Sm-Nd ИЗОТОПНЫЕ ИССЛЕДОВАНИЯ РАННЕДОКЕМБРИЙСКИХ ПОРОД КОЛЬСКОГО РЕГИОНА: КРАТКИЙ ОБЗОР И НОВЫЕ ДАННЫЕ*

В. И. Пожиленко¹, П. А. Серов¹, В. П. Петров²

¹Геологический институт ФИЦ КНЦ РАН

²Центр гуманитарных проблем Баренц-региона ФИЦ КНЦ РАН

Аннотация

В данной работе приводятся в кратком виде обобщенные результаты Sm-Nd-анализа раннедокембрийских пород и их интерпретация по литературным источникам. Кроме того, рассматриваются неопубликованные Sm-Nd-данные (с сопутствующей интерпретацией) по мезо-неоархейским и протерозойским кристаллическим породам ряда структур Кольского региона: Терского, Стрельнинского, Кейвского и Кольско-Норвежского террейнов, Мурманского составного террейна и Имандра-Варзугской зоны палеопротерозойского рифта.

Ключевые слова:

Sm-Nd модельный возраст, архей, палеопротерозой, террейн, Кольский регион.

Sm-Nd ISOTOPE STUDIES OF EARLY PRECAMBRIAN ROCKS OF THE KOLA REGION: A BRIEF OVERVIEW AND NEW DATA

Vladimir I. Pozhilenko¹, Pavel A. Serov¹, Valentin P. Petrov²

¹Geological Institute of the KSC of the RAS ²Center for humanitarian problems of Barencts Region of the KSC of the RAS

Abstractct

This paper presents the summarized results of the Sm-Nd analysis of the Early Precambrian rocks in brief terms and their interpretation by literature sources. In addition, consideration is being given to the unpublished Sm-Nd data (with concomitant interpretation) on Mesoneoarchaean and Proterozoic crystalline rocks of a number of structures in the Kola region: Tersky, Strelny, Keivsky and Kola-Norwegian terranes, Murmansk composite terrane and Imandra-Varzuga zone of the Palaeoproterozoic rift.

Keywords:

Sm-Nd model age, Archaean, Palaeoproterozoic, terrane, Kola region.

1. Введение

На основании общих геологических предпосылок и согласно принятой стратиграфической шкале [1] до конца 1980-х гг. в северо-восточной части Балтийского (Фенноскандинавского) щита выделялись архейские, включая саамские (или раннеархейские), и

раннепротерозойские образования (эоархейские, палеоархейские и палеопротерозойские соответственно (по современной хроностратиграфической шкале)) [2 и др.], при этом прямые и косвенные геохронологические данные о столь древнем архейском возрасте пород отсутствовали.

^{*} Исследование выполнено в рамках тем НИР ГИ КНЦ РАН № 0231-2015-0004 и № 0231-2015-0005.

Sm-nd изотопные исследования раннедокембрийских пород Кольского региона: краткий обзор...

В 1990-е гг. ученые ГИ КНЦ РАН стали проводить активное изотопное (U-Pb-метод, циркон) датирование интрузивных и метаморфических пород Кольского региона. Наиболее достоверные данные были приведены в работе, включающей также результаты, полученные другими исследователями [3]. Самые древние датировки, определяющие возраст интрузивных пород и метаморфизма, находились в интервале 2,8–2,9 млрд лет, и лишь несколько определений превышали значение 2,9 млрд лет [4–6 и др.]. Предполагалось, что возраст интенсивно и неоднократно метаморфизованных интрузивных, вулканогенных и осадочных пород, относимых к наиболее древним образованиям, может быть древнее 3,0 млрд лет. Прежде всего, речь идет о комплексе основания, сложенном тоналит-трондьемит-гранодиоритовыми (ТТГ) породами, и реликтах гнейсов и амфиболитов в нем, а также о гнейсах «кольско-беломорского» комплекса [2]. Косвенным подтверждением наличия саамских образований в Кольском регионе были палеоархейские U-Pb-возрасты детритовых цирконов в архейских и даже палеопротерозойских метаосадках [7, 8], а также палеоархейские Sm-Nd модельные возрасты этих пород.

Приведенные данные, тем не менее, не дают оснований говорить о наличии мезо- и палеоархейских образований в Кольском регионе, так как детритовые цирконы могли быть привнесены из удаленных областей размыва, расположенных за пределами рассматриваемой части Балтийского щита. В то же время эффективным инструментом оценки возраста земной коры является Sm-Nd изотопный метод, позволяющий на основе Sm-Nd модельных возрастов пород в сочетании с U-Pb-возрастами цирконов определить возраст корообразующих событий [9, 10]. Результаты применения этого методического подхода сотрудниками Дублинского университетского колледжа в содружестве с учеными ГИ КНЦ РАН позволили внести заметные коррективы в представления о времени образования древнейших ТТГ комплексов основания кольского докембрия и залегающих на них супракрустальных комплексов архея и палеопротерозоя [11-14 и др.]. Появление в 2000 г. в ГИ КНЦ РАН возможности проведения планомерных Sm-Nd изотопных исследований привело к накоплению большого объема Sm-Nd изотопных данных. Все перечисленные исследования комплексов раннего докембрия Кольского региона преследовали следующие цели:

1) выявление в кольском архее мезо-, палео- и эоархейских пород;

2) определение объема архейского и палеопротерозойского ювенильного материала в земной коре региона;

В предлагаемой работе дается краткий обзор результатов этих исследований и приводятся новые Sm-Nd изотопные данные для ряда тектонических структур Кольского региона.

2. Методика исследований

Для химического разложения проб брали навеску массой 50–100 мг, к которой добавлялось соответствующее количество раствора смешанного трассера ¹⁴⁹Sm-¹⁵⁰Nd. Затем навеску обрабатывали концентрированной плавиковой кислотой (5–0 мл) и выдерживали 1,5–2 часа при комнатной температуре. Далее навеску помещали в тефлоновый вкладыш автоклава и проводили разложение в сушильном шкафу при температуре 170 °C в течение нескольких часов. После разложения выпаривали досуха HF и образовавшиеся фториды переводили в хлориды путем упаривания образца 2–3 раза в 4,5–6N HCl. Сухой остаток растворяли в 1 мл 2,3N HCl и загружали на первую хроматографическую колонку с катионитом Dowex 50W-8 (200–400 меш). Эта колонка используется для выделения суммы РЗЭ с применением ступенчатого элюирования 2,3 и 4,5N HCl. Выделенную фракцию РЗЭ выпаривали досуха, растворяли в 0,1N HCl и загружали на вторую колонку с ионитом HDEHP на твердом носителе KEL-F. Отобранные фракции Sm и Nd выпаривали, после чего они были готовы для последующего масс-спектрометрического анализа.

Среднее значение отношения ¹⁴³Nd/¹⁴⁴Nd в стандарте LaJolla за период измерений составило 0,512078 ± 5 (N = 11), при этом величина ошибки не превышала ± 0,003 %. Ошибка в ¹⁴⁷Sm/¹⁴⁴Ndотношениях составляет 0,2 % (2 σ) — среднее значение из 7 измерений в стандарте BCR-1 [15]. Погрешность измерения изотопного состава Nd в индивидуальном анализе — до 0,005 %. Холостое внутрилабораторное загрязнение по Nd равно 0,3 нг, по Sm — 0,06 нг. Точность определения концентраций Sm и Nd ± 0,5 %. Изотопные отношения были нормализованы по отношению ¹⁴⁶Nd/¹⁴⁴Nd = 0,7219, а затем пересчитаны на отношение ¹⁴³Nd/¹⁴⁴Nd в стандарте LaJolla = 0,511858 ± 7 [16]. При расчете величин $\varepsilon_{Nd}(T)$ и модельных возрастов $T_{(DM)}$ использованы современные значения CHUR по [17] (¹⁴³Nd/¹⁴⁴Nd = 0,512630, ¹⁴⁷Sm/¹⁴⁴Nd = 0,1960) и DM по [18] (¹⁴³Nd/¹⁴⁴Nd = 0,513151, ¹⁴⁷Sm/¹⁴⁴Nd = 0,2136).

