УДК 552.321.1 (571.56) © В.А.Трунилина, С.П.Роев, 2017

Чалбинский рудно-магматический узел (Верхояно-Колымская орогенная область)

В.А.ТРУНИЛИНА, С.П.РОЕВ (Институт геологии алмаза и благородных металлов Сибирского отделения Российской академии наук (ИГАБМ СО РАН); 677007, г. Якутск, проспект Ленина, д. 39)

Рассматриваются особенности минерального и химического составов гранитов Чалбинской группы, локализованных в Инъяли-Дебинском синклинории Верхояно-Колымских мезозоид и сопровождающихся олово-редкометалльным оруденением промышленного масштаба. Установлена принадлежность их к промежуточному между А- и S-типу гранитов позднепосторогенного этапа эволюции мезозоид. Проведено сопоставление с гранитами Депутатского массива, с которым ассоциирует уникальное по масштабу оловорудное месторождение. Высказано предположение о том, что причиной различия типов и масштабов оруденения этих двух рудно-магматических узлов является интенсивное проявление до- и постгранитного магматизма мантийной природы – источника дополнительного тепла и флюидов – в Депутатском поле и практически полное отсутствие таких производных в Чалбинском.

Ключевые слова: граниты, типоморфизм минералов, химический состав, субстраты магмогенерации, рудоносность.

Трунилина Вера Аркадьевна Роев Сергей Прокопьевич

v.a.trunilina@diamond.ysn.ru s.p.roev@diamond.ysn.ru

The Chalba ore-magmatic cluster (Verkhoyansk-Kolyma orogenic region)

V.A.TRUNILINA, S.P.ROEV

The paper discusses specific features of mineral and chemical composition of granites from the Chalba Group, which are located within the Inyali-Debin synclinorium of the Verkhoyansk-Kolyma Mesozoides. The granites have associated mid-sized tin-rare metal mineralization. They are assigned to an intermediate type between A and S types of granites of the late- and post-orogenic stage in the evolution of the Mesozoides. Comparison is made between them and the granites from the Deputatsky massif hosting a cassiterite-sulfate-sulfide deposit of unique size. It has been proposed that differences in the type and extent of mineralization between the two ore-magmatic clusters are due to intense manifestation of pre- and post-granite magmatism of the mantle origin in the Deputatsky field, which led to additional supply of heat and fluids into it, while the Chalba rocks did not undergo such magmatism.

Key words: granites, typomorphic features of minerals, chemical composition, magma-generating substrata, ore content.

Программа социально-экономического развития Республики Саха (Якутия) на период до 2025 г. и основные направления до 2030 г. включает восстановление оловодобывающей промышленности и ее дальнейшее развитие, что предусматривает не только открытие новых месторождений, но и реанимацию уже известных. К таковым можно отнести группу месторождений и рудопроявлений олова с сопутствующими вольфрамом, танталом и ниобием, связанных с гранитами Чалбинской группы массивов. Первые сведения об этих объектах относятся к 1930-м годам [7], а изучение их проходило в основном в 1970-е годы в процессе геологических съемок различного масштаба (А.Н.Вишневский, 1969–1973; Н.Е.Новиков, 1972–1975 и др.) и специализированных исследований (В.А.Трунилина, Я.В.Яковлев, 1969, 1972). Учитывая вновь появившийся интерес к оловоносным гранитоидам, представляется актуальным рассмотреть специфику их с новых позиций, чему и посвящена данная статья.

Гранитные массивы Чалбинской группы локализованы в северной части Инъяли-Дебинского синклинория Верхояно-Колымских мезозоид и образуют цепочку, вытянутую в субширотном направлении (рис. 1). С востока на запад уменьшаются площади выходов и степень их эродированности. Максимально вскрытый Чалбинский массив имеет площадь около 70 км², минимально эродированный Кыарагасский – около 2 км². К эндо- и экзоконтактам Кере-Юряхского массива

Рис. 1. Геологическая карта Чалбинского массива. По материалам А.Н.Вишневского и Р.И.Вишневской:

1 – четвертичные отложения; 2–4 – верхняя юра: 2 – оксфорд–киммериджский ярусы: дациты, андезиты, базальты и их туфы, алевролиты (J₃*o*–*km*), 3 – оксфордский ярус: песчаники, алевролиты и аргиллиты (J₂*o*), 4 – келловейский ярус: песчаники, алевролиты (J₂*k*); 5–7 – средняя юра: 5 – батский ярус: песчаники, алевролиты, аргиллиты (J₂*b*), 6 – байосский ярус: алевролиты, песчаники (J₂*b*), 7 – ааленский ярус: песчаники, алевролиты (J₂*a*); 8–9 – нижняя юра: 8 – верхняя часть: алевролиты, аргиллиты, редкие пласты песчанико (J₁³), 9 – нижняя и средняя части: алевролиты, песчаники (J₁¹⁺²); 10–14 – интрузивные и субвулканические образования: 10 – биотитовые и двуслюдяные граниты (γ K₁): Ч – Чалбинский и КЮ – Кере-Юряхский массивы, 11 – гранит-порфиры (γ πK₁), 12 – диоритовые порфириты (δ πK₁) и диабазы (β K₁), субвулканические тела и дайки: 13 –андезитов (α J₃) и 14 – риолитов (λ J₃) и дацитов (ξ J₃); 15 – контактовые роговики; 16 – вулканические и туфогенные породы; 17 – границы между разновозрастными образованиями, достоверные и предполагаемые; 20 – тектонические нарушения, скрытые под более молодыми образованиями; 21 – долгоживущие разломы; 22 – долгоживущие разломы, скрытые под более молодыми образованиями; 23 – взбросы; 24 – месторождение касситерит-кварцевой формации с вольфрамитом; 25 – россыпи с вольфрамитом и касситеритом

