УДК 549.612.2+553.241.6

И.А. Бакшеев¹, В.Н. Голубев², В.Ю. Прокофьев³, М.Ф. Вигасина⁴, В.О. Япаскурт⁵, И.А. Брызгалов⁶

ТУРМАЛИН КВАРЦЕВЫХ ЛИНЗ УРТУЙСКОГО ГРАНИТНОГО МАССИВА (СТРЕЛЬЦОВСКОЕ РУДНОЕ ПОЛЕ, ЧИТИНСКАЯ ОБЛАСТЬ)⁷

В крупнопорфировых гранитах Уртуйского массива (Читинская область), обрамляющего Стрельцовскую вулкано-тектоническую структуру, выявлены кварц-турмалиновые линзы, в зонах развития которых развит рассеянный уранинит. Турмалин двух зарождений образует крупные кристаллы серого и черного цвета. В турмалине-I, относящемся к «фтор-шерлу», и турмалине-II, относящемся к шерлу, основной тип изоморфного замещения в катионной части $Fe^{2+} \rightarrow Mg$. Отношение $Fe^{3+}/Fe_{oбщ}$ в турмалине низкое (2%). Содержание Li составляет 80 г/т. Высокое содержание фтора, относительно высокое содержание Li, низкое отношение $Fe^{3+}/Fe_{oбщ}$ и характер изоморфных замещений указывают на принадлежность турмалина к грейзеновой формации. Предполагается, что формирование рассеянной урановой минерализации в гранитоидах Уртуйского массива — одного из возможных источников урана промышленных урановых руд Стрельцовского месторождения — связано с грейзенизацией и формированием кварц-турмалиновых линз.

Ключевые слова: шерл, «фтор-шерл», грейзены, Уртуйский гранитный массив, Читинская область.

Quartz-tourmaline lenses, around which host granite is impregnated by uraninite, have been found among large-porphyry granite of the Urtui pluton, Chita region that is a frame of the Strel'tsovka volcano-tectonic structure. Two generations of tourmaline are distinguished. Most individual crystals belong to the first generation attributed to "fluor-schorl"; tourmaline-II attributed to schorl occurs as thin rims on tourmaline-I. The major type of cation isomorphic substitution in both tourmalines is Fe²⁺ \rightarrow Mg. The Fe³⁺/Fe_{tot} value and Li content in the average sample are 2% and 80 ppm, respectively. High F content, comparatively high Li, low Fe³⁺/Fe_{tot} value, and character of cation isomorphic substitution indicates that tourmaline pertains to greisens. The combination of these features allows distinguishing greisen-type tourmaline-bearing rocks. The impregnated uranium mineralization in granite of the Urtui pluton, one of the probable source of uranium in economic U ore of the Strel'tsovka deposit, is suggested to be caused by greisenization and formation of quartz-tourmaline lenses.

Key words: schorl, «fluor-schorl», greisen, Urtui granitic pluton, Chita region.

Введение. Минералы группы турмалина, структурная формула которых может быть записана в виде $XY_3Z_6[T_6O_{18}](BO_3)_3V_3W$ [Hawthorne, Henry, 1999], характеризуются широкими вариациями изоморфных замещений. Турмалины развиты во многих типах месторождений, включая меднопорфировые, оловорудные (пегматитовые, грейзеновые, месторождения касситерит-силикатной формации и порфировые), золоторудные (плутоногенные, вулканогенно-плутоногенные), гидротермальные полиметаллические, тальковые и изумрудные. Изучению особенностей состава турмалина из конкретных месторождений посвящено много публикаций как отечественных, так и зарубежных исследователей. Можно ожидать, что различные условия формирования месторождений найдут отражение в химическом составе минералов группы турмалина. Ранее возможность этого была нами

¹ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра минералогии, доцент, *e-mail*: baksheev@geol.msu.ru

² Институт геологии рудных месторождений, минералогии, геохимии и петрографии РАН, ст. науч. с., канд. геол.-минер. н., *e-mail*: golub@igem.ru

³ Институт геологии рудных месторождений, минералогии, геохимии и петрографии РАН, вед. науч. с., докт. геол.-минер. н., *e-mail*: vpr2004@rambler.ru

⁴ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра минералогии, ст. науч. с., канд. геол.-минер. н., *e-mail*: vigasina@geol.msu.ru

⁵ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра петрологии, ст. науч. с., канд. геол.-минер. н., *e-mail*: yvo72@geol.msu.ru

⁶ Московский государственный университет имени М.В. Ломоносова, геологический факультет, кафедра минералогии, ст. науч. с., канд. геол.-минер. н., *e-mail*: bryzgalov@geol.msu.ru

⁷ Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 09-05-00697-а и 09-05-01135-а).

показана на примере медно- и олово-порфировых месторождений [Baksheev et al., 2009].

В статье рассмотрен ранее никем не изучавшийся турмалин из кварцевых линз из крупнопорфировых гранитов Уртуйского массива в обрамлении Стрельцовской вулканотектонической структуры (СВТС). С этой структурой связано крупнейшее в России Стрельцовское урановорудное поле. Результаты изотопного изучения гидротермальных образований на урановых месторождениях СВТС показали, что процессы предрудного гидротермального преобразования пород и последующего формирования промышленных урановых руд здесь проходили 143-135 млн лет назад, а одним из источников урана при формировании этих руд могла быть рассеянная урановая минерализация домезозойского возраста [Чернышев, Голубев, 1996]. В связи с этим следует отметить, что в гранитоидах Уртуйского массива в зонах развития турмалинкварцевых линз встречается рассеянная уранинитовая минерализация, возраст которой (770±35 млн лет, неопубликованные данные В.Н. Голубева) близок и в пределах аналитических погрешностей согласуется с изотопными датировками гранитоидов 804-784 млн лет [Голубев и др., 2010].

