером пор 0,2 мкм; высокое значение pH (8,0) связано с высоким содержанием кальция в этом растворе (рисунок) при содержании органического углерода (C_{opr}) 10,7 мг/л;

III — ПВ с добавлением смеси карбоновых кислот (ПВ+К) — уксусной, лимонной и щавелевой в пропорции 1:0,05:0,003; эти пропорции близки к соотношению их количеств в водных вытяжках из почв [Hees et al., 1996] и обеспечивают кислотность

раствора (pH 4,2), сопоставимую с величиной, характерной для почвенного гумусового горизонта. Содержание C_{opr} в растворе ПВ+К составило 304,9 мг/л;

IV — для характеристики способности почвы к адсорбции через колонки фильтровали раствор ПВ+К+ПЭС, полученный путем добавления к раствору ПВ+К полиэлементного стандартного раствора (ПЭС; ICP-MS-68B Solution A; High-Purity Standards), содержащего 48 элементов (Al, As, Ba, Be, Bi, B, Cd, Ca, Ce, Cs, Cr, Co, Cu, Dy, Er, Eu, Gd, Ga, Ho, In, Fe, La, Pb, Li, Lu, Mg, Mn, Nd, Ni, P, K, Pr, Re, Rb, Sm, Sc, Se, Na, Sr, Tb, Tl, Th, Tm, U, V, Yb, Y, Zn) с концентрацией каждого компонента 1 мг/л (табл. 1); рН раствора (ПВ+К+ПЭС) 3,5; Сорг 292,2 мг/л. Раствор ПЭС с равной концентрацией микроэлементов добавлен для нормировки рядов подвижности как характеристики процессов адсорбции-десорбции элементов в колонках почвенного материала. В рассмотрение приняты только те микроэлементы (табл. 2-5), для которых есть полная информация о содержании в почвенном материале и растворе ПВ.

Все этапы работы проводились с одним исходным колоночным материалом, но с последовательной сменой исходных растворов — фильтрантов по достижении стационарных значений таких макропоказателей, как pH, pNa, pCa (рисунок), в каждом режиме фильтрования. Отбор фильтратов проводили ежедневно в течение всего эксперимента (3 месяца). Объемная скорость нисходящей фильтрации поддерживалась постоянной и равной 1,5 мл/ч при высоте колонок 2 см и массе почвенного материала 6–8 г. Высота колонок и скорость фильтрации растворов выбраны с учетом дисперсности материала,

Таблица 3

Таблица 2

Значения коэффициента взаимодействия элементов (R) в отдельных горизонтах почвы при фильтрации дистиллированной воды