приурочено одноименное месторождение кварцевого типа касситерит-(вольфрамит)-кварцевой формации (рис. 2); с Чалбинским массивом ассоциируют рудопроявления того же типа и россыпи касситерита в долинах р. Чалба и ее притоков (см. рисунки 1 и 2). Рудные тела представлены кварцевыми жилами с касситеритом, вольфрамитом, мелкой вкрапленностью сульфидов и слюдисто-кварцевыми грейзенами с турмалином, апатитом, топазом, касситеритом, вольфрамитом, арсенопиритом [11]. Мощность рудных тел до 0,4 м, протяженность до 100 м. В южном контакте Кыарагасского массива локализовано одноименное рудопроявление сульфидно-кварцевого типа той же рудной формации – прожилковые зоны и маломощные (первые сантиметры) жилы протяженностью до 10–15 м, рассекающие грейзенизированные граниты и роговики. В составе жил Я.В.Яковлевым [11] установлены три минеральные ассоциации: касситерит-шеелит-кварцевая, сфалерит-пирротиновая и сульфидно-карбонатная. Главные рудные минералы – касситерит, шеелит и вольфрамит.

Петрография и минералогия. Выходы массивов имеют куполовидную форму, осложненную многочисленными апофизами. Контакты их рассекают вмещающие терригенные толщи юры под углами 20°–70°. Изотопный ⁴⁰Ar–³⁹Ar возраст гранитов 134–137 млн. лет. К-Ar датировки дают большой разброс значений

Рис. 2. Схематическая геологическая карта Кере-Юряхского рудного узла [11]:

1 – байосский и батский ярусы средней юры; 2 – грейзенизированные граниты; 3 – двуслюдяные граниты; 4 – дайки мелкозернистых порфировидных гранитов и аплитов; 5 – дайки микродиоритов; 6 – ореол контактового метаморфизма; 7 – биотитизированные граниты; 8 – ось антиклинали; 9 – тектонические нарушения; 10 – фациальная граница; 11 – граница зоны слабого оруденения; 12 – граница зоны интенсивного оруденения; 13 – контур участка с максимальным оруденением; 14 – россыпь касситерита и вольфрамита; массивы: КЮ – Кере-Юряхский и Кг – Кыарагасский

(156–96 млн. лет) при среднем по 20 определениям – 125 млн. лет. Петрография массивов детально изучена авторами ранее [11].

Массивы сложены среднезернистыми двуслюдяными гранитами, переходящими в эндоконтактах в мелкозернистые порфировидные граниты. Немногочисленные дайки мелкозернистых лейкогранитов, аплитов, аплит-пегматитов развиты в пределах выходов гранитов и их экзоконтактовых ореолов. Мощность даек 0,2–0,5 м, протяженность до 10 м. Догранитоидный магматизм представлен единственной дайкой микродиоритов, срезанной южным контактом Кере-Юряхского массива.

Граниты главных фаций массивные, гипидиоморфнозернистые. Плагиоклаз пород неотчетливо зональный, с составом от 25–28% *ап* в центре и до 10–15% *ап* по периферии, с единичными корродированными реститовыми включениями андезин-лабрадора. Калиевый полевой шпат – промежуточный ортоклаз и микроклин с 2V_{Np}=62°-76°. Кварц образует ксеноморфные зерна в интерстициях полевых шпатов и гранобластовые мономинеральные скопления. Биотит начинает кристаллизоваться несколько позже плагиоклаза вместе с его периферическими зонами, в которых встречен в виде включений, и продолжает вместе с калишпатом и кварцем.

Граниты эндоконтактовых зон мелкозернистые, порфировидные, с выделениями всех породообразующих минералов в аллотриоморфнозернистой основной массе. Плагиоклаз здесь имеет более четкую зональность и состав от 30% *ап* в центре выделений до 8–10% *ап* в основной массе. Биотит образует идиоморфные вкрапленники, переполненные включениями акцессориев, шлировые скопления и включения в центре выделений плагиоклаза. Калиевый полевой шпат вкрапленников – высокий ортоклаз с 2V_{NP}=44°–58°, основной массы – промежуточный – до низкого ортоклаз и микроклин.