Цель работы — выяснить генезис турмалин-кварцевых линз на основе изучения химического состава турмалина, первичных флюидных включений в кварце и турмалине и получить характеристики одного из дорудных метасоматических процессов, ответственных за формирование рассеянной уранинитовой минерализации в докембрийское время.

При характеристике турмалина мы использовали электронно-зондовый микроанализ, электронную микроскопию, атомно-абсорбционную спектрометрию (ААС), инфракрасную (ИК) и мёссбауэровскую (ЯГР) спектроскопию, а также микротермометрический анализ флюидных включений.

Краткая геологическая характеристика. Уртуйский гранитный массив, расположенный примерно в 3 км на северо-запад от г. Краснокаменск (Читинская область) и занимающий площадь около 45 км², является северо-западным обрамлением Стрельцовской кальдеры (рис. 1), которая представляет собой кальдеру обрушения, ограниченную системой кольцевых сбросов. В геологическом строении СВТС выделяют породы двух структурных этажей — верхнего и нижнего [Ищукова и др., 1989].

Верхний структурный этаж сложен позднеюрскими—раннемеловыми вулканогенно-осадочными породами, а также средне-позднеюрскими малыми интрузивами кукульбейского комплекса и субвулканическими телами. Общая мощность толщи достигает 800—1000 м. Нижний структурный этаж представлен протерозойскими и раннепалеозойскими метаморфическими породами, рифейскими и палеозойскими гранитоидами. Метаморфиты представляют собой метаморфизованные в условиях амфиболитовой фации архей-раннепротерозойские осадочно-вулканогенные образования.

Бо́льшую часть площади фундамента СВТС и значительную площадь в ее обрамлении занимают гранитоиды. Процессы гранитообразования подразделяют на три основных этапа [Модников, Сычев, 1984; Ищукова, 1989; Ищукова и др., 1991].

Рис. 1. Схема геологического строения Стрельцовской вулканотектонической структуры. Составлена на основе геолого-структурной карты Южного Приаргунья [Ищукова, 2007], на врезке показано географическое положение района: 1 — архей-протерозойские метаморфические образования, плагиогнейсы, мигматиты; 2, 3 — комплексы гранитоидов: 2 — урулюнгуевский, 3 — ундинский; 4 — позднеюрские—раннемеловые вулканогенно-осадочные породы; 5 — тургинская свита (K₁tr), алевролиты с прослоями углей, гравелиты, песчаники, туфопесчаники; 6 — тектонические нарушения; 7 — границы Стрельцовской кальдеры (наложенный поздний этап проседания); 8 — участок отбора пробы турмалина

На первом этапе, начавшемся в раннем протерозое и завершившемся, вероятно, в рифее, образовались плагиомигматиты, разновидности диоритового комплекса, плагиограниты и плагиогранитогнейсы. Продукты второго этапа наиболее широко развиты в районе и представлены крупно- и гигантозернистыми порфиробластовыми гнейсовидными гранитами. Эти гранитоиды слагают крылья и сводовые части антиклинальных сооружений и встречаются в виде ксенолитов среди позднепалеозойских гранитов. Гранитоиды второго этапа относятся к урулюнгуевскому комплексу, и, согласно последним публикациям [Голубев и др., 2010], их формирование связано с раннебайкальским этапом геологического развития Центрально-Азиатского складчатого пояса. Гранитоиды третьего этапа (ундинский комплекс), слагающие центральные части сводовых поднятий, связаны с пермской активизацией и представлены среднезернистыми биотитовыми и мелкозернистыми порфировидными гранитами, биотит-амфиболовыми гранитами, порфиробластовыми гранодиоритами, диоритами и кварцевыми диоритами.

Гранитоиды Уртуйского гранитного массива сложены крупнопорфировыми гранитами и среднезернистыми лейкократовыми гранитами. Переходы между этими разновидностями не имеют резких границ. На современных геологических картах [Ищукова, 2007] гранитоиды этого массива обозначены как образования урулюнгуевского магматического комплекса.

В образцах крупнопорфировых гранитов размеры вкрапленников полевых шпатов достигают 4 см. Породы несут отчетливые признаки преобразования: микроклин пертитизирован, кварц гранулирован, по плагиоклазу (олигоклаз) развиваются светлые слюды (мусковит). В калиево-натриевом полевом шпате отмечается альбит, нередко образующий зерна призматического облика. Развитие альбита в калиево-натриевом полевом шпате носит пятнистый характер. Это предполагает, что преобразование калиево-натриевого полевого шпата сопровождалось не только сегрегацией, но и замещением альбитом. Биотит частично хлоритизирован. Отмечены случаи пересечения крупных зерен биотита прожилками микрочешуйчатого биотита. Зерна калиево-натриевого полевого шпата, плагиоклаза и кварца местами брекчированы, трещины залечены мелкокристаллическими флюоритом и биотитом. Некоторые трещины в калиево-натриевом полевом шпате выполнены светлой слюдой, в отдельных случаях в зернах минерала развита сеть тонких прожилков турмалина. Кроме того, в этих гранитах наблюдаются кварцевые линзы с крупными кристаллами турмалина. Акцессорные минералы представлены цирконом, апатитом и в меньшей степени сульфидами железа.