Горизонт А		Горизонт Е		Горизонт Bf		Горизонт ВСg	
Zn	0,4875	Zn	0,6226	Zn	0,3365	Мо	0,1464
Мо	0,0613	Mo	0,3277	Мо	0,0693	Zn	0,0177
Cd	0,0099	Cd	0,0117	Cd	0,0126	Cu	0,0107
Mn	0,0096	Ni	0,0049	Ni	0,0025	Cd	0,0020
Cr	0,0074	Co	0,0026	W	0,0008	Mn	0,0010
Ni	0,0069	W	0,0017	Со	0,0007	Со	0,0006
Co	0,0045	Mn	0,0012	Sn	0,0004	W	0,0006
Cu	0,0038	Cs	0,0010	Cs	0,0004	V	0,0001
W	0,0036	Sn	0,0008	Bi	0,0004	Р	0,0001
Cs	0,0025	Cr	0,0008	Pb	0,0003	Cs	0,0001
Sn	0,0016	Pb	0,0005	Cr	0,0002	Pb	9E-05
Р	0,0015	Р	0,0004	Mn	0,0002	Sn	6E-05
Pb	0,0013	Rb	0,0003	K	0,0002	Bi	5E-05
K	0,0011	K	0,0003	Rb	0,0001	U	5E-05
Li	0,0009	U	0,0003	Eu	0,0001	Y	4E-05
Rb	0,0007	Ce	0,0002	U	0,0001	Sm	4E-05
V	0,0006	Sm	0,0002	Р	9E-05	Eu	3E-05
Bi	0,0006	Eu	0,0002	Li	7E-05	Gd	3E-05
Y	0,0005	Nd	0,0002	Ce	6E-05	K	3E-05
Eu	0,0005	Pr	0,0002	Pr	6E-05	Tb	3E-05
U	0,0004	Y	0,0002	Y	6E-05	Но	3E-05
Sm	0,0004	Gd	0,0002	La	6E-05	Cr	3E-05
Er	0,0004	Li	0,0002	Sm	6E-05	Er	3E-05
Gd	0,0003	La	0,0002	Nd	6E-05	Pr	3E-05
Tb	0,0003	Th	0,0002	V	5E-05	Ce	3E-05
Tm	0,0003	Er	0,0001	Gd	5E-05	Nd	3E-05
Но	0,0003	Но	0,0001	Er	5E-05	Tm	3E-05
Yb	0,0003	Tb	0,0001	Ho	4E-05	Yb	2E-05
Nd	0,0003	Tm	0,0001	Tb	3E-05	La	2E-05
Lu	0,0003	Yb	9E-05	Yb	3E-05	Rb	2E-05
Pr	0,0003	V	8E-05	Tm	3E-05	Lu	2E-05
Ce	0,0002	Lu	7E-05	Lu	3E-05	Th	1E-05
La	0,0002	Zr	5E-05	Th	1E-05		
Th	0,0002	Ga	3E-05				
Zr	0,0001						
Ga	0,0001						

они обеспечивают получение сопоставимых масштабов конвективного и диффузионного переноса элементов при хроматографическом разделении.