Типоморфные особенности биотитов отражены на рис. 3. Ранняя его генерация имеет состав Fe-биотита (f 65,1–72,1%); поздняя – сидерофиллита (f 73,4–81,2%). В этом направлении в биотите возрастают средние содержания F (1,37–>1,94%), Li₂O (0,33–>0,56%),

Рис. 3. Типоморфные особенности составов биотитов гранитов:

1 – раннемагматический биотит; 2 – поздне- и 3 – послемагматический биотит чалбинских гранитов; 4 – ранне- и 5 – позднемагматический биотит гранитов главной фации Депутатского массива; 6 – биотит гранитов глубоких горизонтов гранитов Депутатского массива; A – окислительно-восстановительный режим кристаллизации биотитов [10]: Ni–NiO, FeSiO₄–Fe₃O₄–SiO₂ – линии буферных равновесий, 1000°–500°C – температуры кристаллизации биотитов, log fO_2 – активность кислорода; Б – соотношение фтористости и магнезиальности биотитов: Д – поле составов биотитов гранитов Депутатского массива; поля диаграммы – биотиты гранитов [13]: I – высокомагнезиальных высокофтористых, II – высокомагнезиальных среднефтористых, III – высокомагнезиальных низкофтористых, IV – магнезиально-железистых высокофтористых, V – железистых высокофтористых, WC – слабо-, MC – средне-, SC – сильно контаминированных, SCR – сильно контаминированных и востановленных, SCSR – сильно контаминированных и сильно восстановленных; В – соотношение железистости, глиноземистости и фтористости биотитов: F – железистость, L – глиноземистость, OH/F – отношение гидроксильной группы к фтору в составе биотитов; стандартные типы гранитоидов [3]: I – мантийно-коровые островных дуг, М – мантийные, задуговых бассейнов, S – коровые и мантийно-коровые коллизионных обстановок, SH – постколлизионные шошонитовые, A – анорогенных обстановок; Г – соотношение TiO₂–Al₂O₃ в биотитах: поля составов биотитов гранитоидов [14]: I – абиссальных, II – мезоабиссальных, III – гипабиссальных, IV – приповерхностных Rb_2O (0,11–>0,2%), Cs_2O (0,01–>0,03%), что говорит о накоплении летучих в остаточном расплаве. Обе генерации кристаллизовались в восстановительных условиях буфера $FeSiO_4 - Fe_3O_4 - SiO_2$ при температурах 760°–700°С и по составу отвечают биотитам железистых высокофтористых сильно контаминированных и сильно восстановленных гранитов А-типа. Обе генерации характеризуются высокой глиноземистостью (al*=24,4–27% – для ранней генерации и 27,6–30,1% – для поздней) и по соотношениям TiO_2 – Al_2O_3 соответствуют биотитам абиссальных гранитов, что не согласуется с имеющимися данными о гипабиссальном уровне становления рассматриваемых массивов.

Лейкограниты, мелкозернистые и аплитовидные граниты жильной фации отличаются от гранитов главных фаций структурами, почти полным отсутствием биотита, обилием акцессориев, особенно в аплит-пегматитах, где в аплитовой основной массе развиваются крупнозернистые блоки пегматоидного строения.

В акцессорной фракции гранитов установлены: марганцовистый ильменит (MnO до 8%), циркон, F-OHапатит, спессартин-альмандин (*spess* до 22%) и пиропальмандин (py<10%), турмалин, топаз, флюорит, монтебразит, триплит, колумбит, ортит, касситерит, рутил, силлиманит, андалузит, пирит, арсенопирит. В альбитизированных аплит-пегматитах определены также колумбит и берилл.

Для всех массивов и даек характерно интенсивное проявление постмагматических процессов с последовательным развитием крупных порфиробластов микроклина, альбитизации полевых шпатов и площадной грейзенизации. Последняя приводит к образованию мусковит-турмалин-кварцевых, апатит-мусковит-кварцевых, апатит-топаз-мусковитовых агрегатов и неравномерно охватывает практически весь вскрытый объем выходов гранитов, усиливаясь в их апикальных частях вследствие интенсивного проявления эманационной дифференциации. В пологих западных апофизах Чалбинского массива и в эндоконтактовой зоне Кере-Юряхского граниты вдоль серии сближенных трещин и по контакту с вмещающими породами интенсивно биотитизированы (до 40% биотита). Постмагматический биотит по составу близок раннемагматическому (al* 23-28%, f 65-69%, среднее содержание (в %): F 1,37, Li₂O 0,27, Rb₂O 0,14, Cs₂O 0,01) и насыщен включениями апатита и рудных минералов. Авторы связывают его образование с поступлением флюидов из нижних горизонтов магматических камер.

Вдоль зон крупных тектонических нарушений (преимущественно в Кере-Юряхском массиве) развиты более поздние трещинные грейзены и кварцевые, мусковит-кварцевые, кварц-арсенопиритовые прожилки с вольфрамитом и касситеритом. Локальная грейзенизация накладывается на породы с различными стадиями площадных метасоматических изменений, проявляется после них и независимо от них. В центре жил наблюдается мономинеральный кварцевый грейзен, к которому примыкает мусковит-кварцевая зона с обильными апатитом и топазом. Завершается процесс локальной грейзенизации развитием рассеянной сульфидной вкрапленности. Светлые слюды слабо грейзенизированных разностей представлены литиевым мусковитом, грейзенов – лепидолитом и циннвальдитом.

В альбитизированных аплит-пегматитах рудопроявления Рябиновое апатит, топаз, монтебразит и касситерит образуют крупные (до нескольких миллиметров) зерна, мелкозернистые агрегаты и тонкие прожилки. Касситерит содержит Ta_2O_5 0,77% и Nb_2O_5 1,37%, что типично для месторождений редкометалльных альбититов. Более поздний циннвальдит замещает все другие минералы, в том числе апатит и топаз. Скелетные зерна шерла, прорастающие мусковит, несут многочисленные точечные включения радиоактивных минералов.