Для среднезернистых лейкократовых гранитов характерна гипидиоморфная структура: плагиоклаз идиоморфен по отношению к кварцу. В этих породах намного интенсивнее проявлены процессы преобразования. В калиево-натриевом полевом шпате отмечены новообразования призматических зерен альбита, в которых встречаются многочисленные игольчатые выделения апатита. Пертитизация калиево-натриевого полевого шпата носит пятнистый характер. Биотит в значительной степени перекристаллизован и частично замещен светлой слюдой. Эта слюда развивается и по плагиоклазу. Количество светлой слюды и биотита примерно одинаково. Основной акцессорный минерал в этих гранитах — циркон.

Методы исследования. Химический состав турмалина изучен на кафедре минералогии геологического факультета МГУ с помощью электронного микрозонда САМЕВАХ SX-50, а также на кафедре петрологии на сканирующем электронном микроскопе (СЭМ) Jeol JSM-6480LV, оборудованном энергодисперсионной приставкой Inca Energy-350.

Условия съемки на электронном микрозонде: ускоряющее напряжение 15 кВ, сила тока зонда на образце 30 нА, диаметр пучка зонда ~3 мкм. Были использованы следующие эталоны: роговая обманка (Si, Al, Ca, Mg, Fe), ортоклаз (K), альбит (Na), синтетический MgF₂ (F), пирофанит (Mn, Ti), ванадинит (V), Cr_2O_3 (Cr). Для процедуры коррекции взяты РАР-поправки.

Анализ турмалина на сканирующем электронном микроскопе выполнен при ускоряющем напряжении 15 кВ, силе тока $15 \pm 0,05$ нА и диаметре пучка зонда 3 мкм. Для процедуры коррекции использованы ZAF-поправки.

Изображения в обратнорассеянных электронах на СЭМ получены при ускоряющем напряжении 15 кВ и силе тока 14–16 нА.

Содержание Li в турмалине определено методом атомно-адсорбционной спектрометрии в ИГЕМ РАН (аналитик Л.К. Карташова) на спектрометре ААС (модель 220 FS фирмы «Varian»). Проба разложена путем сплавления с NH_4F в соотношении 1:2 в пользу реактива. Затем разложенную пробу обрабатывали HOOC—СООН (2%) для перевода в карбонатную форму. После высушивания остаток дважды обрабатывали 6н HCl и высушивали для удаления фторидов. Сухой остаток переводили в раствор HCl (1%), в котором и проводилось определение Li. Точность определения содержания Li в турмалине около 0,00001%.

Спектры ИК-поглощения турмалина получены с помощью Фурье-спектрометра ФСМ-1201 (кафедра минералогии геологического факультета МГУ). Измерения проводили в интервале волновых чисел от 400 до 4000 см⁻¹ со спектральным разрешением 4,0 см⁻¹; абсолютная ошибка калибровки шкалы волновых чисел составляла $\pm 0,1$ см⁻¹. Образцы для исследований готовили в виде суспензии минерального порошка в вазелиновом масле. Значения максимумов полос поглощения определяли по экспериментальному спектру поглощения и уточняли по графику функции второй производной. Математическая обработка спектра поглощения проводилась по программе OPUS Spectroscopy Software (vers. 6) с применением алгоритма сглаживания Савицкого—Голая [Savitzky, Golay, 1964]. Использование второй производной позволяет определять точки экстремумов исходной функции, применяется в тех случаях, когда полосы поглощения имеют сложный составной контур, маленькую интенсивность, сглаженный экстремум или значительное уширение.

ЯГР-спектры снимали на спектрометре MS-1104 Ет с источником ⁵⁷Со в матрице родия. Изомерный сдвиг определялся относительно α -Fe (МИСиС, аналитик В.В. Коровушкин). Для анализа использовали порошковые пробы с навеской 100 мг. Обработка мёссбауэровских спектров осуществлялась по программе Univem MS (РГУ, Ростов-на-Дону). Измерения проводили в диапазоне скорости ±3,5 мм/с с накоплением импульсов в 512 каналах.

Микротермометрические исследования флюидных включений проводили в секторе минераграфии ИГЕМ РАН с использованием измерительного комплекса, созданного на основе микротермокамеры ТНМSG-600 фирмы «Linkam» (Великобритания), микроскопа «Amplival» (Германия), снабженного набором длиннофокусных объективов, видеокамеры и управляющего компьютера. Солевой состав растворов определяли по температурам эвтектик [Борисенко, 1977]. Концентрация солей в углекислотно-водных включениях оценивалась по температуре плавления газгидратов [Collins, 1979], а давление — для гетерогенного углекислотно-водного флюида по пересечению изохоры и изотермы. Оценку концентрации солей и давления флюида проводили с использованием программы FLINCOR [Brown, 1989].

Результаты исследований. Пробы с турмалином отобраны из кварцевых линз среди крупнопорфировых гранитов в карьере строительного камня (Камень-2) на северо-восточном участке Уртуйского массива. Турмалин образует агрегаты крупных кристаллов серого и черного цвета. Длина индивидов в агрегатах достигает 20 см. При наблюдениях в оптический микроскоп видно, что кристаллы имеют зональное строение — буроватую центральную часть и синеватую краевую.

Данные электронной микроскопии и электроннозондового микроанализа свидетельствуют о том, что вдоль трещин кристаллы турмалина местами перекристаллизуются с образованием каймы более железистого турмалина второго зарождения (рис. 2). Кайма имеет зональное строение (рис. 2, а): внешняя зона содержит меньше Fe и Ca по сравнению с внутренней. Иногда в обломках кристаллов, попавших в трещину, наблюдаются отдельные перекристаллизованные участки, что обусловливает сложную пятнистую зональность этих выделений (рис. 2, б, в).