В последовательно отобранных фильтратах и в подаваемых на колонки растворах проводили потенциометрические измерения (pH, pNa и pCa) на иономерах фирмы «Эконикс-Эксперт 001», определяли содержание химических элементов методом аналитической масс-спектрометрии с индуктивно связанной плазмой (ИСП-МС, «Element-2» фирмы «Thermo Finnigan MAT»). Перед измерениями все твердые образцы разлагали в микроволновой печи на основе многоэтапного кислотного разложения (HNO₃:HF

Значения коэффициента	взаимодействия	элементов ((R) в
отдельных горизонтах почвы	при фильтрации	природного	раствора

Горизонт А		Гор	изонт Е	Горизонт Bf		Горизонт ВС g	
Zn	0,1210	Zn	0,0927	Mo	0,0864	Mo	0,1115
Mo	0,0051	Мо	0,0707	Zn	0,0229	Zn	0,0094
Sb	0,0029	Cu	0,0353	Cd	0,0022	Р	0,0031
Р	0,0019	Sb	0,0335	W	0,0010	Cd	0,0011
Cr	0,0011	Cd	0,0048	V	0,0006	W	0,0009
Cd	0,0010	Р	0,0013	Р	0,0005	V	0,0007
W	0,0008	Cs	0,0009	Cs	0,0003	Со	0,0004
Mn	0,0006	K	0,0008	Cr	0,0003	U	0,0003
K	0,0006	Cr	0,0007	K	0,0003	Mn	0,0003
Со	0,0005	W	0,0006	Sn	0,0001	Cr	0,0002
Bi	0,0003	Co	0,0004	U	1E-04	K	0,0002
V	0,0002	Mn	0,0002	Eu	7E-05	Ga	6E-05
Y	1E-04	Sn	0,0002	Со	7E-05	Sn	4E-05
U	9E-05	U	0,0001	Ga	3E-05	Eu	2E-05
Eu	8E-05	V	7E-05	Nd	3E-05	Tb	2E-05
Sm	8E-05	Bi	7E-05	La	3E-05	Y	1E-05
Gd	8E-05	Nd	6E-05	Mn	3E-05	La	1E-05
Tb	8E-05	La	6E-05	Sm	3E-05	Ce	1E-05
Nd	7E-05	Sm	6E-05	Pr	3E-05	Sm	9E-06
Er	6E-05	Tb	6E-05	Ce	3E-05	Pr	8E-06
Pr	6E-05	Ce	5E-05	Tb	2E-05	Gd	8E-06
Ce	6E-05	Y	5E-05	Gd	2E-05	Er	7E-06
La	5E-05	Pr	4E-05	Y	1E-05	Nd	7E-06
Tm	5E-05	Gd	4E-05	Er	1E-05	Yb	-1E-05
Lu	4E-05	Eu	3E-05	Yb	-3E-06	Tm	-3E-05
Yb	4E-05	Ga	3E-05	Lu	-6E-06	Lu	-3E-05
Ga	3E-05	Er	2E-05	Tm	-6E-06	Rb	-5E-05
Th	3E-05	Rb	9E-06	Bi	-2E-05	Cs	-1E-04
Zr	2E-05	Zr	4E-06	Th	-3E-05		
Sn	2E-05	Tm	-8E-07	Rb	-1E-04		
Ge	-2E-06	Yb	-1E-06				
Rb	-0,0002	Lu	-1E-05				
		Th	-3E-05				