Химический и редкоэлементный состав. Граниты массивов и даек высокоглиноземистые, принадлежат к высококалиевой известково-щелочной серии, поздне-посторогеннго этапа развития территории (рис. 4, А-Г, табл. 1). Основные параметры их состава промежуточные между таковыми гранитов А- и S-типов (табл. 2). Расчетное [1] давление на уровне магмогенерации для наименее измененных образцов определено в 0,7-0,8 ГПа. Соотношения Al/(Fe+Mg)-Ca/(Fe+Mg) отвечают зарождению расплавов в метапелитовых или метаграувакковых горизонтах коры (см. рис. 4, Д), богатых, по данным геолого-геохимических исследований [2], водой и фтором. С учетом этого температуры расплавов определены в 910°-960°С [17]. По соотношениям Al₂O₂/TiO₂-MgO (табл. 3) температуры кристаллизации гранитов составляют 800°-550°С [5]. Состав пород жильной фации отличается от такового главных фаций лишь несколько более высокой глиноземистостью и более высокой концентрацией фтора, варьирующей от 0,23% в мелкозернистых лейкогранитах и аплитах до 0,48% в аплит-пегматитах.

Граниты обладают повышенными, по сравнению с кларковыми, содержаниями Sn, Li, Rb, B, W, Ta, Nb, Аи, Ад (см. табл. 2), а по характеру их распределения и высоким значениям индекса редкометалльности ([F×(Li+Rb)/(Ba+Sr)]=3700 для Чалбинского массива) близки геохимическому типу плюмазитовых редкометалльных гранитов [9]. Средние концентрации Sn главного рудного элемента ассоциированных месторождений в гранитах главных фаций на порядок и более превышают кларковые при высоких содержаниях в слюдах (в среднем 57 г/т в раннемагматическом биотите, 92 г/т в позднемагматическом и 82–130 г/т в мусковите), что характерно для оловоносных гранитоидов. В плагиоклазе определено Sn 5,7 г/т, в калишпате 9 г/т, в кварце 3,5 г/т. В сумме все минералы несут только около 40% Sn породы. Это интенсивное остаточное концентрирование олова обусловлено прежде всего его способностью давать прочные

Рис. 4. Петрохимические параметры гранитоидов:

1 – граниты Чалбинского, 2 – Кере-Юряхского и 3 – Кыарагасского массивов; 4 – дайки лейкогранитов и аплитов; 5 – кварц-альбитовые аплит-пегматиты; 6 – точки и поле составов гранитов Депутатского массива; А – классификационная диаграмма: поля диаграммы [21]: I – гранодиориты, II – граниты, III – сиениты, IV – щелочные граниты; Б – соотношения К₂O–SiO₂ в гранитах; поля диаграммы [20]: I – низкокалиевая толеитовая, II – среднекалиевая известково-щелочная, III – высококалиевая известково-щелочная, IV – шошонитовая серии; В – геодинамические обстановки формирования гранитов; поля диаграммы [12]: I – производные мантийных магм, II – доплитной коллизии, III – синколлизионные, IV – постколлизионного воздымания, V – позднеорогенные, VI – анорогенные, VII – щелочных магм; R1=4Si–11(Na+K)–2(Fe–Ti); R2=6Ca+2Mg+AI; Г – глиноземистость гранитоидов; поля диаграммы [18]: OP – океанические плагиограниты, IAG – островодужные гранитоиды, CAG – гранитоиды континентальных дуг, ССG – континентальные коллизионные гранитоиды, POG – посторогенные гранитоиды, CEUG – гранитоиды континентального эпейрогенического воздымания, RRG – рифтогенные гранитоиды; Д – субстраты магмогенерации для чалбинских гранитов: поля диаграммы [16]: парциальное плавление: I – амфиболитов, II – дацитов-тоналитов, III – метаграувакк, IV – метапелитов

группы
Чалбинской
массивов
із гранитов
аы слюд и
ие анализ
химическ
вительные
І. Предстаі