Из данных, приведенных в табл. 1, видно, что турмалин первого зарождения содержит меньше Са, больше вакансий в позиции *X*, а также меньше Fe,

4, что пережележеле-Кайма а зона
4 зона
енней.
рещианные по зокристаллы турмалина ворого зарождения (Tur-II), нарастающая вдоль трещины на крупные брекчированные кристаллы турмалина первого зарождения (Tur-I) (а); брекчированные кристаллы турмалина первого зарождения (Tur-I) (а); брекчированные кристаллы турмалина первого зарождения (Tur-I) (а); брекчированные кристаллов, попавшие в трещину, частично или полностью перекристаллизованы с образованием турмалина второго зарождения. Номера точек соответствуют номерам анализов в табл. 1. Фото в

отраженных электронах

Таблица 1

Химический состав (мас.%) турмалина из кварцевых линз Уртуйского гранитного массива

V	Номер анализа													
компонент	1	2	3	4	5	6	7	8	9	10	11	12	13	14
B ₂ O ₃	10,54	10,68	10,59	10,62	10,57	10,78	10,6	10,52	10,54	10,46	10,36	10,41	10,44	10,41
SiO ₂	33,90	34,40	33,64	33,54	33,52	34,45	34,38	33,56	33,76	34,20	33,81	33,64	33,30	33,35
TiO ₂	0,23	0,25	0,51	0,27	0,31	0,21	0,27	0,49	0,41	0,70	0,41	0,35	0,42	0,61
Al ₂ O ₃	35,43	36,09	34,80	35,51	34,98	36,53	35,82	33,76	34,96	32,08	31,64	32,25	32,33	32,02
FeO _{общ}	14,81	14,59	15,15	15,29	15,70	14,60	14,17	16,24	14,74	16,56	17,54	17,42	17,87	17,41
MnO	н.п.о.	н.п.о.	0,16	н.п.о.	н.п.о.	н.п.о.	0,14	н.п.о.	0,20	н.п.о.	н.п.о.	0,14	0,14	0,00
MgO	0,98	0,88	1,26	1,15	0,99	0,87	0,88	1,19	1,12	1,75	1,36	1,13	1,04	1,43
CaO	0,15	0,08	0,09	0,11	н.п.о.	н.п.о.	н.п.о.	0,10	0,12	0,33	0,81	0,82	0,71	0,76
K ₂ O	н.п.о.	0,07	н.п.о.	0,09	н.п.о.	0,07	0,07							
Na ₂ O	2,04	1,70	2,28	2,19	2,20	1,73	1,73	2,32	2,18	2,33	2,17	2,27	2,26	2,33
F	0,81	0,71	0,99	0,77	0,88	0,60	0,67	1,15	1,03	0,76	0,64	0,64	0,67	0,73
H ₂ O	2,98	3,07	2,96	3,11	3,09	3,17	3,06	2,93	2,86	3,10	3,10	3,05	3,13	3,05
2F = O	0,33	0,29	0,40	0,31	0,35	0,24	0,27	0,46	0,42	0,31	0,26	0,26	0,27	0,29
Сумма	96,58	96,81	96,54	96,69	96,26	96,57	96,28	96,36	96,41	96,83	96,35	96,28	96,14	96,25
Формула в расчете на 15 катионов														
В	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000
Si	5,800	5,847	5,794	5,748	5,779	5,859	5,863	5,825	5,814	5,897	5,892	5,878	5,835	5,835
Al ^T	0,200	0,153	0,206	0,252	0,221	0,141	0,137	0,175	0,186	0,103	0,108	0,122	0,165	0,165
Al^Z	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000	6,000
Al ^Y	0,686	0,770	0,526	0,594	0,559	0,797	0,788	0,401	0,610	0,177	0,146	0,223	0,179	0,136
Mg	0,241	0,213	0,309	0,280	0,243	0,208	0,214	0,293	0,276	0,433	0,341	0,281	0,259	0,355
Fe ²⁺	2,003	1,947	2,039	2,051	2,117	1,930	1,906	2,201	1,994	2,256	2,413	2,384	2,440	2,383
Fe ³⁺	0,041	0,040	0,042	0,041	0,043	0,039	0,039	0,045	0,041	0,046	0,049	0,049	0,050	0,049
Ti	0,028	0,030	0,063	0,033	0,038	0,026	0,033	0,060	0,051	0,088	0,051	0,044	0,052	0,077
Mn			0,022				0,020		0,028			0,019	0,019	
Сумма	2,999	3,000	3,001	2,999	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	2,999	3,000
Na	0,652	0,535	0,725	0,695	0,701	0,539	0,551	0,743	0,699	0,751	0,705	0,734	0,728	0,753
Ca	0,027	0,014	0,015	0,019				0,019	0,022	0,059	0,146	0,146	0,126	0,137
	0,321	0,436	0,260	0,268	0,299	0,461	0,449	0,239	0,280	0,190	0,149	0,120	0,131	0,095
К		0,015		0,018									0,015	0,015
Сумма	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
OH ^V	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000	3,000
OH ^W	0,285	0,338	0,246	0,400	0,387	0,406	0,347	0,230	0,152	0,433	0,473	0,398	0,485	0,400
0	0,290	0,297	0,242	0,202	0,158	0,286	0,306	0,171	0,309	0,166	0,187	0,264	0,165	0,215
F	0,425	0,365	0,512	0,398	0,455	0,308	0,347	0,599	0,539	0,401	0,340	0,338	0,350	0,385
Сумма	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
Fe _{общ}	2,045	1,987	2,081	2,092	2,160	1,969	1,945	2,246	2,035	2,302	2,462	2,432	2,490	2,432
Al _{общ}	6,886	6,923	6,731	6,846	6,780	6,938	6,925	6,576	6,796	6,280	6,254	6,345	6,344	6,300
Fe/(Fe+Mg)	0,89	0,90	0,87	0,88	0,90	0,90	0,90	0,88	0,88	0,84	0,88	0,90	0,91	0,87
Ca/(Ca+ Na)	0,04	0,03	0,02	0,03	0	0	0	0,02	0,03	0,07	0,17	0,16	0,15	0,15
□/(□+Na)	0,33	0,45	0,26	0,28	0,30	0,46	0,45	0,24	0,29	0,20	0,17	0,14	0,15	0,11