(1:3); HNO₃:HCl (3:1) и HCl_{конц}). Содержание C_{opr} определяли методом каталитического сжигания (на анализаторе «Elementar liqui TOC trace»).

В ходе эксперимента определяли следующие показатели: $C_{\text{исх.раствора}}$, мкг/л — концентрация элементов в исходном растворе (ПВ, ПВ+К или ПВ+К+ПЭС, табл. 1); $C_{\text{пробы}}$, мкг/л, концентрация элемента в фильтратах; ΔC , мкг/л — изменение концентрации элемента в фильтрате после взаимодействия раствора с почвенным материалом в определенный срок наблюдений ($\Delta C = C_{\text{пробы}} - C_{\text{исх.раствора}}$). Для характеристики процессов адсорбции-десорбции элементов почвенным материалом из исходных растворов находили локальные значения коэффициентов взаимодействия (R) по достижении стационарных значений потенциометрических показателей. Именно для этого периода определены значения коэффициента

Таблица 5

Таблица 4

Значения коэффициента взаимодействия элементов (R) в отдельных горизонтах почвы при фильтрации природного раствора с добавлением карбоновых кислот (ПВ+К)

Горизонт А		Гори	изонт Е	Горизонт Bf		Горизонт ВСд	
Zn	0,2410	Zn	0,8796	Zn	0,6132	Zn	0,6549
Мо	0,1725	Мо	0,0360	Lu	0,1036	Мо	0,0210
Р	0,0950	Cd	0,0045	Cd	0,0962	Р	0,0062
Cu	0,0699	Mn	0,0033	Мо	0,0929	Cd	0,0043
Cr	0,0556	Р	0,0025	Tm	0,0882	Co	0,0037
Cd	0,0511	V	0,0023	Bi	0,0731	Ce	0,0035
V	0,0440	Со	0,0012	Р	0,0420	Nd	0,0034
W	0,0227	Bi	0,0010	Но	0,0273	Pr	0,0033
Ni	0,0192	Sn	0,0009	V	0,0264	Sm	0,0033
Bi	0,0167	Pb	0,0009	Tb	0,0216	Th	0,0033
Sn	0,0154	W	0,0008	U	0,0170	Gd	0,0032
Mn	0,0140	Ga	0,0008	Yb	0,0148	Bi	0,0032
Pb	0,0137	Li	0,0006	Eu	0,0123	La	0,0029
Со	0,0127	U	0,0006	Er	0,0115	Tb	0,0028
Ga	0,0108	Cr	0,0006	Cr	0,0115	Eu	0,0023
Y	0,0090	Ge	0,0005	Th	0,0078	Но	0,0021
Eu	0,0062	Ce	0,0003	Ce	0,0076	Pb	0,0021
Но	0,0062	La	0,0003	Pr	0,0074	Y	0,0020
Tb	0,0056	Pr	0,0003	La	0,0072	Tm	0,0019
Er	0,0055	Nd	0,0002	Со	0,0071	Lu	0,0018
Ge	0,0055	Cs	0,0002	Sm	0,0070	Er	0,0016
Tm	0,0051	Gd	0,0002	Gd	0,0069	Cr	0,0014
Gd	0,0051	Sm	0,0002	Cs	0,0067	U	0,0012
Sm	0,0046	Eu	0,0002	Nd	0,0064	Yb	0,0012
Yb	0,0042	Tb	0,0001	Ga	0,0054	Li	0,0009
Li	0,0040	K	0,0001	Ni	0,0050	V	0,0008
Nd	0,0040	Th	0,0001	Pb	0,0035	W	0,0005
Th	0,0039	Rb	7E-05	W	0,0032	Ga	0,0005
Pr	0,0035	Y	6E-05	Y	0,0031	Zr	0,0004
U	0,0035	Tm	5E-05	Ge	0,0030	Cs	0,0002
Lu	0,0031	Ho	5E-05	Li	0,0029	Sn	0,0002
Ce	0,0031	Er	5E-05	Sn	0,0022	K	0,0001
La	0,0026	Yb	3E-05	Zr	0,0006	Ge	0,0001
K	0,0014	Lu	3E-05	Rb	0,0004	Rb	0,0001
Cs	0,0012	Zr	2E-05	K	0,0002	Mn	-0,0014
Rb	0,0010	Cu	-0,0015	Mn	-0,0006	Cu	-0,0021
Zr	0,0010	Ni	-0,0088	Cu	-0,0023	Ni	-0,006

взаимодействия для всех рассмотренных элементов (табл. 2–4). Значения R<0 показывают преобладание процессов адсорбции элемента почвами, а R>0 — десорбции [Алёхин и др., 2013а]. Для их нахождения нормировка ΔC (мкг/л) в фильтратах проводилась на содержание каждого элемента в соответствующем почвенном горизонте (N, мкг/кг; табл. 1) с учетом массы почвенного материала (m, кг) в колонках и объема профильтровавшегося раствора ($V_{пробы}$, л): R= $\Delta C \cdot V_{пробы}/Nm$.

В хроматографических процессах первоначальное адсорбционное накопление закономерно сменяется

Значения интегрального коэффициента взаимодействия элементов (R₂) в отдельных горизонтах почвы при фильтрации раствора ПВ+К+ПЭС