3. Материалы

Sm и Nd изотопный анализ был выполнен для широкого спектра пород, среди которых: 1 — породы массивов неоархейских субщелочных и щелочных гранитов и габбро-анортозитов; 2 — гнейсы, гранитогнейсы, амфиболиты и гранитоиды Мурманского составного террейна; 3 — палеопротерозойские породы расслоенных массивов базит-гипербазитов и массивов габброанортозитов; 4 — разнообразные гнейсы северо-западной части Беломорского составного террейна; 5 — гнейсы, амфиболиты, метагабброиды, диориты и эндербиты центральной части Кольского региона (Кольско-Норвежского террейна); 6 — гнейсы Кейвского, Терского и Стрельнинского террейнов; 7 — метавулканиты и метаосадки Печенгской и Имандра-Варзугской зон палеопротерозойского рифта Полмак-Пасвик-Печенга-Имандра-Варзуга и др. (рис.).

Схема тектонического районирования северо-восточной части Балтийского щита (по В. В. Балаганскому [19] с учетом данных по проекту FIRE 2001–2005 [20]) Scheme of tectonic zoning of the north-eastern part of the Baltic Shield

(according to V. V. Balaganskii [19], taking into account data on the FIRE project 2001–2005 [20])

4. Результаты

Мезоархей (3,2–2,8 млрд лет)

Несмотря на то, что большое количество палеопротерозойских и неоархейских пород Кольского региона имеют мезоархейские Sm-Nd модельные возраста протолитов и отрицательные значения ε_{Nd} (*T*), на эрозионном срезе мезоархейские образования не имеют широкого распространения. К мезоархейским образованиям можно отнести редкие реликты в комплексе архейского основания, ряд пород террейна Колмозеро-Воронья (рис.). Некоторые исследователи относят к мезоархею пространственно связанные с этой зоной габбро-анортозитовые массивы Патчемварек и Северный (2,92 и 2,93 млрд лет соответственно [21]). Sm-Nd модельный возраст анортозитов составляет 2,9–3,1 млрд лет, а ε_{Nd} (2935 млн лет) равен +2,65 [21]. В то же время в работе [22] показано, что возраст массива Патчемварек равен 2661,8 ± 7,1 млн лет, значения ε_{Nd} (2660) варьируют от +0,7 до -0,2, а мезоархейские цирконы являются ксеногенными. Мезоархейские U-Pb-датировки по цирконам были получены для протолитов амфиболитов с реликтами эклогитовых минеральных парагенезисов [23–28], адакитов в эклогитах [29] и для TTГ гнейсов комплекса основания в северной части Беломорского подвижного пояса [30–32].

Неоархей (2,8–2,5 млрд лет)

Неоархейские кристаллические породы слагают большую часть территории Кольского региона [33]. Sm-Nd модельные возрасты неоархейских разновозрастных эндербитов и гранитоидов Мурманского составного террейна (рис.) от 2,7 до 2,95 млрд лет [12], а значения ε_{Nd} варьируют от -3,0 до +3,0. Разница между возрастом кристаллизации и Sm-Nd модельным возрастом пород колеблется в небольших пределах, но для некоторых массивов достигает 400 млн лет. По результатам Sm-Nd изотопных исследований разнообразных неоархейских пород Мурманского составного террейна (плагиограниты, реликты гнейсов и амфиболитов в гранитах, эндербиты, диориты и др.), их Sm-Nd модельные возрасты их находятся в пределах 2,73–3,07 млрд лет, а величины ε_{Nd} (2750) лежат в интервале от +3,24 до -2,58 [34, табл. 2.7].

Sm-Nd модельные возрасты неоархейских амфиболитов и плагиогнейсов Кольско-Норвежского террейна, обнажающихся к северо-западу от Печенгской зоны, большей частью мезоархейские (3,2–2,74 млрд лет), а значения ε_{Nd} (2900 млн лет) в основном положительные — от +0,9 до +5,7 [35]. Для пород Пулозерского участка Кольско-Норвежского террейна Sm-Nd модельные возрасты (t_{DM}) неоархейских парагнейсов, эндербитов, диоритов и плагиогранитов укладываются в интервал 2,77–2,95 млрд лет, а значения ε_{Nd} (t_{zr}) отрицательные — от –0,40 до –3,1 [36]. Подобные результаты известны и для пород Центрально-Кольского блока Кольско-Норвежского террейна по работе [12], по материалам О. А. Беляева (табл. 1, № 30–39) Sm-Nd модельные возрасты пород данного блока составляют 2,92–3,10 млрд лет, ε_{Nd} колеблется от –0,32 до +1,48.

В Ингозерском блоке северо-восточной части Беломорского составного террейна были исследованы ТТГ биотитовые и биотит-амфиболовые гнейсы комплекса основания [33] и реликты амфиболитов в них. Sm-Nd модельные возрасты изученных пород варьируют от 3,08 до 2,87 млрд лет. Значения ε_{Nd} , рассчитанные на предполагаемый U-Pb-возраст 2,88 млрд лет, попадают в интервал от –1,73 до +0,98 [34, табл. 2.7], а рассчитанные на измеренный U-Pb-возраст — от +1,02 до +2,08 [32].

По неоархейским габбро-анортозитам габбро-лабрадоритовой формации, расположенным в обрамлении Кейвского террейна (2,66–2,68 млрд лет [37, 38]), получены Sm-Nd модельные возрасты от 2,85 до 3,05 млрд лет, а значения ε_{Nd} (2,67 млрд лет) варьируют от -0,23 до +0,20 [34, табл. 2.4; 39]. Формирование габбро-анортозитов сближено во времени с образованием в Кейвах массивов анорогенных щелочных гранитов и сиенитов (2,62–2,68 млрд лет [38, 40]), Sm-Nd модельный возраст которых изменяется от 2,71 до 3,33 млрд лет с высоким разбросом $\varepsilon_{Nd}(t)$ — от +0,6 до –9,0 [34, табл. 2.4; 38].

Таблица 1 Table 1

Sm-Nd изотопные данные для пород Кольского региона (образцы О. А. Беляева) Sm-Nd isotopic data for rocks of the Kola region (samples of O. A. Belyaev)