Примечание. Электронный микроскоп Jeol JSM-6480LV. Анализы 1–9 — турмалин первого зарождения, 10–14 — турмалин второго зарождения. Fe²⁺ и Fe³⁺ рассчитаны исходя из соотношения Fe³⁺/Fe_{общ} = 2% по данным ЯГР-спектроскопии. Содержание B_2O_3 рассчитано по стехиометрии.

Таблица 2

Параметры ИК-спектра турмалина из кварцевых линз Уртуйского массива

Тип группы	Волновое число,	Катионная конфигурация				
	см ⁻¹	YYY	TX			
	2620	$M^{2+}M^{2+}$ Al	Si ₆			
внутренняя ОН	3030	YZZ	<i>T</i> -05- <i>T</i>			
Внешняя	3567*	M ²⁺ AlAl	Si-O5-Si			
OH-	3548, плечо	M ²⁺ AlAl				
		Si-O5-Al				
	3528*, плечо	AlAlAl	Si-O5-Si			
	3474*	AlAlAl				
		Si-O5-Al				
	3398*, плечо	Н ₂ О адсорбированная				
		в трещинах				

* Средняя величина между волновыми числами, определенными по полученному ИК-спектру и рассчитанными по второй производной. Полосы поглощения приписаны согласно данным работы [Veličkov, 2002].

чем турмалин второго зарождения. Содержание фтора в турмалине обоих зарождений высокое и достигает 0,599 атома на формульную единицу (а.ф.е.).

Средний химический состав турмалина, образующего крупные кристаллы первого зарождения, отвечает формуле, рассчитанной на основе 15 катионов из 19 анализов (электронный микрозонд и электронный микроскоп) с учетом данных ЯГР-спектроскопии: $(Na_{0,649}\Box_{0,334}Ca_{0,013}K_{0,004})_{\Sigma1,000}(Al_{1,621}Fe_{1,034}^{2+}Mg_{0,253}Fe_{0,044}^{3+}Ti_{0,040}Mn_{0,008})_{\Sigma3,000}(Al_{5,016}Fe_{0,984}^{2+})_{\Sigma6,000}[Si_{5,814}Al_{0,186}O_{18}]$ (BO₃)(OH)₃(F_{0.438}OH_{0.311}O_{0.251})_{\Sigma1,000}.

Средний химический состав турмалина второго зарождения отвечает формуле, рассчитанной из пяти электронно-зондовых анализов также с учетом ре-

зультатов ЯГР-спектроскопии на основе 15 катионов: (Na_{0,735} $\Box_{0,136}$ Ca_{0,123}K_{0,006})_{Σ 1,000} (Al_{1,329}Fe²⁺_{1,215}Mg_{0,334}Fe³⁺_{0,052} Ti_{0,062}Mn_{0,008})_{Σ 3,000} (Al_{4,843}Fe²⁺_{1,157})_{Σ 6,000}[Si_{5,814}Al_{0,133}O₁₈] (OH)₃(OH_{0.435}F_{0.363}O_{0.202})_{Σ 1,000.}

Содержание Li в усредненной пробе турмалина составляет 80 г/т.

ИК- и ЯГР-спектроскопия. Спектр поглощения образца Ка-2-9 в диапазоне 3200-3900 см⁻¹, соответствующем валентным колебаниям ОН-групп. представлен на рис. 3 и в табл. 2. В спектре минерала зарегистрирована полоса поглощения сложной формы, состоящая из 6 компонентов. В соответствии с данными работы [Veličkov, 2002] к валентным колебаниям «внутренней» ОН-группы отнесена полоса 3630 см⁻¹ с координирующей катионной конфигурацией *YYY-O*1- $H/T/X \rightarrow M^{2+}M^{2+}$ Al/Si₆/. К валентным колебаниям «внешних» ОН-групп отнесены 4 компонента: 3567 см^{-1} — координирующая катионная конфигурация $YZZ-O3-H/T-O5-T \rightarrow M^{2+}$ AlAl/Si-O5-Si; 3548 cm^{-1} (плечо) — катионная конфигурация M^{2+} AlAl/Si— $O5-AI; 3528 \text{ см}^{-1}$ (плечо) — катионная конфигурация M^{2+} AlAl/Si-O5-Si; 3474 см $^{-1}$ — AlAlAl/Si-O5-Al. Поглощение на частоте около 3398 см^{-1} (плечо), вероятно, следует приписать валентным колебаниям ОНгрупп воды в молекулярной форме, присутствующей в исследуемом минерале в виде адсорбированной воды в трещинах, поскольку в полном ИК-спектре образца в области, соответствующей деформационным колебаниям молекул воды (1620 см $^{-1}$), зарегистрирована слабая полоса поглошения.