Минерал		Fe-биотит	Fe-биотит	Fe-биотит	Fe-биотит	Fe-биотит		Fe-биотит	Fe-биотит	Fe-биотит	Сидеро- филлит	Сидеро- филлит		Fe-биотит	Fe-биотит	Fe-биотит		Мусковит	Лепидо-	Литиевый	мусковит	Цинн- вальдит	Цинн-	вальдит
${ m Logf}{ m O}_2$		-16,1	-16,4	-16,4	-16,5	-16,6		-16,8	-16,9	-17,0	-17,0	-17,2		-16,7	-16,5	-16,7								
<i>Р</i> , ГПа		0,28	0,33	0,4	0,33	0,39		0,40	0,42	0,46	0,51	0,50		0,24	0,45	0,4								
T, °C		700	720	760	740	730		700	710	720	730	710		710	730	730								
al*, %		24,4	25,7	27,0	26,3	26,7		27,6	27,9	29,0	30,1	29,9		23,5	28,4	27,4		45,1	46,2	i t	75,0	53,3	39,1	
f, %		65,1	66,7	68,2	70,8	72,1		73,4	73,4	74,7	76,4	81,2		65,0	69,3	71,7								
Сумма		101, 10	100, 89	100,83	100, 89	100,28		101,27	101,33	101,21	100,51	100,17		100,53	100,50	100,25		100,94	101,46	i.	100,71	100,40	100,72	
Cs_2O		0.02	0,02	0	0,01	0		0,02	0,04	0,04	0,04	0		0	0,02	0,02			0,01		0	0,01	0,01	
$\mathbf{Rb}_{2}\mathbf{O}$		0,10	0,10	0,11	0,10	0,13		0,23	0,20	0,14	0,23	0,25		0,09	0,22	0,12		0,18	0,18	č	0,21	0,13	0,13	
Li_2O		0,36	0,24	0,47	0,32	0,37	- L	0,50	0,49	0,58	0,71	0,75		0,30	0,30	0,22		0,30	0,62		0,36	0,42	0,39	
$\mathbf{P}_2\mathbf{O}_5$	биотит	0,49	0,43	0,28	0,63	0,30	биотил	0,31	0,31	0,37	0,16	0,28	биотит	0,55	0,40	0,70		0,16	0,16		0,26	0,08	0,21	
H	ческий	1,32	1,07	1,11	1,18	2,16	гческий	1,77	2,23	1,75	1,96	1,98	ческий	1,21	1,06	1,84	ОВИТ	1,44	1,18		1,38	1,64	1,70	
$\mathbf{H_2O^{+}}$	агмати	3,68	3,77	3,64	3,46	2,89	агмати	3,94	3,07	3,61	3,13	4,31	агмати	3,02	2,39	2,64	Myck	3,26	3,26		3,66	3,12	3,53	
$\mathbf{K}_2\mathbf{O}$	Раннем	8,16	8,41	9,35	9,49	9,22	Тозднем	8,85	9,10	8,36	9,01	8,95	Послем	8,32	8,33	9,45		10,94	9,03	-	10,11	10,00	10,31	
Na_2O		0,24	0,29	0,20	0,18	0,24	I	0,25	0,22	0,25	0,22	0,20		0,21	0,26	0,17		0,35	0,68		0,93	0,88	0,81	
CaO		0,54	0,48	0,75	0,48	0,54		0,01	0,60	0,39	0,84	0,66		1,33	1,06	1,17		0,01	0,36		0,24	0,12	0,20	
MgO		6,87	6,12	5,75	5,18	4,95		4,75	4,48	4,26	3,63	2,87		6,98	5,44	4,78		1,49	0,86		0,35	0,82	1,43	
MnO		0,17	0,15	0,23	0,17	0,34		0,37	0,14	0,15	0,20	0,70		0,18	0,23	0,14		0,09	0,03	0	0,04	0,26	0,12	
FeO		18,76	18,79	21,14	17,65	20,22		18,41	18,68	19,13	19,08	19,76		17,49	19,82	19,11		1,60	0,74	0	0,98	1,38	1,34	
$\mathrm{Fe}_2\mathrm{O}_3$		4,58	3,57	0,89	5,29	1,97		5,62	3,57	3,79	2,13	2,53		6,19	2,46	2,83		1,73	0,79		0,70	0,58	0,38	,
$\mathrm{Al}_{2}\mathrm{O}_{3}$		17,43	18,39	18,98	18,41	18,60		19,54	19,88	20,68	21,32	20,52		16,60	20,60	19,10		32,95	28,46		35,53	32,70	33,14	
TiO_2		3,84	3,66	4,27	3,93	3,78		2,91	2,60	2,98	2,43	2,51		3,87	3,21	3,46		0,13	0,37		0,12	0,31	0,19	
SiO_2		34,54	35,40	33,69	34,41	34,57		33,79	35,72	34,73	35,42	33,90		34,19	34,70	34,50		46,31	54,73		45,84	47,95	46,83	
Образ- цы		4 403	402	$[44_{\rm H}]$	1 349	Г24д		[44p	H193	H150	ľ62	[46a		H133	H200	186a		r64	H369		4446	1338	4220a	

[10]; Р – давление при кристаллизации по работе [19].