	Номер		Порода Rock Концентрация, мкг/г Concentration, mcg / g		Изотопные	отношения	<i>Т</i> _{DM} ,	$\epsilon_{\rm Nd}(T)$		
№ п/п	пробы	Порода Воск			ation, Isotopic ratios			(Т, млн лет)		
11/11	Sample	ROOK			1470 (144NT) 143NT 1/144NT		Ma	(<i>T</i> , Ma)		
1	2	2	Sm	Na 5	- Sm/ Na	7	0	0		
1	2	5	4 Стрельн	у инский те	о nneйн	1	0	9		
	Strelninsky Terrane									
1	1694	Биотитовый плагиогнейс	6,31	36,1	0,1057	0,510981±15	3045	-0,21 (2750*)		
2	1692	Biotite plagiogneiss	4,82	27,7	0,1053	$0,510958{\pm}15$	3066	-0,52 (2750*)		
3	1792-2		2,50	15,47	0,0977	0,511259±8	2476	-2,02 (1960)		
4	1766	Амф-Би тоналитогнейс Amp-Bi tonalite gneiss	4,04	21,5	0,1139	0,511731±12	2163	+3,14 (1960)		
5	1817	Биотитовый плагиогнейс Biotite plagiogneiss	19,15	123,8	0,0935	0,510761±14	3013	-0,18 (2750*)		
6	1826	Амф-Би тоналитогнейс	2,38	11,76	0,1225	0,511363±14	2972	+1,31 (2750*)		
7	1820	Amp-Bi tonalite gneiss	6,45	35,83	0,1088	0,511002±18	3104	-0,90 (2750*)		
8	1844	Биотитовый гранитогнейс Bi granite gneiss	0,970	5,19	0,1130	0,511131±19	3040	+0,14 (2750*)		
9	1826-4	Амф-Би тоналитогнейс Amp-Bi tonalite gneiss	2,08	10,24	0,1227	0,511326±6	3040	+0,51 (2750*)		
10	1826-2	Полевошпатовый амфиболит Feldspar amphibolite	1,323	5,15	0,1552	0,511959±8	3090	+1,36 (2750*)		
11	1855	Амф-Би тоналитогнейс Amp-Bi tonalite gneiss	3,64	20,8	0,1060	0,511111±14	2872	+2,24 (2750*)		
12	1857	Биотитовый гранитогнейс	3,07	18,22	0,1018	0,510898±17	3051	-0,45 (2750*)		
13	3020-1	Bi granite gneiss	1,428	7,48	0,1154	0,511180±11	3039	+0,25 (2750*)		
14	3045	Амф-Би диоритогнейс Amp-Bi diorite gneiss	4,90	28,3	0,1047	0,510968±16	3035	-0,11 (2750*)		
15	3019	Биотитовый гранитогнейс Bi granite gneiss	0,808	5,24	0,0933	0,510965±10	2754	+3,90 (2750*)		
16	3051	Амф-Би тоналитогнейс Amp-Bi tonalite gneiss	1,362	5,02	0,1640	0,512049±11	3361	_		
17	3021-2	Амфиболит Amphibolite	4,65	17,43	0,1611	0,511995±10	3331	_		
18	3349-1	Амф-Би гранитогнейс Amp-Bi granite gneiss	1,444	10,15	0,0860	0,510756±10	3330	-0,17 (2700*)		
19	3350	Би плагиогранитогнейс Bi plagiogranite gneiss	1,008	6,24	0,0977	0,511073±11	2843	+1,77 (2700*)		
Терский террейн Tersky Terrane										
20	1564	Би плагиогранитогнейс Bi plagiogranite gneiss	3,62	20,1	0,1090	0,511539±16	2339	+0,61 (1960)		
21	1548	Би плагиогранитогнейс Bi plagiogranite gneiss	2,61	17,07	0,0925	0,511391±13	2207	+1,88 (1960)		

Окончание таблицы 1 Table 1 (Continued)

		T									
22	1813	Биотитовый плагиогнейс	8,06	36,8	0,1323	0,511837±12	2452	+0,56 (1960)			
23	1953-1	Biotite plagiogneiss	5,39	25,0	0,1303	0,511799±19	2462	+0,32 (1960)			
24	1987	Амф-Би тоналитогнейс Amp-Bi tonalite gneiss	5,70	28,1	0,1228	0,511764±20	2318	+1,53 (1960)			
25	1988	Биотитовый гранитогнейс Bi granite gneiss	6,69	36,2	0,1116	0,511631±16	2262	+1,76 (1960)			
	Мурманский составной террейн										
	Murmansky Composite Terrane										
26	2076-2	Биотитовый плагиогнейс Biotite plagiogneiss	6,80	39,9	0,1029	0,510977±19	2974	+0,71 (2750*)			
27	2028-2	Амф-Би плагиогнейс Amp-Bi plagiogneiss	6,79	39,5	0,1038	0,510906±15	3095	-1,00 (2750*)			
28	2071	Биотовый плагиогнейс	1,959	15,12	0,0783	0,510513±17	2953	-0,40 (2700*)			
29	2078-1	Biotite plagiogneiss	5,19	36,4	0,0863	0,510622±12	3008	-0,34 (2750 [*])			
		Центрально-Коль	ский бло	к Кольско	-Норвежског	о террейна		· · ·			
		Central-Kola	a block of	the Kola-	Norwegian Te	rrane					
30	3190	Биотитовый гнейс Biotite gneiss	1,199	6,99	0,1037	0,510963±14	3015	-0,45 (2700*)			
31	3557	Гиперстеновый диорит Hypersthene diorite	6,62	41,5	0,0964	0,510875±12	2941	+0,37 (2700*)			
32	3202	Гиперстеновый диоритогнейс Hypersthene diorite gneiss	12,57	63,1	0,1204	0,511240±12	3104	-0,65 (2720)			
33	3216	Гиперстеновый трондъемит Hypersthene trondhjemite	1,725	12,98	0,0805	0,510586±12	2919	+0,87 (2740)			
34	3221	Амф-Би диоритогнейс Amp-Bi diorite gneiss	3,57	23,0	0,0937	0,510745±13	3038	-1,23 (2700*)			
35	3564	Плагиогранитогнейс Plagiogranite gneiss	2,42	20,9	0,0700	0,510332±11	2973	-1,05 (2700*)			
36	3578	Гиперстеновый гранодиорит Hypersthene granodiorite	5,60	38,6	0,0876	0,510683±16	2966	-0,32 (2700)			
37	3327	Амф-Би диоритогнейс Amp-Bi diorite gneiss	3,71	18,00	0,1246	0,511394±11	2990	+0,70 (2700*)			
38	3335	Амф диоритогнейс Amp diorite gneiss	3,96	19,46	0,1231	0,511407±17	2919	+1,48 (2700*)			
39	3523	Биотитовый плагиогнейс Biotite plagiogneiss	2,91	17,95	0,0979	0,510890±15	2960	+0,14 (2700*)			
	Террейн Инари Terrain Inari										
40	363	Амф-Би гранитогнейс Amp-Bi granite gneiss	1,110	5,00	0,1343	0,511877±15	2437	+0,84 (1960)			
41	Б-903	Метапелит Metapelite	6,78	38,1	0,1078	0,511372	2550	-2,36 (1960)			
42	Б-872-ІІ	Метаграувакка Metagreywacke	2,50	11,26	0,1099	0,511470	2459	-0,97 (1960)			

Примечание. Районы отбора проб по порядковым номерам: 1–2 — междуречье р. Стрельна, р. Чапома; 3–4 — р. Стрельна; 5 — р. Сосновка; 6–10 — р. Пулоньга; 11–12 — р. Бабья; 13–17 — р. Пялица; 18–19 — р. Глубокая; 20–21 — р. Серьга; 22 — р. Стрельна; 23 — р. Туломболка; 24–25 — р. Чаваньга;

26–29 — р. Иоканьга; 30–31 — г. Кинтпахк; 32 — г. Рамозеро; 33 — г. Шошенкурбаш; 34 — оз. Чудзьявр; 35–36 — оз. Пятнъявр; 37–38 — оз. Реттьявр; 39 — р. Воронья; 40 — гнейсы основания; 41 — тальинская толща; 42 — вырнимская толща.

Здесь и в табл. 2 и 3: Амф — амфибол, Би — биотит.

Notes. Areas of sampling by serial numbers: 1-2 — interfluve r. Strelna, r. Chapoma; 3-4 — r. Strelna; 5 — r. Sosnovka; 6-10 — r. Pulonga; 11-12 — r. Babia; 13-17 — r. Pyalitsa; 18, 19 — r. Glubokaya; 20-21 — r. Serga; 22 — r. Strelna; 23 — r. Tulombolka; 24-25 — r. Chavanga; 26-29 — r. Iokanga; 30-31 — mt. Kintpahk; 32 — mt. Ramozero; 33 — mt. Shoshenkurbash; 34 — Lake Chudesavr; 35-36 — Lake Piatnjavr; 37-38 — Lake Rettiavr; 39 — r. Voronya; 40 — gneisses of the basement; 41 — Tal'inskaya sequence; 42 — Vyrnimskaya sequence.