ЯГР-спектр усредненной пробы турмалина (рис. 4) состоит из четырех дублетов. Один дублет (δ 1,10 мм/с; Δ 2,33 мм/с; площадь 50,1%) соответствует Fe²⁺ в позиции *Y*; два дублета (1,10; 2,09; 24,4)

Рис. 3. ИК-спектр водной области усредненной пробы турмалина. На врезке показан график второй производной

Каналы N, имп Fe^{3+} Fe²⁺ Р, от 1 440 000 1,00 1 420 000 0,98 1 400 000 0.96 1 380 000 1 360 000 0,94 -3.0-2,0-1,00,0 1,0 2,0 V, мм/с 3,0

Рис. 5. Первичные флюидные включения в турмалине (а, б) и кварце (в-е) из пробы Ка-2-9: а-г – углекислотно-водные включения типа 1 (а, в — +20 °C; б, г — +10 °C); д, е — существенно газовое включение типа 2 с углекислотой (д − +20 °C, е − 0 °C)

и (1,09; 1,27; 23,3) отвечают Fe²⁺ в позиции *Z*, и дублет (0,29, 0,73, 2,1) — Fe³⁺ в позиции Y[Fuchs et al., 1995]. Отношение Fe³⁺/Fe_{обш} в минерале низкое и составляет 2%.

Флюидные включения. При визуальном изучении двусторонне полированных пластин в кварце и турмалине из пробы обнаружены многочисленные флюидные включения размером 2-25 мкм, имеющие форму отрицательных кристаллов или неправильную форму. Часть включений равномерно распределена по объему кварца и турмалина и отнесена нами к первичным включениям, которые и были исследованы микротермометрическими методами.

По фазовому составу можно выделить два типа первичных флюидных включений (рис. 5): 1) двух- или трехфазовые (при комнатной температуре) Н₂О-СО₂ включения с большим (30-35 об.%) газовым пузырьком (встречены в кварце и турмалине); 2) сушественно газовые включения, двух- или трехфазовые (встречены только в кварце). Газовые включения захватывались синхронно с углекислотно-водными, поскольку приурочены к единым группам включений и свидетельствуют о гетерогенном состоянии рудообразующего флюида (вскипании).

Температура гомогенизации первичных H₂O-CO₂ включений типа 1 в кварце составляет 364-343 °С, концентрация солей в растворе 6,3-5,2 мас.%-экв. NaCl, а углекислоты 6,4-6,3 моль/кг раствора. Судя по значениям температуры эвтектики (-31...-32 °C), в растворе преобладали хлориды натрия и магния. Углекислота в первичных существенно газовых включениях типа 2 гомогенизируется в жидкость при температуре +19,5...+27,9 °C, а ее температура плавления изменяется от -59,4 до -57,8 °C, что в той или иной степени отличается от температуры плавления чистой CO₂ (-56,6 °C) и свидетельствует о примеси низкокипящих газов. Оценка давления по этим двум типам сингенетичных включений составляет 1830-1240 бар.

Температура гомогенизации первичных углекислотно-водных включений в турмалине варьирует от 358 до 337 °C, концентрация солей в растворе — от 8,4 до 5,8 мас.%-экв. NaCl, а углекислоты — от 3,9 до 2,5 моль/кг раствора. Судя по температурам эвтектики (-35...-33 °С), в растворе также преобладали хлориды натрия и магния.

Обсуждение результатов. Поскольку изученный турмалин характеризуется низким содержанием Са и относительно высокой долей вакансии в позиции Х, то представляется, что наиболее удобной для первой приблизительной классификации будет диаграмма в координатах $Fe_{obm}/(Fe_{obm}+Mg)$ и $\Box/(\Box+Na)$ (\Box = вакансия в позиции Х) (рис. 6). Эта диаграмма не позволяет различить OH-, F- и О-содержащие тур-

малины. Доказано, что существование в природе «фтор-магнезиофойтита» и «фтор-фойтита» невозможно. Поэтому поля магнезиофойтита и фойтита можно рассматривать соответственно как поля «окси-магнезиофойтита» и «окси-фойтита», а поля дравита и шерла — как «окси»- и «фтор-дравита» и «окси»- и «фтор-шерла» соответственно. Анализ диаграммы свидетельствует о том, что изученные турмалины предварительно можно классифицировать как промежуточные члены ряда шерл («фторшерл»-«окси-шерл»)-фойтит («окси-фойтит»). При этом хорошо видно, что турмалин первого зарождения характеризуется большей долей вакансии в позиции Х, чем турмалин второго зарождения. Треугольная диаграмма О—F—OH в позиции *W* (рис. 7) показывает, что изученный турмалин обоих зарождений относится к F- и OH-типам. Поэтому с учетом диаграммы, приведенной на рис. 6, турмалин можно классифицировать как промежуточный член ряда шерл—«фтор-шерл»—фойтит, при этом турмалин первого зарождения относится в основном к «фторшерлу», а второго — к шерлу. Наличие «фтор-шерла» с существенной долей вакансии в позиции Х указывает, с одной стороны, на повышенную активность фтора, а с другой — на пониженную величину рН при формировании минерала.

Весьма высокое содержание фтора (0,760 а.ф.е.) зафиксировано в шерле из пегматитов Граштейна (Grasstein) в Италии [Ertl et al., 2006]; в шерле из пегматитов Коктокая (Китай) содержание фтора составляет 0,162-0,285 а.ф.е. [Zhang et al., 2008]. Существенная концентрация фтора также отмечена в шерле грейзеновых месторождений: до 0,693 а.ф.е. (Вальдефлорес, Испания [Pesquera et al., 1999]); 0,589 а.ф.е. (рудник Олд Бим, Юго-Западная Англия [Manning, 1991]); до 0,820 а.ф.е. (Юньлон, Китай [Yu, Jiang, 2003]). Кроме того, повышенное содержание фтора установлено в раннем турмалине олово-порфировых месторождений Чукотки, Россия [Baksheev et al., 2009].