					-			-		_	-	_	_	-			_	-			-		-
<i>Р</i> , ГПа	0,4	0,25	0,25	0,4	0,2	0,2	0,4	0,2	0,5	0,4	0,2	0,4	0,3	0,2		0,5		0,4		0,5			
7. °C	770	800	750	750	800	750	730	750	650	700	750	700	750	770		650		620		550	550	550	
Т ,	907	606	941	976	996	961	890	956	823	888	961	867	908	931		794	595	572		532	578	582	
Сумма	99,91	99,95	96,96	99,88	100, 14	99,79	100,03	100	100,07	100,04	100,01	100,78	100, 79	99,83		100,62	100,12	100, 19		99,73	100, 7	100,48	
S	0,3	0,02	Не обн.	0,09	0,01	Не обн.	0,02	0,01	0,01	0,01	0,01	0,06	0,09	0,03		0,03	0,03	0,06		0,07	0,06	0,11	
Cs_2O	Не обн.	Не обн.	Не обн.	Не обн.	0,004	0,006	0,005	0,002	0,001	0,001	0,001	0,004	0,006	0,004		0,004	0,005	0,005		0,002	0,03	0,04	
Rb_2O	0,04	0,04	0,04	0,01	0,03	0,05	0,04	0,02	0,026	0,021	0,014	0,05	0,06	0,043		0,05	0,053	0,16		0,052	0,12	0,039	
Li_2O	0,06	0,04	0,06	0,04	0,05	0,07	0,09	0,027	0,014	0,15	0,018	0,01	0,035	0,034		0,029	0,01	0,032		0,009	0,014	0,007	
H.	0,15	0,11	0,17	0,12	0,18	0,05	0,3	0,14	0,25	0,14	0,1	0,23	0,35	0,2		0,23	0,48	0,4		0,06	0,05	0,06	
P_2O_5	0,25	0,24	0,26	0,18	0,46	0,32	0,42	0,29	0,31	0,35	0,38	0,41	0,36	0,35		0,36	0,73	1,05		0,33	0,33	0,33	
H_2O	0,84	0,81	0,99	1,25	0,79	0,74	0,64	0,38	0,87	0,53	0,48	0,75	1,3	0,7		1,1	0,65	1,1		0,5	0,64	1,15	
\mathbf{K}_20	4,47	4,86	4,8	3,62	4,73	4,44	4,86	4,97	4,04	4,51	5,06	4,55	4,21	4,66		3,73	3,61	5,06		1,23	1,8	2,11	
Na_2O	3,27	4,17	3,94	3,53	3,59	3,7	3,95	3,56	2,53	3,48	3,77	3,65	3,03	2,24		3,58	3,81	2,36		6,74	5,27	4,59	
CaO	0,9	0,6	1,2	1,35	1,07	0,53	0,6	0,59	0,53	0,47	0,95	0,28	0,56	0,85		0,66	0,66	0,66		0,56	0,38	0,66	
MgO	0,2	0,72	0,41	0,5	0,63	0,84	0,53	0,81	0,17	0,41	0,75	0,4	0,47	0,4		0,2	0,07	0,2		0,13	0,07	0,03	
MnO	0,02	0,03	0,03	0,04	0,03	0,03	0,03	0,5	0,07	0,02	0,04	0,02	0,05	0,07		0,04	0,05	0,25		0,03	0,04	0,01	
FeO	0,9	0,72	1,62	1,8	1,79	0,79	1,6	1,17	0,17	0,27	1,88	0,54	0,72	0,45		0,36	0,36	0,72		0,18	0,54	0,27	
${\rm Fe}_2{ m O}_3$	0,49	0,27	0,34	0,14	0,73	0,99	0,35	0,65	0,7	0,88	0,87	0,58	0,27	1,43		0,72	0,67	0,32		0,34	0,01	0,4	
Al ₂ O ₃	13,15	14,84	14,78	13,58	15,04	13,19	14,91	13,51	13,47	13,56	14,7	13,83	14,35	14,5		14,39	15,28	16,63		19,36	16,26	16,05	
TiO2	0,2	0,23	0,3	0,41	0,4	0,33	0,2	0,32	0,12	0,18	0,37	0,16	0,22	0,27		0,11	0,05	0,05		0,05	0,05	0,05	
SiO_2	74,67	72,25	71,02	73,22	70,61	73,71	71,48	73,5	76,79	75,06	70,62	75,23	74,71	73,6		75,03	73,6	71,13		70,09	75,04	74,57	
Массив			Чалбин-	ский					Kepe-	Юряхский			Кыарагас-	СКИИ	Дайки:	лейко- гранит	аплит	пегматит	Рябиновое:	кварц-	альбито-	вые мета- соматиты	
Образ- цы	Т43д	T44r	T44ĸ	T44p	T63/2	T64/1	T64/4	IO151	IO183	HO197	IO136	P91a	Kr103	O338		HO35	236/1	P396		456/2	45r/1	45r/2	

2. Представительные химические анализы составов гранитов массивов Чалбинской группы

Примечание. Анализы выполнены в химической лаборатории Института геологии алмаза и благородных металлов; аналитики Д.А.Кулагина и М.А.Слепцова; T – температура расплава по работе [17], T₁, P – температура и давление при кристаллизации по работе [5].

3. Средние составы массивов Чалбинской группы и Депутатского массива

	Массивы												
Компоненты	Чалбинский	Кере-Юряхский	Рябиновое	Депутатский	Граниты А-типа	Граниты S-типа							
	33	16	5	12									
SiO	74,09	74,04	74,68	74,03	73,8	72,6							
TiO	0,27	0,22	0,06	0,15	0,26	0,29							
Al ₂ O ₂	13,64	13,77	15,04	13,18	12,4	14,1							
Fe ₂ O ₂	0,62	0,73	0,39	0,14	1,24	0,3							
FeO	1,19	0,84	0,34	2,07	1,58	1,38							
MnO	0,04	0,04	0,02	0,05									
MgO	0,36	0,49	0,16	0,26	0,2	0,63							
CaO	0,73	,58	4	0,54	0,75	1,18							
Na ₂ O	3,51	3,43	5,11	2,91	4,07	2,71							
K ₂ O	4,47	4,72	1,6	4,95	4,65	5,54							
P ₂ O ₆	0,34	0,34	0,32	0,14									
H.O ⁺	0.79	0.55	073	0.68									
F	0.16	0.14	0.09	0.46									
S	0.05	0.01	0.08	0.17									
Сумма	100.35	99.9	101.02	99.73									
B	103	80	194	194									
Li	205	280	160	170	169	275							
Rb	360	327	520	377									
Cs	40	10	66	10									
Sr	24			74	48	147							
Ba	220			290	352	920							
Sn	26	40	40	21									
W	2,9	3	13	11									
Be	3,7	5	3,2	30									
Мо	0,7			2,7									
Pb	17	27	12	21									
Zn	78	20	85	42									
Ag	0,06	0,06	0,15	2,4									
Au	6	4,2	14	15									
Та	33	33	134		32								
Nb	30	30	153		37	20							
Zr	80				528	166							
Коэффициенты					1								
Rb/Sr	15			5,1	3,52	1,87							
K/(K+Na)	0,45	0,47	0,17	0,53	0,43	0,58							
Ca/(K+Na)	0,12	0,09	0,09	0,1	0,12	0,1							
(Na+K)/Al	0,77	0,77	0,63	0,77	0,95->11	0,74							
Al/(2Ca+K+Na)	1,03	1,08	1,34	1,07	0,95	1,12							
Fe/(Fe+Mg)	70	58,6	55,6	83,3	88	56							
K/Rb	103	120	41	109	229	167							