Here and in Tables 2 and 3: Amp — amphibole, Bi — biotite.

Sm-Nd модельные возрасты метаосадков неоархейского нестратифицированного и стратифицированного комплексов (гнейсы волшпахкской, риколатвинской, лоухской и других толщ и свит) [33] не превышают 3,1 млрд лет при отрицательных значениях ε_{Nd} . Sm-Nd модельные возрасты лебяжинских метавулканитов Кейвского террейна, за одним исключением, лежат в интервале 3,0–3,2 млрд лет, а величина ε_{Nd} , рассчитанная для возраста 2,68 млрд лет [41], варьирует от 0,0 до –2,6 (табл. 3, № 1–5). Sm-Nd модельные возрасты метапелитов Кейвского террейна составляют 3,0–3,5 млрд лет, а величина ε_{Nd} варьирует от –8,8 до –11,3 (табл. 3, № 10–12). По данным работы [7], в кейвских парасланцах возрасты детритовых цирконов не превышают 2,8 млрд лет.

В Стрельнинском террейне Sm-Nd модельные возрасты гранитогнейсов, биотитамфиболовых гнейсов и амфиболитов комплекса основания лежат в интервале от 2,59 до 3,10 млрд лет (табл. 1, № 1, 2; табл. 2, № 1, 7, 9, 12). Вариации величины ε_{Nd} от -5,2 до 4,5, что указывает на происхождение протолитов из разновозрастных архейских источников со значительным преобладанием неоархейского ювенильного материала.

Таблица 2

Table 2

№ п/п	Номер пробы Sample	Порода Rock	Концен мк Concen mcg	трация, г/г htration, g / g	ция, ion, Изотопные отношен Isotopic ratios		<i>Т</i> _{DM} , млн лет Ма	ε _{Nd} (<i>T</i>) (<i>T</i> , млн лет) (T, Ma)
1	1512	Гранитогнейс Granite gneiss	5,63	21,3	0,1602	0,512103±4	2972	+2,2 (2700)
2	1552	Би-Амф гнейс	5,59	29,1	0,1161	0,511592±6	2426	-0,1 (1960)
3	1554	Bi-Amp gneiss	3,34	17,66	0,1144	0,511522±3	2491	-1,1 (1960)
4	1566		6,10	34,7	0,1063	0,511321±6	2586	-3,0 (1960)
5	1581		7,28	36,9	0,1195	0,511747±5	2265	+2,0 (1960)
6	1595		6,20	33,3	0,1124	0,511682±4	2204	+2,6 (1960)
7	1625	Амфиболит Amphibolite	3,39	12,86	0,1595	0,512152±13	2798	+3,4 (2700)
8	1632	Би-Амф гнейс	3,58	16,04	0,1348	0,511970±9	2275	+2,5 (1960)
9	1640	Bi-Amp gneiss	1,460	6,96	0,1272	0,511634±6	2662	+4,5 (2700)
10	1647		4,01	19,48	0,1244	0,511832±6	2245	+2,5 (1960)
11	1624		5,76	30,1	0,1158	0,511720±7	2221	+2,4 (1960)
12	1679	Гранитогнейс Granite gneiss	3,12	17,72	0,1066	0,510957±7	3104	-1,6 (2700)
13	1641	Би-Амф гнейс Bi-Amp gneiss	2,90	10,20	0,1718	0,512513±12	2317	+3,8 (1960)
14	1576	Гранитогнейс Granite gneiss	1,860	6,09	0,1850	0,512615±7	_	_

Sm-Nd изотопные данные для пород Терского и Стрельнинского террейнов (образцы А. А. Иванова) Sm-Nd isotopic data for the rocks of the Tersky and StreIninsky terranes (samples of A. A. Ivanov)

http://www.naukaprint.ru/zhurnaly/vestnik/

^{*} Предполагаемый возраст пород или метаморфизма.

^{*} Assumed age of rocks or metamorphism.

Примечание. 1— неоархейский гранитогнейс из района верховья р. Варзуги; 2–6— гнейсы сергозерской толщи по [33]: 2–4— район р. Кривец-Варзуга; 5–6— район среднего течения р. Варзуга; 7–11, 13— гнейсы и амфиболиты песчаноозерской толщи по [33]: 7–9, 11, 13— район г. Лысая— р. Стрельна; 12, 14— породы комплекса основания по [33]: 12— район р. Лембуй (приток р. Стрельны); 14— район нижнего течения р. Варзуги.

Notes. 1 — Neo-Archaean granite gneiss from the upper reaches of the r. Varzuga; 2–4 — the district of the r. Krivets-Varzuga; 2–6 — gneisses of the Sergozersky sequence according to [33]: 5–6 — area of the middle reaches of the r. Varzuga; 7–11, 13 — gneisses and amphibolites of the Peschanoozerskaya sequence according to [33]: 7–9, 11, 13 — area of the mt. Lysaya — r. Strelna; 12, 14 — rocks of the basement complex according to [33]: 12 — area of the r. Lembuy (tributary of the r. Strelna); 14 — area of the lower reaches of the r. Varzuga.

Палеопротерозой (2,5–1,6 млрд лет)

В палеопротерозое происходило формирование разнообразных по генезису и составу пород, слагающих ныне Лапландский гранулитовый террейн, Печенгскую и Имандра-Варзугскую зоны палеорифтогена и ряд других структур. За период около 700 млн лет были накоплены мощные толщи (до 18 км суммарного разреза в Имандра-Варзугской зоне) вулканогенных, вулканогенноосадочных и осадочных пород, внедрилось большое количестве разновозрастных массивов габбро-анортозитов, расслоенных интрузий базит-гипербазитового состава, а также интрузий гранитов, гранодиоритов, диоритов и т. д. и огромное количество разнообразных даек.

Для вулканогенных и осадочных пород Печенгской и Имандра-Варзугской зон палеорифтогена характерны в основном неоархейские Sm-Nd-возрасты и отрицательные значения ε_{Nd} с тенденцией их уменьшения снизу вверх по разрезу. Sm-Nd модельный возраст сариолийских вулканитов первой вулканогенной толщи (BT) Печенгской зоны — 2,84–3,02 млрд лет, а ε_{Nd} (2,32 млрд лет) — от –3,39 до –6,26. Sm-Nd модельный возраст ятулийских вулканитов второй BT равен 2,59–2,79 млрд лет, а ε_{Nd} (2,21 млрд лет) варьирует от –1,56 до –2,69; третьей BT — 2,3–2,5 млрд лет и ε_{Nd} (2,11 млрд лет) ~ от –1,0 до +2,0. Sm-Nd модельный возраст людиковийских вулканитов четвертой BT составляет 2,14–2,42 млрд лет, а ε_{Nd} (1,98 млрд лет) — от –0,14 до +2,28. Для туфосилицитов ε_{Nd} (1,72 млрд лет) варьирует от –2,00 до –2,85, а для филлитов ε_{Nd} (1,72 млрд лет) равен –5,63. Sm-Nd модельные возрасты дацитов и риолитов экструзии г. Порьиташ — 2,63–2,82 млрд лет, ε_{Nd} (1,86 млрд лет) колеблется от –3,32 до –4,55. Sm-Nd модельный возраст калевийских вулканитов Южной Печенги составляет ~2,5–2,6 млрд лет, а ε_{Nd} (1,86 млрд лет) — от –1,74 до –2,84 [42, табл. 1, 2; 43].

К югу от Печенги были проанализированы метапелиты тальинской толши и метаграувакки вырнимской толщи террейна Инари, относившиеся к неоархейским образованиям [33]. Sm-Nd модельный возраст этих пород равен 2,44–2,55 млрд лет, а *ε*_{Nd} (1,96 млрд лет) составляет +0,8–2,4 (табл. 1, № 40–42).