Вместе с тем шерл пегматитов характеризуется относительно высоким отношением Fe³⁺/Fe_{обш}, которое составляет 17% (Граштейн, Италия) [Ertl et al., 2006], 11–18% (Коктокай, Китай) [Zhang et al., 2008]. В турмалине олово-порфировых месторождений Чукотки это отношение составляет 19-25% [Baksheev et al., 2009]. В то же время в шерле из грейзеновых месторождений величина Fe³⁺/Fe_{обш} редко превышает 5% [Korovushkin et al., 1979].

Таким образом, отношение Fe³⁺/Fe_{обш} может служить критерием различия фторсодержащего шерла из пегматитовых, грейзеновых и олово-порфировых месторождений.

Содержание Li в изученном турмалине близко к таковому в турмалине слюдитов из Изумрудных Копей Урала [Baksheev et al., 2009], образование которых многие связывают с грейзеновым процессом. В то же время содержание Li в шерле из пегматитов

Mg-фойтит

"Окси-Mg-фойтит"

1.0

0.8

0,6

Рис. 6. Соотношение $Fe_{obill}/(Fe_{obill}+Mg)$ и $\Box/(\Box+Na)$ (\Box = вакансия в позиции X) в турмалине кварцевых линз Уртуйского массива. Учтены данные, представленные в табл. 1, и результаты анализов

Рис. 7. Соотношение O^{2-} , F^- и OH^- в позиции V турмалина [Hawthorne, Henry, 1999] из кварцевых линз Уртуйского массива. Условные обозначения см. на рис. 6. Учтены данные, представленные в табл. 1, и результаты анализов с электронного микрозонда

может быть существенно выше и достигать нескольких кг/т [Aurisicchio et al., 1999], а в турмалинах из других типов месторождений не превышает 50 г/т [Baksheev et al., 2009].

На графике соотношения содержания Fe и Mg (рис. 8, а) видно, что оба типа зарождения турмалина характеризуются изоморфизмом $Fe^{2+} \rightarrow Mg$, и все фигуративные точки составов расположены ниже линии шерл-дравит, что косвенно свидетельствует о незна-

турмалин-І

◊ турмалин-II

Фойтит

"Окси-фойтит"

0,8

1,0

Рис. 8. Соотношение Mg и Fe_{общ} в турмалине: a — кварцевых линз Уртуйского массива; δ — грейзеновых месторождений; s — пегматитовых месторождений. Условные обозначения см. на рис. 6. Учтены данные, представленные в табл. 1, и результаты анализов с электронного микрозонда

чительном содержании Fe³⁺ в минерале, что полностью согласуется с данными ЯГР-спектроскопии. Идентичная картина наблюдается для турмалина из стандартных грейзеновых месторождений (рис. 8, δ). В то же время для шерла из пегматитов нет какоголибо одного преобладающего типа изоморфного замещения (рис. 8, ϵ).

Диаграмма (рис. 9, *a*) показывает, что турмалин первого зарождения из кварцевых линз Уртуйского массива характеризуется изоморфным замещением Na + (Fe, Mg) $\rightarrow \Box$ + Al, а турмалин второго зарождения — Ca + 2(Mg, Fe) + OH \rightarrow Na + 2Al + O. Похожее поведение демонстрируют турмалины из типичных грейзеновых месторождений (рис. 9, *б*).

В работах, посвященных изучению флюидных включений в минералах грейзеновых месторождений [Haapala, Kinnunen, 1979; Рейф, Бажеев, 1982; Наумов и др., 1983; Marignac, Zouhair, 1992; Ступак, 2010], показано, что минералообразующие растворы представляли собой флюиды со средней и низкой соленостью (от 3 до 17 мас.%-экв. NaCl), с высокими значениями концентрации растворенной углекислоты, температура гомогенизации включений составляет 260–390 °С. Эти данные полностью согласуются с результатами исследования включений в кварце и турмалине из кварцевых линз Уртуйского гранитного массива.

Заключение. Высокое содержание фтора, относительно высокое содержание Li, низкое отношение $Fe^{3+}/Fe_{o6щ}$, не превышающее 10%, и характер изоморфных замещений ($Fe^{2+} \rightarrow Mg$) указывают на принадлежность турмалина из кварцевых линз Уртуйского гранитного массива к грейзеновым образованиям. Сочетание указанных признаков можно использовать для отличия турмалинсодержащих метасоматитов грейзеновой формации от других типов турмалинсодержащих метасоматических образований. Формирование рассеянной урановой минерализации в гранитоидах Уртуйского массива — одного из возможных источников урана промышленных урановых руд — связано с процессом грейзенизации и формированием кварц-турмалиновых линз.

Авторы благодарят В.В. Коровушкина за проведение ЯГР-исследований турмалина и Л.К. Карташову за выполнение атомно-адсорбционного анализа.

СПИСОК ЛИТЕРАТУРЫ

Борисенко А.С. Изучение солевого состава газово-жидких включений в минералах методом криометрии // Геология и геофизика. 1977. № 8. С. 16–27.

Голубев В.Н., Чернышев И.В., Котов А.Б. и др. Стрельцовский урановорудный район: изотопно-геохронологическая (U—Pb, Rb—Sr и Sm—Nd) характеристика гранитоидов и их место в истории формирования урановых месторождений // Геология рудных месторождений. 2010. Т. 52, № 6. С. 553–571.