Примечание. Анализы выполнены в лабораториях ИГАБМ СО РАН и Якутского Геологического управления; граниты А- и S-типов – по работе [6], граниты Депутатского массива – по работе [8], *n* – число анализов; при расчете средних значений использованы анализы пород, минимально затронутых постмагматическими изменениями; элементы – в г/т, Au – в мг/т.

комплексные соединения с фтором (коэффициент корреляции Sn-F=0,69 для двуслюдяных гранитов Чалбинского массива и 0,9 для Кере-Юряхского). Существенное обогащение гранитов бором, также образующим сложные комплексные соединения с оловом, усиливает эту тенденцию. Во всех постмагматических процессах происходит рост содержаний олова (в среднем до 33 г/т и 57 г/т при калишпатизации и альбитизации, 40–80 г/т при площадной грейзенизации и до 49 г/т при биотитизации). В процессе локальной грейзенизации среднее содержание олова возрастает до 600 г/т, а непосредственно в рудных телах местами превышает 1%.

Концентрация лития в гранитах в несколько раз выше кларка (Li₂O 253 г/т в кере-юряхских и 411 г/т в чалбинских гранитах). Поведение его определяется, с одной стороны, кристаллохимической связью с магнием и двухвалентным железом, с другой, склонностью к образованию комплексных соединений с летучими, прежде всего, фтором. Основные его носители в изученных гранитах - слюды, чему соответствует максимальное содержание его в биотитизированных гранитах (1300 г/т). При автометасоматозе небольшой рост содержаний Li₂O до 451 г/т имел место только при альбитизации гранитов в связи с появлением монтебразита. Содержания тантала также на порядок выше кларка, а содержания ниобия лишь незначительно превышают кларк. Данных об их поведении в магматическом и постмагматическом процессах у авторов недостаточно. Отметим только интенсивный привнос их при альбитизации с ростом содержаний Та до 134 г/т и Nb до 153 г/т в связи с появлением в кварц-альбитовых метасоматитах колумбита.

По Л.В.Таусону [9], при становлении гранитов со средним уровнем содержаний фтора (0,15-0,2%) вслед за образованием зоны закалки формируются два очага богатых летучими низкотемпературных расплавов. Первый локализуется в апикальных зонах массивов благодаря интенсивному проявлению эманационной дифференциации. Дальнейшая кристаллизация продолжается уже на некоторой глубине под ним с отжимом летучих на еще более глубокие горизонты, где образуется нижний очаг низкотемпературных расплавов, из которых могут генерироваться рудоносные растворы. По данным авторов [11], содержание воды в наиболее эродированном Чалбинском массиве возрастает от горизонта 300 м к горизонту 50-100 м от кровли от 0,5% до 1,2% и от горизонта 300 м к горизонту 800 м от кровли до 1,3%, что подтверждает правомерность этого заключения в рассматриваемом случае. Интенсивное проявление посткристаллизационной тектоники в пределах Кере-Юряхского массива способствует выведению рудоносных растворов из нижнего остаточного очага низкотемпературных расплавов с формированием одноименного месторождения (см. рис. 2).

В заключение отметим, что в целом по комплексу признаков (повышенные концентрации олова и фтора

в породах и слюдах, высокая степень его остаточного концентрирования, привнос при метасоматозе) чалбинские граниты полностью отвечают оловоносным [4]. При становлении гранитов в результате эманационной дифференциации происходило обогащение их апикальных горизонтов F, Sn, B, Li, Rb с появлением вкрапленного оруденения непромышленного масштаба. Экзогенное разрушение апикальных горизонтов гранитов привело к формированию россыпей касситерита с сопутствующим вольфрамитом. Вскрытие нижнего рудоносного остаточного очага Кере-Юряхского массива обусловило формирование жильных грейзенов с промышленной рудоносностью.

Сравнение показывает, что чалбинские граниты по своим типоморфным особенностям сопоставимы с гранитами Депутатского массива (см. табл. 2 и рисунки 3, 4). Последние также характеризуются высокими концентрациями Sn, B, Li, Rb, W и имеют промежуточные между гранитами S- и А-типов параметры [8]. На всех петрохимических диаграммах поля их составов совпадают с таковыми чалбинских гранитов. Биотиты депутатских гранитов по всем параметрам состава также идентичны биотитам чалбинских гранитов и, как и последние, соответствуют биотитам абиссальных образований, что противоречит гипабиссальному уровню кристаллизации тех и других. При этом поздние генерации биотитов оказываются даже более «глубинными», чем ранние. Таким образом, «абиссальный» типоморфизм биотитов, вероятнее всего, отражает не давление нагрузки при кристаллизации, а давление летучих в расплаве. Содержание воды в гранитном расплаве, определенное по составу биотита [15], соответствует для чалбинских гранитов 5-8% при кристаллизации раннемагматического биотита и 10-12% - позднемагматического, с превышением при образовании последнего порога насыщения, что благоприятно для генерации рудоносных растворов.