Модельный Sm-Nd-возраст сейдореченских вулканитов Имандра-Варзугской зоны палеопротерозойского палеорифтогена составляет 2,79–3,00 млрд лет, а ε_{Nd} (2448 млн лет) — +0,24–2,9 (табл. 3, № 15–19). По метариодацитам панареческой свиты томингской серии из Панареченской структуры проседания южной подзоны Имандра-Варзугской зоны, U-Pb-возраст которых равен 1907 ± 18 млн лет, получен Sm-Nd модельный возраст 2,02 млрд лет при величине ε_{Nd} (1,9 млрд лет) +2,89 [44]. Метавулканиты позднеятулийского возраста хребта Серповидный, по данным в работе [45], имеют Sm-Nd модельные возрасты в интервале 2,37–2,58 млрд лет, по нашим данным, они составляют 2,71 и 2,84 млрд лет при величине ε_{Nd} (2058 млн лет) от –1,8 и –2,62 соответственно (табл. 3, № 13, 14).

Таблица 3 Table 3

	Номер		Концентрация,		н		Ŧ			
Nº	пробы	побы Порода МКГ/Г		Изотопные отношения		$T_{\rm DM}$,	$\epsilon_{\rm Nd}(T)$			
п/п	Sample	Rock	Concentration,		Isotop	Isotopic ratios		(<i>T</i> , млн лет)		
	Sumpre	10011	mcg / g		· · · -		Ma	(T, Ma)		
			Sm	Nd	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd				
		К	ейвский т	бразцы В. П. І	Петрова)					
	Keivskiy Terrane (samples of V. P. Petrov)									
1	П-3-1	Метариодацит	2,44	11,83	0,1245	0,511281±10	3176	-1,67 (2680)		
2	П-3-2	Metarhyodacite	1,58	6,69	0,1430	0,511191±7	4188	-9,86 (2680)		
3	П-10-1		10,68	57,2	0,1129	0,511026±20	3194	-2,65 (2680)		
4	726	Амф-Би гнейс Amp-Bi gneiss	8,07	42,6	0,1145	0,511189±12	2998	0,00 (2680)		
5	П-10	Метариодацит Metarhyodacite	12,17	66,6	0,1106	0,511092±5	3027	-0,55 (2680)		
6	П-5	Гранитогнейс Granite gneiss	1,611	10,59	0,0919	0,510666±15	3091	-1,48 (2750)		
7	П-2207	Галька	1,673	6,51	0,1555	0,511223±12	4992	-		
		гранитов								
		Pebbles of								
		granites								
8	П-11	Метагаббро	4,72	25,1	0,1137	0,511196±14	2964	0,30 (2670)		
9	П-15	Metagabbro	3,44	12,72	0,1636	0,512058±7	3307	_		
10	П-1255	Метапелит	4,47	26,2	0,1032	0,510972±12	2989	-8,80 (1980)		
11	П-1256	Metapelite	5,87	27,3	0,1301	0,511194±12	3543	-11,32 (1980)		
12	П-1244-2		0,876	4,851	0,1092	0,510935±8	3212	-11,05 (1980)		
13	П-13-1	Метабазальт	6,27	28,5	0,1331	0,511644±3	2836	-2,62 (2058)		
14	П-13а	Metabasalt	5,95	28,2	0,1275	0,511609±5	2715	-1,82 (2058)		
Имандра-Варзугская зона (образцы Т. Б. Баяновой)										
Imandra-Varzuga Zone (samples of T. B. Bajanova)										
15	БТ-8/90	Метавулканит	9,22	48,7	0,1146	0,511209±5	2971	-2,25 (2435)		
16	БТ-9/91	Metavolcanic	10,36	53,6	0,1169	0,511268±5	2949	-1,76 (2440)		
17	БТ-100/91	rocks	8,21	43,6	0,1139	0,511190±4	2979	-2,26 (2448)		
18	10891		8,80	48,5	0,1097	0,511091±14	3002	-2,87 (2448)		
19	10548		3,12	16,92	0,1135	0.511310±9	2787	0,24 (2450*)		

Sm-Nd изотопные данные для пород Кольского региона Sm-Nd isotope data for rocks of the Kola region

Примечание. Районы отбора проб по порядковым номерам: 1–4 — Б. Кейвы; 5–11 — Зап. Кейвы; 12–14 — хребет Серповидный, 15–19 — сейдореченская свита.

Notes. Sampling regions by serial numbers: 1–4 — Bolshie Keivy; 5–11 — Western Keivy; 12–14 — Serpovidny Range, 15–19 — seydorechensky suite.

Преобладающее большинство пород западной части Лапландского гранулитового пояса имеют палеопротерозойские Sm-Nd модельные возрасты (2,18–2,56 млрд лет) при положительных в основном значениях ε_{Nd} [14]. Аналогичные результаты опубликованы в работах [46, 47]:

• гнейсы кондалитового комплекса и ортосланцы с Sm-Nd модельными возрастами в интервале 2,2–2,6 млрд лет имеют положительные значения ϵ_{Nd} (1950 млн лет) — от +0,58 до +5,2;

• у разновозрастных эндербитов с Sm-Nd модельными возрастами 2,16–2,36 млрд лет значения ϵ_{Nd} , рассчитанные на U-Pb-возраст 1,89–1,93 млрд лет, варьируют от +0,48 до –2,76, что свидетельствует о разном вкладе в ювенильный источник корового материала.

Sm-Nd изотопное исследование пород западной части пояса Тана (породы корватундровской, карекатундровской и других толщ по [33]), примыкающего с юга к Лапландскому гранулитовому террейну, выявило значительный разброс их Sm-Nd модельных возрастов — от 3,1–3,3 млрд лет для парагнейсов и 2,9–2,8 млрд лет — для диоритои гранитогнейсов, до 2,3–2,2 млрд лет — для метавулканитов и вариации величины ε_{Nd} от –4,5 до +4,4 [46]. Такие результаты подтверждают известные представления многих исследователей о поясе Тана как зоне тектонического меланжа, фрагменты которого сложены различными по составу, природе и возрасту (неоархейскими и палеопротерозойскими) породами.

Sm-Nd модельные возрасты пород Умбинского блока как фрагмента Лапландского гранулитового пояса также являются палеопротерозойскими (2,13–2,46 млрд лет), а значения ε_{Nd} (1,9 млрд лет) варьируют от –3,9 до +1,1 для кондалитов (глиноземистых гнейсов и кислых гранулитов), в то время как Sm-Nd модельные возрасты метавулканитов кандалакшской толщи Колвицкой структуры 2,7–2,6 млрд лет и ε_{Nd} (2,45 млрд лет) — от +0,1 до –0,4 для [13, 14].

К югу от Имандра-Варзугской структуры в пределах Терского и Стрельнинского террейнов все проблематичные и супракрустальные образования рассматривались как архейские; это комплекс древнейшего основания: сергозерская толща, а также песчаноозерская, высокоземельская и безымянная свиты по [33]. Согласно Sm-Nd-данным, полученным разными исследователями [12, 48], и нашим данным (табл. 1 и 2), породы с мезо- и неоархейскими Sm-Nd модельными возрастами 2,59-3,10 млрд лет (ТТГ гнейсы комплекса основания) располагаются в пределах Стрельнинского террейна. По литературным данным [12] и материалам О. А. Беляева (табл. 1, № 20-25) и А. А. Иванова (табл. 2, № 3-6, 10 и 13), кислые и средние метавулканиты и метаосадки серговской толщи Терского террейна имеют только палеопротерозойские Sm-Nd модельные возрасты (2,20–2,49 млрд лет). При этом из 12 образцов 10 имеют положительные величины ε_{Nd} (1960 млн лет) от 1,9 до 3,8, а 2 образца имеют величины –1,1 и –3,0, что указывает на заметную примесь архейского материала. Эти данные вместе с U-Pb-возрастами магматических цирконов 1,96–1,97 млрд лет, причем не только серговских метавулканитов, но и гранитогнейсов, позволяют рассматривать их в качестве палеопротерозойских (людиковийских) образований [48]. Палеопротерозойский ювенильный материал также был выявлен в Стрельнинском террейне (табл. 2, № 8, 11, 13), что согласуется с литературными данными [12]. Таким образом, подтверждено, что Стрельнинский террейн состоит как из архейских, так и из палеопротерозойских пород (рис.).