Горизонт А	Горизонт Е	Горизонт Bf	Горизонт BCg	
Pb 0,859	La 0,495	Cu 0,316	La 0,382	
La 0,820	Pb 0,436	Pb 0,288	Ga 0,279	
Ce 0,744	Cu 0,388	La 0,252	Ce 0,271	
Pr 0,691	Ce 0,334	Bi 0,196	Pr 0,216	
Nd 0,629	Ga 0,313	Cs 0,168	Nd 0,174	
Gd 0,596	Pr 0,263	Ga 0,139	Cu 0,162	
Cu 0,573	Mn 0,232	Cd 0,131	Gd 0,155	
Sm 0,554	Bi 0,231	Ce 0,130	Tb 0,152	
Tb 0,465	Nd 0,209	Pr 0,115	Sm 0,141	
Bi 0,453	Gd 0,194	Mn 0,105	Eu 0,138	
Eu 0,415	Tb 0,183	Tb 0,097	Ho 0,130	
Ho 0,345	Sm 0,173	Ho 0,079	Y 0,116	
Y 0,322	Ho 0,171	Nd 0,079	Er 0,106	
Er 0,283	Tm 0,164	Rb 0,075	Tm 0,097	
Cd 0,247	Eu 0,164	K 0,070	Pb 0,085	
Tm 0,203	Cd 0,161	Er 0,066	Bi 0,074	
Ga 0,199	Er 0,160	Li 0,065	Cs 0,073	
Cs 0,157	K 0,158	Sm 0,061	Lu 0,071	
Yb 0,134	V 0,155	Tm 0,061	K 0,064	
Lu 0,099	Y 0,152	Y 0,061	Yb 0,055	
Rb 0,089	Lu 0,148	Eu 0,058	Mn 0,031	
Ni 0,088	Cs 0,136	Gd 0,051	Th 0,011	
Co 0,033	Yb 0,133	Ni 0,049	Rb 0,010	
Th 0,027	Rb 0,122	Lu 0,041	U 0,008	
Mn 0,025	Th 0,111	V 0,028	Cd 0,002	
V 0,016	U 0,105	Yb 0,024	V -0,013	
К —0,009	Ni 0,095	Co 0,019	Ni -0,026	
Li -0,064	Co 0,078	Th 0,009	P −0,028	
U -0,073	P 0,064	U 0,002	Co -0,034	
Р —0,191	Li 0,061	P -0,093	Li -0,049	
Al -2,287	Al -0,628	Al -2,950	Zn -1,053	
Zn -2,439	Zn -1,363	Zn -3,298	Al -1,266	
Fe -11,432	Fe -3,151	Fe -3,950	Fe -1,561	

десорбцией каждого микроэлемента в результате ионного обмена на такие макрокомпоненты, как Na, K, Ca, Mg, а также на более прочно сорбируемые микрокомпоненты. В этом случае предельное стационарное состояние не достигается и для характеристики процессов адсорбции-десорбции необходимо сравнивать интегральные величины задержки адсорбционно-десорбционного процесса [Дроздова и др., 2011; Алёхин и др., 2013а]. Величины интегрального коэффициента взаимодействия при процессах ионного обмена во времени закономерно изменяются, но ряды подвижности сохраняют устойчивость [Алёхин и др., 2011]. Поэтому для описания результатов режима фильтрации раствора ПВ+К+ПЭС были рассчитаны значения интегрального коэффициента взаимодействия по формуле

$$\mathbf{R}_{\Sigma} = 1 - (\sum (C_{\text{пробы}} \cdot V_{\text{пробы}}) / (C_{\text{исх.раствора}} \cdot \sum V_{\text{пробы}})),$$

где $C_{\text{пробы}}$ — концентрация элемента в фильтрате, мкг/л; $C_{\text{исх.раствора}}$ — концентрация элемента в исходном подаваемом растворе, мкг/л; $V_{\text{пробы}}$ — объем отобранного фильтрата, л. Адсорбцию элементов почвенным материалом характеризуют значения $R_{\Sigma} > 0$, а десорбцию — $R_{\Sigma} < 0$.

Результаты исследований и их обсуждение. Содержание большинства определяемых микроэлементов в исследуемых образцах было несколько ниже, чем известные кларки этих элементов в почвах (табл. 1). Возможно, это связано с супесчаным гранулометрическим составом изучаемых почв и низким содержанием в них органического вещества.

При фильтровании дистиллированной воды значения коэффициента взаимодействия элементов для разных горизонтов отличаются, но последовательность элементов в рядах подвижности, составленных по уменьшению значений коэффициента R, практически одинакова для горизонтов E, Bf и BCg (табл. 2). Для гумусового горизонта основные закономерности ряда также сохраняются, но наблюдается увеличение величины R некоторых элементов (Cr, Ni, Li, Rb, V), вероятно, это происходит из-за специфики их природного накопления. По полученным значениям коэффициентов R все элементы можно разделить на 4 группы: 1-я группа — элементы, для которых значения коэффициента взаимодействия R лежат в интервале 0,1-1; 2-я группа — в интервале 0,01-0,1; 3-я группа — элементы с 0,01>R>0,001; 4-я группа элементы с 0,001 > R > 0. Во всех четырех горизонтах в первую группу входят Zn и Mo. Большинство элементов во всех горизонтах относится к 3-й (0,01>R>0,001) и 4-й (R<0,001) группам.

