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Since the time of Newton and Clairaut it was adopted that the Earth is an inert, powerless 

body and the planet’s rotation is effected by the inertial forces. The reason of that was as 

follows. While developing the theory of the Earth’s figure and considering the planet as a 

rotating liquid body being in the solar uniform force field, it was concluded that the resultant of 

the body gravitational forces is equal to zero [1]. On that basis a speculative idea of hydrostatic 

equilibrium of the planet’s mass and its inertial rotation has been accepted. That idea up to the 

present  remains valid.   

During the  last four decades, while studying the Earth’s gravitational field by means of the 

geodetic artificial satellites, multiple measurements of zonal and tesseral gravitational moments 

were carried out. Analysis of the obtained results shows that the Earth does not stay in 

hydrostatic equilibrium. The Earth figure deviates from the normal ellipsoid of rotation 

corresponding to hydrostatic equilibrium of the planet by a value equal to about square of its 

oblateness, i.e. by ~(1/300)2. The measurements also show that the gravitational field lines 

decline from the normal throughout the Earth surface and do not create the central force field 

[2, 3, 4].  Moreover,  the potential energy of the inert Earth model appears to be by three order 

of magnitude less then the kinetic one. This contradicts to the fundamental demand of the virial 

theorem, where the potential energy must be twice as much of the kinetic energy. 

The problems related to the Earth rotation were discussed recently by the NATO 

Workshop [5]. Two of them, namely, fluctuation in the length of day and the observed 

Chandler’s pole wobble with a component of 14 months period (against the Euler’s rigid body 

model giving 10 months), were found as remaining ‘largely unsolved’. These facts and also the 

registered changes in the gravitational force field, in angular velocity of the Earth rotation, in 

plate tectonics and in many other dynamical effects evidence that new approaches for the 

problem solution should be developed. 

It is actually nonsense to solve the problem of the Earth dynamics on a basis of the 

hydrostatics. In fact the Earth is a self-gravitating body. The own force field at the body surface 

is by three orders of magnitude stronger of the Sun’s. And the main point is, that the 

gravitational as well as inertial forces, by their physical nature, develop volumetric, 4π effects. 
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The planet’s internal forces  can not be reduced to a resultant vector by their definition. We 

prove below, that the forces manifest inside pressure and are reduced to a resultant spatial 

envelope of pressure with a fixed radius. Hence, the own internal force field, which is induced 

by gravitational interaction of the Earth masses, should to be the cause of dynamical effects of 

the same body masses. The above physical ideas underlie in the developed approach to solve 

the problem of the Earth dynamics in the own force field, which is studied by the method of 

moments in the framework of classical mechanics of conservative (uniform) and dissipative 

(nonuniform) continuous media. 
 

                              2. Reduction of the gravitational and inertial forces to  

                                  a resultant spheroid (ellipsoid) of the force pressure  

Consider the Earth as a self-gravitating sphere with uniform and one-dimensional 

interacting media. The motion of the Earth proceeds both in its own  and the Sun’s force field. 

It’s known from theoretical mechanics that any motion of a body can be represented  by 

translation  of its center of mass, rotation around the center of mass and changes in the shape 

and structure of the body mass [6]. In the two-body problem the last two effects are neglected 

due to their smallness.  

In order to study the Earth motion in the own force field the translation (orbital) motion 

relative to the fixed point (the Sun) should be separated from the two others. After that the 

rotation around the geometric center of the Earth masses under the action of the own force field 

and changes in shape and structure (oscillation) can be considered. Such separation is required 

only for the moment of inertia, which depends on what frame of reference is selected. The force 

function depends on a distance between the interacted masses and does not depend on  

selection of a frame of reference [6]. The moment of inertia of the Earth relative to the solar 

reference frame should be split into two parts. One is the moment of the body mass center 

relative to the same frame of reference and the moment of inertia of the planet’s mass relative 

to the own mass center.  

So, set up the absolute Cartesian coordinates Ocξηζ with the origin in the center of the 

Sun and transfer it to the system Oxyz with the origin in the geometrical center of the Earth’s 

mass (Fig.1). Then, the moment of inertia of the Earth in the solar frame of reference is 

I m Rs i i= ∑ 2 ,                                                                                                          (1) 

where mi is the Earth’ piece of mass; Ri is its distance from the origin in the same frame. 

The Lagrange’s method is applied to separate the moment of inertia (1). The method is 

based on his algebraic identity 
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where ai and bi are whichever values; n is any positive number.  

Jacobi was the first who performed the mathematical transformation for separation of the 

moment of inertia of  n  interacting mass points into two algebraic sums [6, 7, 8]. He has shown 

that if we denote (Fig.1) 

ξi = xi + A;       ηi = уi + B;              ζi = zi + C;  

m Mi∑ = , m MAi i∑ =ξ ;  m MBi i∑ =η ;  m MCi i∑ =ζ ,                                   (3) 

where A, B, C are coordinates of the mass center in the solar frame of reference, 

then, using identity (2), one has 
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Since 
MAxmAmxmmMA iiiiiii +=+== ∑∑∑∑ ξ  , 

then 
m xi i∑ = 0 , and also m yi i∑ = 0 , m zi i∑ = 0 . 

Now, the moment of inertia (1) acquires the form 

( ) ( )m R M A B C m x y zi i i i i i∑ ∑= + + + + +2 2 2 2 2 2 2 ,                                                  (4) 
where 

M(A2 + B2 + C2) = MR2
m ,                                                                                         (5) 

mi∑ ( xi
2 + yi

2 + zi
2 )=M r2

m                                                                                                                               (6)  

M is the Earth’s mass; Rm and rm are radii of inertia of the Earth in the Sun’s and the Earth’s 

frame of reference. 