По палеопротерозойским сумий-сариолийским расслоенным базит-гипербазитовым интрузиям Кольского региона с возрастом 2,47–2,51 млрд лет получено большое количество Sm-Nd изотопных данных. Sm-Nd модельные возрасты пород мезоархейские (2,90–3,29 млрд лет), а значения ε_{Nd} отрицательные (от –0,63 до –6,06) [38; 49 (табл. 10,5 и 10,6) и др.]. У более поздних (людиковийских с возрастом 1,96 млрд лет) базит-гипербазитов с Sm-Nd модельным возрастом 2,2 млрд лет значения ε_{Nd} положительные (+1,21) [50].

Формирование палеопротерозойских ранних массивов габбро-анортозитовой формации связывается с сумийским этапом континентального рифтогенеза в условиях растяжения. Sm-Nd модельные возрасты пород Мончетундровского массива (рассчитаны только для небольшого количества образцов с 147 Sm/¹⁴⁴Nd-отношением меньше 0,14) 2,74–3,2 млрд лет, а ε_{Nd} , рассчитанные на возрасты 2450, 2470 и 2500 млн лет соответственно, в основном отрицательные (от –0,7 до –3,48). Получено также и несколько положительных значений ε_{Nd} (от +0,32 до +2,03) [51, 52]. Было высказано предположение о том, что данный массив сформировался «в результате неоднократного внедрения, дифференциации и кристаллизации расплавов, образовавшихся из единого эволюционирующего обогащенного мантийного источника с небольшой долей контаминированного корового материала и при возможном небольшом вкладе деплетированного мантийного источника» [51, с. 107].

Sm-Nd модельный возраст пород Мончеплутона от 3,09 до 2,91 млрд лет (при $\varepsilon_{Nd}(T)$ от +1,18 до -2,98), пород массива Главного хребта от 3,08 до 2,84 млрд лет (при $\varepsilon_{Nd}(T)$ от -0,48 до -1,58) [49].

Сумийские (раннепалеопротерозойские) анортозиты Лапландского гранулитового террейна для большинства образцов имеют отрицательные значения ε_{Nd} (от -0,3 до -2,1) и указывают на некоторую обогащенность мантийного источника. В анортозитах возраста 2,10–1,95 млрд лет отмечаются положительные значения ε_{Nd} (от +1,2 до +3,65) для большинства образцов, что указывает на деплетированный источник этих анортозитов [39]. Отрицательные значения ε_{Nd} для отдельных образцов и обогащение анортозитов более позднего массива Вулвара литофильными элементами можно объяснить коровой контаминацией [39].

Для преобладающего большинства гранитоидов ранних фаз палеопротерозойского возраста присущи в основном палеопротерозойские Sm-Nd модельные возрасты, в том числе как положительные, так и отрицательные значения $\varepsilon_{Nd}(t)$. Sm-Nd-возрасты гранитоидов более поздних фаз от мезоархейских до палеопротерозойских имеют отрицательные значения ε_{Nd} , которые варьируют в широких пределах.

Умбинский гранитоидный комплекс представлен тремя разновозрастными сериями — эндербитовой, чарнокитовой и гранитной, Sm-Nd модельные возрасты которых соответственно: 2,14–2,21 (ϵ_{Nd} (1941) от +0,5 до +1,2), 1,92–1,94 (ϵ_{Nd} (1912) от +3,2 до +3,6) и 2,25–2,50 млрд лет (ϵ_{Nd} (1912) от -0,9 до -1,5) [53]. Это свидетельствует о том, что «первые две серии произошли из деплетированных мантийных источников», в то время как «порфировидные граниты обнаружили заметную примесь материалов коры» [54, с. 152].

В состав массивов гранитоидов каскельяврского комплекса, расположенных на границе террейна Инари и Южной зоны Печенгской структуры, входят гранитоиды двух близких по возрасту интрузивных фаз. Sm-Nd модельные возрасты большинства пород первой фазы 2,1–2,3 млрд лет, а значения ε_{Nd} (1950) в основном положительные (от +2,7 до +0,9), тогда как для гранитоидов второй фазы с модельным возрастом 2,4–2,7 млрд лет значения ε_{Nd} (1950) в основном отрицательные [55]. Эти данные позволяют утверждать, что расплавы мантийного генезиса были более существенно контаминированы верхнекоровым сиалическим веществом на момент формирования гранитоидов второй фазы [55].

Посторогенные граниты лицко-арагубского комплекса, сформированные в мезо- и гипабиссальных фациях глубинности в четыре фазы (в интервале 1772–1762 млн лет назад), имеют палеопротерозойские (сумийские) и нео-мезоархейские (2,37-2,62 и 2,58-3,23 млрд лет) Sm-Nd модельные возрасты и высокие отрицательные значения ε_{Nd} (от –5,0 до –11,9), рассчитанные на возраст 1765 млн лет [35]. Исходя из этих данных «предполагается анатектический генезис исходных расплавов первых трех фаз при плавлении метасоматически измененных гранулитов нижней коры», а высокие отрицательные значения ε_{Nd} для гранитов четвертой фазы могут указывать на «неоархейский сиалический источник или на контаминацию палеопротерозойских расплавов веществом позднеархейской верхней коры» [35, с. 1173].

5. Обсуждение и выводы

1. Sm-Nd модельные возрасты наиболее древних пород раннего докембрия Кольского региона не превышают 3,1 млрд лет (за исключением одного анализа в табл. 3), то есть возраст их образования является более молодым. Это означает, что палео- и эоархейские образования в сколько-нибудь значимых объемах не обнажены на современной эрозионной поверхности региона. Вполне вероятно, что они могут залегать на более глубинных уровнях земной коры. Sm-Nd модельные возрасты метапелитов Кейвского террейна 3,0–3,5 млрд лет свидетельствуют о значительном вкладе в них привнесенного вещества из мезо-палеоархейских источников.

2. Очень часто отмечается большой разрыв между Sm-Nd модельными возрастами (t_{DM}) и U-Pb-возрастами неоархейских (до 200 млн лет) и палеопротерозойских (до 500 млн лет) интрузивных пород. В первом случае это свидетельствует об отсутствии или незначительном вкладе в эти породы материала из палеоархейских и тем более эоархейских источников, во втором — о значительном вкладе в палеопротерозойские породы вещества из архейского фундамента.

3. Согласно Sm-Nd изотопным данным и U-Pb возрастам цирконов, породы кондалитового комплекса Лапландского гранулитового террейна, Умбинского гранулитового террейна, породы серговской толщи и комплекса основания по [33] Терского террейна, а также каскамской и тальинской толщ по [33] террейна Инари имеют палеопротерозойские Sm-Nd модельные возрасты и представляют собой продукты новообразованной палеопротерозойской ювенильной коры.

4. В палеопротерозое уменьшается роль контаминации палеопротерозойских расплавов (как основного, так и кислого состава) коровым материалом от сумия до людиковия (от 2,5 до 2,1 млрд лет), и только в калевии и вепсии (1,9–1,7 млрд лет) она увеличивается, что, вероятно, связано с орогеническими процессами.

Благодарности

Авторы признательны В. В. Балаганскому за плодотворное обсуждение результатов и конструктивные замечания по поводу изложения материала, положенного в основу работы.