При фильтровании через колонки почвенной воды последовательности элементов в рядах подвижности в различных горизонтах также очень схожи между собой (табл. 3). Интервал значений коэффициента взаимодействия практически не отличается для всех исследуемых горизонтов. Но, в отличие от значений коэффициента взаимодействия при фильтрации дистиллированной воды, при фильтровании ПВ значения R ниже для большинства элементов, а для некоторых R<0, т.е. наблюдается дополнительная адсорбция компонентов раствора. И к четырем выделенным группам элементов можно добавить 5-ю группу элементов с R<0. Для гумусового горизонта к этой группе относятся Rb и Ge, для элювиального — Lu, Th, Yb и Tm; для иллювиального — Bi, Rb, Th, Tm, Lu, Yb; для оглееного — Yb, Tm, Lu, Rb и Cs. Как и для предыдущего режима, наибольшие значения коэффициента взаимодействия выявлены у Zn и Mo. Но в этом режиме во всех горизонтах большинство элементов имеют 0,001>R>0 (4-я группа).

При добавлении карбоновых кислот в фильтрант (раствор ПВ+К) кислотность раствора значительно возрастает (до рН 4,2). При фильтровании этого раствора через почвенные колонки значительно усиливается подвижность основной части элементов во всех горизонтах, что определяется ролью их комплексов с карбоновыми кислотами, это хорошо видно по возрастанию значений их коэффициента взаимодействия (табл. 4). При этом процессы переотложения гидроксидов Fe приводят, вероятно, к параллельному связыванию (адсорбции) Cu, Ni во 2–4-й колонках и Mn в 3-й и 4-й (R<0).

При увеличении концентрации карбоновых кислот во всех горизонтах наблюдаются значительные изменения в соотношениях коэффициентов взаимодействия большинства элементов, в том числе для группы редкоземельных элементов (РЗЭ), что свидетельствует об их перераспределении в пределах почвенного разреза и может служить основой для выявления тонких физико-химических различий при их миграции и переотложении совместно с гидроксидами железа.

При фильтровании раствора ПВ+К, в отличие от двух предыдущих режимов во всех горизонтах, кроме элювиального, большинство элементов можно отнести к 2-й и 3-й группам.

Дополнительное введение в одинаковых концентрациях элементов в раствор-фильтрант (ПВ+К+ПЭС) позволяет исследовать различия в адсорбционнодесорбционном поведении некоторых элементов в почвенных горизонтах. По рассчитанным значениям интегральных коэффициентов взаимодействия (R₅) видно, что все рассматриваемые элементы наиболее активно сорбируются в гумусовом горизонте (табл. 5). Но для ряда элементов (K, Li, U, P, Al, Zn, Fe) первоначальный процесс адсорбционного связывания быстро сменяется десорбцией, что определяет отрицательный баланс в их привносе-выносе. Ряд подвижности РЗЭ в гумусовом горизонте соответствует большему адсорбционному связыванию легких элементов. Отмечено прочное связывание свинца. В этом горизонте весьма подвижны редкие щелочные элементы, а также калий. Десорбция макрокомпонентов-гидролизатов (Fe, Al), а также высококларкового Zn обеспечивается их высоким содержанием в исходном колоночном материале при воздействии раствора с рН 3,5.

Для элювиального горизонта набор адсорбируемых элементов наиболее широк и интегральные коэффициенты взаимодействия достаточно велики. При этом так же, как и в гумусовом горизонте, были получены отрицательные значения коэффициентов R_{Σ} для Al, Zn и Fe. Наблюдается обычная последовательность РЗЭ с более прочным связыванием легких элементов.