Ищукова Л.П. Геологическое строение Южного Приаргунья в Восточном Забайкалье // Изв. АН СССР. Сер. геол. 1989. № 8. С. 102–118.

Рис. 9. Соотношение Al/(Al+Fe_{общ}+Mg) и Na (а.ф.е.) в турмалине: *а* — из кварцевых линз Уртуйского массива; *б* — из грейзеновых месторождений. Учтены данные, представленные в табл. 1, и результаты анализов с электронного микрозонда

Ищукова Л.П. Урановые месторождения Стрельцовского рудного поля в Забайкалье. Иркутск: Типография «Глазковская», 2007.

Ищукова Л.П., Модников И.С., Сычев И.В. Урановые рудообразующие системы областей континентального вулканизма // Геология рудных месторождений. 1991. Т. 33, № 3. С. 16–25.

Модников И.С., Сычев И.В. Условия формирования оруденения в вулканических депрессиях проседания // Геология рудных месторождений. 1984. Т. 26, № 1. С. 31–41.

Наумов В.Б., Иванова Г.Ф., Шапенко В.В. Генетические аспекты формирования редкометального оруденения //

Генетические модели эндогенных рудных формаций. Т. 2. Новосибирск: Наука, 1983. С. 48–56.

Рейф Ф.Г., Бажеев Е.Д. Магматический процесс и вольфрамовое оруденение. Новосибирск: Наука, 1982. 158 с.

Ступак Д.Ф. Геологическое строение и условия формирования Шумиловского вольфрамового месторождения (Забайкалье, Россия): Автореф. канд. дис. М., 2010. 25 с.

Чернышев И.В., Голубев В.Н. Изотопная геохронология процессов формирования месторождения Стрельцовское (Восточное Забайкалье) — крупнейшего уранового месторождения России // Геохимия. 1996. № 10. С. 924–937.

Aurisicchio C., Ottolini L., Pezzota F. Electron- and ionmicroprobe analyses, and genetic inferences of tourmalines of the foitite-schorl solid solution, Elba Island (Italy) // Eur. J. Mineral. 1999. Vol. 11. P. 217–225.

Baksheev I., Prokof'ev V., Ustinov V., Zaraisky G. Typomorphic features of tourmaline from some types of hydrothermal deposits // 33 IGC. Abstract. 2009. URL: www.cprm.gob. br/33IGC/1204319.html

Brown P. FLINCOR: a computer program for the reduction and investigation of fluid inclusion data // Amer. Mineralogist. 1989. Vol. 74. P. 1390–1393.

Collins P.L.P. Gas hydrates in CO_2 -bearing fluid inclusions and the use of freezing data for estimation of salinity // Econ. Geol. 1979. Vol. 74. P. 1435–1444.

Ertl A., Kolitsch U., Prowatke S. et al. The F-analogue of schorl from Grasstein, Trentino — South Tyrol, Italy: crystal structure and chemistry // Eur. J. Mineral. 2006. Vol. 18. P. 583–588.

Fuchs Y., Lagache M., Linares J. et al. Mössbauer and optical spectrometry of selected schorl-dravite tourmalines // Hyperfine Interactions. 1995. Vol. 96. P. 245–258.

Haapala I., Kinnunen K. Fluid inclusions in cassiterite and beryl in greisen veins in the Eurajoki Stock, southwestern Finland // Econ. Geol. 1979. Vol. 74. P. 1231–1238.

Hawthorne F.C., Henry D.J. Classification of the minerals of the tourmaline group // Eur. J. Mineral. 1999. Vol. 11. P. 201–215.

Korovushkin V.V., Kuzmin V.I., Belov V.F. Mössbauer studies of structural features in tourmaline of various genesis // Phys. Chem. Minerals. 1979. Vol. 4. P. 209–220.

Manning D.A.C. Chemical variation in tourmalines from south-west England // Proc. Usher Soc. 1991. Vol. 7. P. 327–332.

Marignac C., Zouhair M. Fluid evolution in an unmineralized greisen-tourmaline system in the Ment granite (central Morocco): a fluid-inclusion study // Eur. J. Mineral. 1992. Vol. 4. P. 949–964.

Pesquera A., Torres-Ruiz J., Gil-Crespo P.P., Velilla N. Chemistry and genetic implications of tourmaline and Li—F— Cs micas from the Valdeflores area (Cáceres, Spain) // Amer. Mineral. 1999. Vol. 84. P. 55–69.

Savitzky A., Golay M.J.E. Smoothing and differentiation of data by simplified least squares procedures // Analytical Chemistry. 1964. Vol. 36. N 8. P. 1627–1639. doi:10.1021/ac60214a047

Veličkov B. Kristallchemie von Fe, Mg-Turmalinen: Synthese und spektroskopische Untersuchungen vorgelegt. Unpub. PhD thesis. Berlin: Technischen Universität, 2002. 175 p.

Yu J.-M., Jiang S.-Y. Chemical composition of tourmaline from the Yunlong tin deposit, Yunnan, China: implications for ore genesis and mineral exploration // Mineral. Petrol. 2003. Vol. 77, N 1–2. P. 67–84.

Zhang A., Wang R., Li Yi. et al. Tourmalines from the Koktokay No. 3 pegmatite, Altai, NW China: spectroscopic characterization and relationships with the pegmatite evolution // Eur. J. Mineral. 2008. Vol. 20. P. 143–154.

Поступила в редакцию 22.03.2011