ЛИТЕРАТУРА

1. Проблемы геологии докембрия Карело-Кольского региона / отв. ред. В. А. Соколов. Петрозаводск: КарФАН СССР. 1976. 72 с. 2. Геологическая карта-схема Кольского полуострова, масштаба 1:1 000 000 / гл. ред. Г. И. Горбунов, сост.: В. Г. Загородный, В. И. Пожиленко, А. Т. Радченко. Л.: Аэрогеология, 1980. 3. Каталог геохронологических данных по северо-восточной части Балтийского щита / Т. Б. Баянова [и др.]. Апатиты: КНЦ РАН, 2002. 53 с. 4. Геохроногия и корреляция пород нижней части разреза Кольской сверхглубокой скважины / Е. В. Бибикова [и др.] // ДАН. 1993. T. 332, № 3. C. 360–363. 5. U-Pb zircon ages from Sorvaranger, Norway, and the western part of the Kola Peninsula, Russia / O. A.Levchenkov [et al.] // Geology of the eastern Finnmark — western Kola Peninsula region. Norg. geol. unders. 1995. Spec. Publ. 7. P. 29-48. 6. Кудряшов Н. М., Гавриленко Б. В., Апанасевич Е. А. Возраст пород архейского зеленокаменного пояса Колмозеро-Воронья: новые U-Pb-данные // Геология и полезные ископаемые Северо-Запада России. Апатиты: КНЦ РАН, 1999. С. 66–70. 7. Природа раннедокембрийских метаосадков в Лапландско-Кольском поясе по результатам ²⁰⁷Pb / ²⁰⁶Pb-датирования единичных зерен циркона и Sm-Nd изотопным данным по породам в целом / Д. Бриджуотер [и др.] // ДАН. 1999. Т. 336, № 5. С. 664–668. 8. Находки древнейших цирконов с возрастом 3600 млн лет в гнейсах кольской серии Центрально-Кольского блока Балтийского щита (U-Pb, SHRIMP-II) / Т. А. Мыскова [и др.] // ДАН. 2005. Т. 402, № 1. С. 82–86. 9. Arndt N. T., Goldstein S. L. Use and abuse of crust-formation ages // Geology. 1987. Vol. 15, No. 10. P. 893-895. 10. De Paolo D. J., Linn A. M. and Schubert G. The continental crustal age distribution: methods of determining mantle separation ages from Sm-Nd isotopic data and application to the southwestern United State // J. Geophys. Res. 1991. Vol. 96, B 2. P. 2071-2088. 11. Daly J. S., Mitrofanov F. P., Morozova L. N. Late Archaean Sm-Nd model ages from the Voche-Lambina area: implications for the age distribution of Archaean crust in the Kola Peninsula, Russia // Precambrian Res. 1993. Vol. 64. P. 189-195. 12. Timmerman M. J., Daly J. S. Sm-Nd evidence for late Archaean crust formation in the Lapland-Kola Mobile Belt, Kola Peninsula, Russia and Norway // Precambrian Res. 1995. Vol. 72. Р. 97-107. 13. Изотопный возраст пород Колвицкого пояса и Умбинского блока (юго-восточная ветвь Лапландского гранулитового пояса, Кольский полуостров) / В. В. Балаганский и др.1// Вестник МГТУ. 1998. Т. 1, № 3. С. 19-32. 14. Ion microprobe U-Pb zircon geochronology and isotopic evidence supporting a trans-crustal suture in the Lapland Kola Orogen, northern Fennoscandian Shield / J. S. Daly [et al.] // Precambrian Research. 2001. 105. P. 289–314. 15. Raczek I., Jochum K. P., Hofmann A. W. Neodymium and strontium isotope data for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and eight MPI-DING reference glasses // Geostandards and Geoanalytical Research. 2003. Vol. 27. P. 173–79. 16. Lugmair G. W., Carlson R. W. The Sm-Nd history of KREEP // Proc. 9th Lunar Planet. Sci. Conf. 1978. P. 689–704. 17. Bouvier A., Vervoort J. D., Patchett P. J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets // Earth Planet. Sci. Lett. 2008. Vol. 273 (1-2). P. 48-57. 18. Goldstein S. J., Jacobsen S. B. Nd and Sr isotopic systematics of river water suspended material implications for crystal evolution // Earth Plan. Sci. Letters. 1988. Vol. 87. P. 249-265. 19. The Lapland Kola Orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere / J. S. Daly [et al.] // European Lithosphere Dynamics. Geol. Soc. London. Memoirs. 2006. Vol. 32. P. 579-598. 20. FIRE seismic reflection profiles 4, 4A and 4B: Insights into Crustal Structure of Northern Finland from Ranua to Näätämö / N. L. Patison [et al.]; FIRE Working group // Finnish Reflection Experiment FIRE 2001-2005. Geological Survey of Finland, Special Paper 43 / T. Kukkonen, R. Lahtinen (eds). Espoo: Geologian tutkimuskeskus. 2006. Р. 161-222. 21. Кудряшов Н. М., Мокрушин А. В., Елизаров Д. В. Древнейший габброанортозитовый магматизм Кольского региона: геохимические и изотопно-геохронологические данные // Изотопные системы и время образования геологических процессов: материалы IV Рос. конф. по изотопной геохронологии. СПб., 2009. Т. І. С. 291–293. 22. Вревский А. Б., Львов П. А. Изотопный возраст и гетерогенность источников габброанортозитов массива Патчемварек (Кольский полуостров) // ДАН. 2016. Т. 469, № 2. С. 204–209. 23. Мезонеоархейская Беломорская эклогитовая провинция: интерпретация геохронологических данных / М. В. Минц [и др.] // Изотопные системы и время геологических процессов: материалы IV Рос. конф. по изотопной геохронологии (2-4 июня 2009 г. Санкт-Петербург). 2009. Т. II. С. 25–28. 24. Беломорская эклогитовая провинция: уникальные свидетельства мезо-неоархейской субдукции и коллизии / *М. В. Минц [и др.]* // ДАН. 2010. Т. 434, № 6. С. 776–781. 25. Щипанский А. А., Конилов А. Н. Эклогиты Беломорского мобильного пояса на Кольском полуострове // Гранит-