Для иллювиального и оглееного горизонтов значения прочности адсорбционного связывания большинства элементов близки, для этих горизонтов характерен схожий интервал значений R_{Σ} . Различия в поведении Pb, Mn, V, а также Bi, Cd, Li и Rb, видимо, определяются сменой валентного состояния для пер-

Динамика изменения pH, pNa и pCa в течение эксперимента. Режимы фильтрования: I — дистиллированная вода, IA — дистиллированная вода с добавлением азида натрия, II — почвенная вода, III — почвенная вода с добавлением карбоновых кислот, IV — почвенная вода с добавлением карбоновых кислот, IV — почвенная вода с добавлением карбоновых кислот и полиэлементного раствора

вых и переменной прочностью адсорбции для вторых при изменении количества основных минеральных матриц — адсорбатов.

Следует особо отметить, что полученные нами значения коэффициентов R и R₅ справедливы лишь для модельного случая высоких введенных концентраций гумусовых и карбоновых кислот. Необходимо учитывать, что эксперименты с одним исходным колоночным материалом проводились в серии последовательной смены этапов фильтрования различными растворами с изменяющимися кислотностью (рисунок), содержанием растворенного органического вещества и концентрацией макрокомпонентов. Тем не менее последовательность элементов в соответствии с уменьшением значений коэффициента взаимодействия для случаев десорбции с весьма контрастными величинами концентрации элементов (раствор ПВ+К) и при адсорбции, когда все элементы взяты в одинаковой концентрации (раствор ПВ+К+ПЭС), весьма схожа и во всех случаях определяется в первую очередь ионным обменом с макрокомпонентами почв и модельных растворов — H^+ , Na⁺, Ca²⁺ (рисунок).

Заключение. Рассмотрение каждого почвенного горизонта как адсорбционно-осадительной хроматографической колонки позволяет получать ряды подвижности на объективной основе, однотипные для широкого круга элементов, причем как в условиях десорбции, так и адсорбции. При этом значения коэффициента взаимодействия показывают, что во всех режимах вынос большинства микроэлементов

СПИСОК ЛИТЕРАТУРЫ

Алёхин Ю.В. Экспериментальные методы в теории и практике создания геохимических барьеров // Мат-лы межвуз. конф. «Школа экологической геологии и рационального недропользования». СПб., 2000. С. 22–24.

Алёхин Ю.В., Ильина С.М., Лапицкий С.А., Покровский О.С. Опыт сравнительного анализа отдельных составляющих речного стока малых рек северной зоны и средней полосы России // Бюлл. МОИП, отд. геол. 2011. Т. 86, вып. 1. С. 59–81.

Алёхин Ю.В., Макарова М.А., Карасева О.Н. и др. Экспериментальное изучение миграции, адсорбции и осаждения микрокомпонентов в латеритных корах выветривания // Электрон. науч.-инф. журн. Вестн. Отделения наук о Земле РАН. М.: ИФЗ РАН. 2013а. № 1 (31) (в печати).

Алёхин Ю.В., Макарова М.А., Мамедов В.И. и др. Состав поровых растворов латеритных кор выветривания Гвинеи // Мат-лы Всерос. форума «Развитие минерально-сырьевой базы Сибири: от В.А. Обручева, М.А. Усова, Н.Н. Урванцева до наших дней». Секция Гидрогеохимия и гидрогеохимические поиски. Томск, ТПУ, 2013б.

Дроздова О.Ю., Алёхин Ю.В., Ильина С.М. и др. Результаты исследования миграционной подвижности микроэлементов в почвенных горизонтах под действием гумусовых и карбоновых кислот // Электрон. науч.-инф. журн. Вестн. Отделения наук о Земле РАН. М.: ИФЗ РАН. 2011. Т. 3. URL: http://onznews.wdcb.ru/publications/ v03/asempg11ru/2011NZ000156R.pdf (дата обращения: 23.10.2012).

обычно составляет тысячные доли от их содержания в материале колонок.