В то же время, при всей близости типоморфизма гранитов этих двух районов, с Депутатским массивом ассоциирует уникальное по запасам касситерит-силикатносульфидное месторождение, тогда как с массивами Чалбинской группы - среднее по масштабу олово-редкометалльное месторождение и ряд рудопроявлений того же типа. Причину этого авторы видят в различии геологической ситуации в этих рудно-магматических узлах. Граниты чалбинской группы имеют чисто коровое происхождение, тогда как граниты Депутатского массива несут отчетливые признаки участия мантийного вещества в процессах их становления [8]. Здесь развиты многочисленые дайки андезибазальтов, трахидолеритов, трахибазальтов, трахиандезитов, монцонитов, субщелочных лампрофиров, материнские расплавы которых являлись дополнительными источниками тепла и летучих, обеспечившими длительность эволюции гранитной системы и дополнительную мобилизацию рудного вещества, то есть имело место интенсивное мантийно-коровое взаимодействие на протяжении всего времени функционирования Депутатской рудно-магматической системы, тогда как в пределах Чалбинского узла следы такого взаимодействия отсутствуют.

Работа выполнена по плану НИР ИГАБМ СО РАН, проект 0381-2016-0001.

СПИСОК ЛИТЕРАТУРЫ

- 1. Беляев Г.М., Рудник В.А. Формационно-генетические типы гранитоидов. Л.: Недра, 1978.
- 2. Беус А.А. Геохимия литосферы. М.: Недра, 1981.
- Гусев А.И. Типизация гранитоидов на основе составов биотитов // Успехи современного естествознания. 2009. № 4. С. 54–57.
- Козлов В.Д. Геохимическая типизация, формационный анализ и оценка рудоносности гранитоидов и прогнозирование редкометалльного оруденения / Проблемы рудоносности гранитоидов. – Иркутск: СибГеохи, 1987. С. 3–28.
- 5. Куликова В.В., Куликов В.С. Петрохимическая классификация магматических пород. – Петрозаводск, 2001.
- Особенности изучения и геологического картирования коллизионных гранитоидов // В.М.Ненахов, В.В.Иванников, Л.В.Кузнецов, Ю.Н.Стрик. – М.: Роскомнедра, 1992.
- Падалка Г.А. О геологическом строении Северо-Восточной Якутии в связи с металлоносностью // Изв. АН СССР. Серия геолог. 1939. № 5, 6. С. 3–20, 41–60.
- Петрогенетические особенности магматических пород Депутатского рудного поля / В.А.Трунилина, А.И.Зайцев, Ю.С.Орлов, А.И.Иванов // Отечественная геология. 2003. № 5. С. 34–41.
- 9. *Таусон Л.В.* Геохимические типы и потенциальная рудоносность гранитоидов. – М.: Наука, 1977.
- Трошин Ю.П., Гребенщикова В.И., Антонов А.Ю. Летучие компоненты в биотитах и металлогеническая специализация интрузий // Минералогические критерии

оценки рудоносности. – Л.: Наука, 1981. С. 73-83.

- Флеров Б.Л., Трунилина В.А., Яковлев Я.В. Оловянновольфрамовое оруденение и магматизм Восточной Якутии. – М.: Наука, 1979.
- A classification of volcanic and plutonic rocks using R1–R2 diagram and major-element analyses – its relationships and current nomenclature / De la Roche H., J.Leterrier, P.Grande Claude, M.Marchal // Chem. Geol. 1980. Vol. 29. Pp. 183–210.
- Aque J.A., Brimhfll G. H. Granites of the batholits of California: products of local assimilation and regional-scale crustal contamination // Geology. 1987. Vol. 15. Pp. 63–66.
- Barbarin B. Granitoids: main petrogenetic classifications in relation to origin and tectonic setting // Geol. Journ. 1990. Vol. 25. Pp. 227–238.
- Brown G.G. A comment on the role of water in the partial fusions of crystal rocks // Earth and Planet. Sci. Lett. 1970. Vol. 9. Pp. 355–358.
- Gerdes A., Worner G., Henk A. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: the Variscan South Bohemian Batholith // J.Geol. Soc. London. 2000. Vol. 157. Pp. 577–587.
- 17. Jung S., Pfander J.A. Source composition and melting temperatures of orogenic granitoids constrains from CaO/Na₂O, Al₂O₃/TiO₂ and accessory mineral saturation thermometry // Europen Journal of Mineralogy. 2007. № 1. Pp. 5–40.
- Maniar P.D., Piccoli P.M. Tectonic discrimination of granitoids // Geological Society of America Bulletin. 1989. Vol. 101. Pp. 635–643.
- Uchida E., Endo S., Makino V. Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits // Resource Geology. 2007. Vol. 57. № 1. Pp. 47–56.
- Whiteford D.G., Nicholls I.A. and Taylor S. R. Spatial variations in the geochemistry of quaternary lavas across the Sunda arc in Java and Bali // Contribs. Mineral. And Petrol. 1979. Vol. 70. Pp. 341–356.
- Wilson M. Igneous petrogenesis. Unwin Hayman. London. 1989.