зеленокаменные системы архея и их поздние аналоги. Путеводитель экскурсии. Петрозаводск: КарНЦ РАН. 2009. С. 62–74. 26. Эклогиты Беломорского пояса / А. А. Шипанский /и др.1// Геология и геофизика. 2012. Т. 53. № 1. С. 3–29. 27. Каулина Т. В. Образование и преобразование циркона в полиметаморфических комплексах. Апатиты: КНЦ РАН. 2010. 144 с. 28. Метаморфическая эволюция архейских эклогитоподобных пород района Широкой и Узкой Салмы (Кольский полуостров): геохимические особенности циркона, состав включений и возраст / Т. В. Каулина [и др.] // Геохимия. 2010. № 9. С. 879–890. 29. U-Pb Dating and Hf-isotope Analysis of Zircons from Salma Eclogites, Kola Peninsuia, Russia (PART I) / E. A. Belousova [et al.] // GEMOC Report IMP-2005/1 GEMOC. 2004. 30. Moposoea J. H. Баянова Т. Б., Серов П. А. Основные этапы гранитообразования в архее северо-востока Балтийского щита (на примере полигона Воче-Ламбина) // Литосфера. 2011. № 6. С. 14–26. 31. Гомологи архейских пород разреза сверхглубокой скважины в северной части Беломорского подвижного пояса (полигон Воче-Ламбина) / Л. Н. Морозова [и др.] // ДАН. 2012. Т. 442, № 2. С. 215–218. 32. Ниткина Е. А. Изотопное U-Pb-датирование древнейших пород комплекса ТТГ Ингозерского блока (Кольский полуостров) // Актуальные проблемы геологии докембрия, геофизики и геоэкологии. Петрозаводск: КарНЦ РАН, 2012. С. 45-47. 33. Геологическая карта Кольского региона (северо-восточная часть Балтийского щита) масштаба 1:500 000 / В. В. Балаганский [и др.]; гл. ред. Ф. П. Митрофанов. Апатиты, 1996. 34. Геология архея Балтийского щита / Н. Е.Козлов [и др.]. СПб.: Наука, 2006. 329 с. 35. Ветрин В. Р., Родионов Н. В. Sm-Nd-систематика и петрология посторогенных гранитоидов северной части Балтийского щита // Геохимия. 2008, № 11. С. 1158–1175. 36. Неоархейский эндербит-гранулитовый комплекс района Пулозеро — Полнек-тундра Центрально-Кольского блока: этапы и термодинамические режимы развития (Кольский полуостров) / Л. С. Петровская [и др.]. Апатиты: КНЦ РАН, 2010. 78 с. 37. Автономные анортозиты северо-восточной части Балтийского щита / Ф. П. Митрофанов [и др.] // Петрология магматических и метаморфических комплексов: материалы науч. конф. Томск: ЦНТИ, 2000. С. 46-50. 38. Баянова Т. Б. Возраст реперных геологических комплексов Кольского региона и длительность процессов магматизма / под ред. акад. Ф. П. Митрофанова. СПб.: Наука, 2004. 174 с. 39. Анортозиты северо-восточной части Балтийского щита / Ф. П. Митрофанов [и др.] // Эволюция петрогенеза и дифференциации вещества Земли: материалы Х Всерос. петрографического совещания «Петрография XXI века». Апатиты: КНЦ РАН, 2005. Т. 1. С. 149–153. 40. Ветрин В. Р., Родионов Н. В. Геология и геохронология неоархейского анорогенного магматизма Кейвской структуры, Кольский полуостров // Петрология. 2009. Т. 17, № 6. С. 578–600. 41. Балаганский В. В., Мыскова Т. А., Скублов С. Г. О возрасте кислых метавулканитов лебяжинской толщи архея, Кольский полуостров, Балтийский щит // Геология и геохронология породообразующих и рудных процессов в кристаллических щитах: материалы Всерос. конф. Апатиты, 2013. С. 17–20. 42. Магматизм, седиментогенез и геодинамика Печенгской палерифтогенной структуры / В. Ф. Смолькин [и др.]. Апатиты: КНЦ РАН, 1995. 256 с. 43. Скуфьин П. К., Баянова Т. Б. Раннепротерозойский вулкан центрального типа в Печенгской структуре и его связь с рудоносным габбро-верлитовым комплексом (Кольский полуостров) // Петрология. 2006. Т. 14, № 6. С. 683–701. 44. Скуфьин П. К., Баянова Т. Б., Митрофанов Ф. П. Изотопный возраст субвулканических гранитоидных пород раннепротерозойской Панареченской вулканотектонической структуры (Кольский полуостров) // ДАН. 2006. Т. 408, № 6. С. 805-809. 45. Первые изотопные данные о палеопротерозойсом возрасте амфиболитов хребта Серповидный (Кейвский террейн, Балтийский щит) / Т. А. Мыскова [и др.] // ДАН. 2014. Т. 459, № 4. С. 484–489. 46. Эволюция процессов метаморфизма в Лапландском гранулитовом поясе (ЛГП) и поясе Тана: U-Pb, Sm-Nd и Rb-Sr-данные / Т. В. Каулина [и др.] // Новые данные по геологии и полезным ископаемым Кольского полуострова. Апатиты: КНЦ РАН, 2005. С. 34-53. 47. Последовательность геологических процессов в центральной и северо-восточной части Лапландского гранулитового пояса: изотопногеохимические данные по циркону и результаты геолого-петрологических исследований / Т. В. Каулина [и др.] // Геохимия. 2014. № 7. С. 625–645. 48. The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere / J. S. Daly [et al.] // European Lithosphere Dynamics Geological Society / D. G. Gee, R. A. Stephenson. London, 2006. Memoirs 32. Р. 561-578. 49. Расслоенные интрузии Мончегорского рудного района: петрология, оруденение, изотопия, глубинное строение / В.Ф. Смолькин [и др.]; под ред. Ф. П. Митрофанова, В. Ф. Смолькина. Апатиты: КНЦ РАН, 2004. Ч. 2. 177 с. 50. Минерагения Ондомозёрского гипребазит-базитового интрузива юговосточного обрамления Имандра-Варзугского проторифта (Кольский регион) / Ф. П. Митрофанов [и др.] // Новые данные по геологии и полезным ископаемым Кольского полуострова. Апатиты: КНЦ РАН, 2005. С. 105-123. 51. Мончетундровский массив: геология, петрография, геохронология, геохимия, ЭПГ-минерализация (новые данные) / Л. И. Нерович [и др.] // Проект Интеррег-Тасис: Стратегические минеральные ресурсы Лапландии основа устойчивого развития Севера (на рус. и англ. яз.). Апатиты: КНЦ РАН. 2009. Вып. II. С. 97–112. 52. Новые Nd-Sr изотопно-геохимические исследования пород палеопротерозойского ЭПГ-содержащего массива Мончетундра (Фенноскандинавский щит) / Е. Л. Кунаккузин [и др.] // Вестник МГТУ. 2015. Т. 18, № 2. С. 269–279. 53. Isotope data (U-Pb and Sm-Nd) on the Umba granitoid complex, Kola Peninsula, Russia / R. V. Kislitsyn [et al.]// Abstr. of the 4th SVEKAIAPKO workshop. Lammi, 1999. Р. 34. 54. Балаганский В. В., Глебовицкий В. А. Лапландский гранулитовый пояс и комплементарные структуры // Ранний докембрий Балтийского щита. СПб.: Наука, 2005. С. 124-175. 55. Ветрин В. Р., Туркина О. М., Родионов Н. В. U-Pb-возраст и условия формирования гранитоидов южного обрамления Печенгской структуры (Балтийский щит) // ДАН. 2008. Т. 418, № 6. С. 806-810.

Сведения об авторах

Пожиленко Владимир Иванович — кандидат геолого-минералогических наук, старший научный сотрудник Геологического института ФИЦ КНЦ РАН E-mail: pozhil@geoksc.apatity.ru Sm-nd изотопные исследования раннедокембрийских пород Кольского региона: краткий обзор...

Серов Павел Александрович — кандидат геолого-минералогических наук, старший научный сотрудник Геологического института ФИЦ КНЦ РАН

E-mail: serov@geoksc.apatity.ru

Петров Валентин Петрович — доктор геолого-минералогических наук, директор Центра гуманитарных проблем Баренц-региона ФИЦ КНЦ РАН

E-mail: petrov@admksc.apatity.ru

Author Affiliation

Vladimir I. Pozhilenko — PhD (Geology & Mineralogy), Senior Researcher of Geological Institute of the KSC of the RAS E-mail: pozhil@geoksc.apatity.ru Pavel A. Serov — PhD (Geology & Mineralogy), Senior Researcher of Geological Institute of the KSC of the RAS E-mail: serov@geoksc.apatity.ru Valentin P. Petrov — Doctor of Sciences (Geology & Mineralogy), Director of Center for Humanitarian Problems of the Barents Region of the KSC of the RAS

E-mail: petrov@admksc.apatity.ru

Библиографическое описание статьи

Пожиленко, В. И. Sm-Nd изотопные исследования раннедокембрийских пород Кольского региона: краткий обзор и новые данные / В. И. Пожиленко, П. А. Серов, В. П. Петров // Вестник Кольского научного центра РАН. — 2017. — № 1 (10). — С. 37–49.

Reference

Pozhilenko Vladimir I., Serov Paul A., Petrov Valentin P. Sm-Nd Isotope Studies of Early Precambrian Rocks of the Kola Region: a Brief Overview and New Data. Herald of the Kola Science Centre of the RAS, 2018, vol. 1 (10), pp. 37–49 (In Russ.).