При достижении стационарного состояния в каждом режиме фильтрования по величине коэффициента взаимодействия все элементы можно разделить на пять групп: 1-я группа — 1>R>0; 2-я группа — 0,1>R>0,01; 3-я группа —0,01>R>0,001; 4-я группа —0,001>R>0 и 5-я группа — R<0. Гумусовый горизонт по сравнению с другими горизонтами характеризуется более высокими значениями R, в то время как в трех других горизонтах больших различий не наблюдается.

Во всех горизонтах после короткого периода извлечения большинство элементов начинает сорбироваться на колоночном материале при фильтрации растворов, но для полиэлементного раствора мы приводим здесь только интегральные коэффициенты взаимодействия (табл. 5). Сравнение данных (табл. 2–5) по рядам подвижности элементов и высокая устойчивость последовательности элементов в этих рядах при значительном варьировании составами фильтрантов (подаваемых растворов), а особенно с учетом значимых вариаций составов отдельных почвенных горизонтов, позволяет утверждать, что заложены основы метода экспериментального изучения геохимической подвижности микроэлементов поровых растворов в почвенных разрезах.

Выражаем благодарность С.А. Лапицкому и С.В. Думцеву за помощь в отборе исследованных материалов, а также В.В. Пухову за помощь в проведении анализов методом ИСП-МС.

Караванова Е.И., Тимофеева Е.А. Химический состав растворов макро- и микропор поверхностных горизонтов некоторых почв ЦЛГБЗ // Почвоведение. 2009. № 12. С. 1456–1463.

Карасева О.Н., Лакштанов Л.З., Иванова Л.И. Влияние температуры на адсорбцию стронция на гематите // Геохимия. 2003. № 12. С. 1183–1193.

Пинский Д.Л., Подгорина Л.Т. Изотермы ионообменной сорбции кальция и свинца почвами в модельных экспериментах // Агрохимия. 1986. № 3. С. 78–85.

Пинский Д.Л. Коэффициенты селективности и величины максимальной адсорбции Cd²⁺ и Pb²⁺ почвами // Почвоведение. 1995. № 4. С. 420–428.

Barrow N.J., Gerth J., Brummer G.W. Reaction kinetics of the absorption and desorption of nickel, zinc and cadmium by goethite. II. Modelling the extend and rate reaction // J. Soil Sci. 1989. Vol. 40, N 2. P. 437–450.

Brummer G.W., Gerth J., Tiller K.G. Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite // J. Soil Sci. 1988. Vol. 39, N 1. P. 37–52.

Brummer G.W., Tiller K.G., Herms U., Clayton P.M. Adsorption-desorption and/or precipitation-dissolution processes of zinc in soils // Geoderma. 1983. Vol. 31, N 4. P. 337–354.

Forbes E.A., Posner A.M., Quirk J.P. The specific adsorption of divalent Cd, Co, Cu, Pb and Zn on goethite // J. Soil Sci. 1976. Vol. 27, N 2. P. 154–166.

Hees P.V., Andersson A.-M.T., Lundström U.S. Separation of organic low molecular weight aluminium complexes in soil solution by liquid chromatography // Chemosphere. 1996. Vol. 33, N 10. P. 1951–1966.

Kinneburgh D.C. General purpose adsorption isoterms // Environ. Sci. Technol. 1986. Vol. 20, N 9. P. 895–904.

Kinneburgh D.C., Jackson M.L., Syers J.K. Absorption of alkaline earth, transition and heavy metal cation by hydrous oxide gels of iron and aluminium // J. Amer. Soil Sci. Soc. 1976. Vol. 40. P. 796–799.

Pivovarov S. Acid-base properties and heavy and alkaline earth metal adsorption on the oxide-solution interfase: Non-elektrostatic model // J. Colloid Interface Sci. 1998. Vol. 206. P. 122–130.

Tessier A., Campbell P.G.C., Bission M. Sequential extraction procedure for the speciation of particulate trace metals // Anal. chem. 1979. Vol. 51, N7. P. 844–851.

Поступила в редакцию 22.05.2013