Thus, we separated the moment of inertia of the Earth’s mass, rotating around the Sun in 

the inertial frame of reference into two algebraic terms. The first one (5) is the Earth’s moment 

of inertia in the solar reference system Oсξηζ. The second term (6) presents the moment of 

inertia of the Earth in the own frame of reference Oxyz. The Earth mass here is  distributed over 

the spherical surface with a reduced radius of inertia rm. In literature geometrical center of mass 

O in the Earth reference system is erroneously identified with the center of inertia and center of 

gravity of the planet. 

For farther consideration of the problem of the Earth dynamics we accept the polar frame 

of reference with its origin in center O. Then expression (6) for the Earth polar moment of 

inertia Ip acquires the form 
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Ip = mi∑ ( xi
2 + yi

2 + zi
2 )= mi∑ ri

2=Mrm
2.                                                             (7) 

Now the reduced radius of inertia rm, which draws a spherical surface, is 

rm
2=

m r
M

i i
2∑ ,                                                                                                            (8) 

where mi∑ =M is the Earth’s mass relative to the own frame of reference. 

Taking into account the spherical symmetry of the uniform and one-dimensional Earth, we 

consider the sphere as concentric spherical shells with mass dm(r)=4π r2ρ(r)dr. Then the 

expression (8) in the polar reference system can be rewritten in the form 
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where rm
2=β 2R2, ρ(r) is the law  of radial density distribution;  R is radius of the sphere; β 2 is a 

dimensionless coefficient of the reduced spheroid (ellipsoid) of  inertia β2MR2.  

The value  of β 2 depends on the density distribution ρ(r) and earlier [8] it was defined as a 

structural form-factor of the polar moment of inertia. 

Analogously, the reduced radius of gravity rg, expressed as a ratio of the moment of 

gravitational forces of the spherical shell with density ρ(r) to the moment of the interacting 

forces of mass distributed over the shell with radius R can be written as 
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The gravity radius, expressed through the force function is 
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where m(r)=4 ,)(
0

2 drrr
r

ρ∫  rm
2=α 2R 2, G is the gravitational constant. 

The value  of α2 is a dimensionless coefficient of the reduced spheroid (ellipsoid) of  gravity    

α 2GM 2/R. It depends on the density distribution ρ(r) and earlier [8] was defined as a structural 

form-factor of the force function.   
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Numerical values of the dimensionless form-factors α2 and β2 for a number of density 

distribution laws ρ(r), obtained by integration of the numerators in Eqs.(10) and (12) for the 

polar moment of inertia and the force function, are presented in Table 1 [8].  

 
Table I. Numerical values of form-factors α  and  β2  for radial distribution of mass density and 

for polytropic models 
___________________________________________________________________________ 

Distribution law                           α                                    β2
⊥                                     β2 

Index of polytrope 
___________________________________________________________________________ 

                                          Radial distribution of mass density 

ρ(r)=ρ0                                         0.6                                 0.4                                    0.6 

ρ(r)=ρc(1-r/R)                              0.74                               0.27                                  0.4 

ρ(r)=ρc(1-r2/R2)                           0.71                               0.29                                  0.42 

ρ(r)=ρcexp(1-kr/R)                      0.16k                             8/k2                                   12/k2 

ρ(r)=ρcexp(1-kr2/R2)                  k
2π

                              1/k                                    1.5/k                 

ρ(r)=ρcδ(1-r/R)                            0.5                                 0.67                                  1.0       

                                                             Politrope model 

0                                                   0.6                                 0.4                                    0.6  

1                                                   0.75                               0.26                                  0.38 

1.5                                                0.87                               0.20                                  0.30 

2                                                   1.0                                 0.15                                  0.23 

3                                                   1.5                                 0.08                                  0.12 

3.5                                                2.0                                 0.045                                0.07 

 

Note that the values of the polar Ip and axial Ia moments of inertia are related as Ip=3/2Ia.. 

It follows from the Table I that for a uniform sphere with ρ(r)=const its reduced radius of 

inertia coincides with the radius of gravity. Here both dimensionless structural coefficients α2 

and β2 are equal to 3/5, and the moments of gravitational and inertial forces are equilibrated.  
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from where 
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rm = rg = 3 5 2/ R = 0,7745966R.                                                                           (14) 

For the nonuniform sphere at ρ(r) ≠ const  from Eqs.(10)-(12) one has 

0< r
R

r
R

m g
2

2

2

2

3
5

< < <1.                                                                                               (15) 

It follows from inequality (15) that in comparison with the uniform sphere, the reduced 

radius of inertia of the nonuniform body decreases and the reduced gravity radius increases. 

Because of rm ≠  rg and rm <  0.77R <  rg, torque appears  between the unbalanced gravitational and 

inertial volumetric forces of the shells. Then from Eq.(15) one has 

rg=rgo+ rgt     and      rm=rmo - rmt ,                                                                         (16) 

where subscripts 0 and t relate to the uniform and nonuniform sphere                                                                   

In accordance with (15) and (16) rotation of shells of a one-dimensional body should be  

hinged-like and asynchronous. In the case of mass density increases to the body surface, then 

the signs in (15) and (16) are reversed. This remark is important because direction of rotation of 

a self-gravitating body is function of its mass density distribution.     

The main conclusion from the above consideration is that the inner force field of a self-

gravitating body is reduced to a closed envelope (spheroid or ellipsoid) of gravitational 

pressure, but not to a resulting force passing through the geometric center of the masses. In the 

case of a uniform body the envelopes have spherical shape and both gravitational and inertial 

radii coincide. For a nonuniform body radius of inertia does not coincides with the radius of 

gravity, the reduced envelope is closed but has non-spherical (ellipsoidal) shape. Analytical 

solutions done below justify the above. 
            

             3. Dynamical equilibrium of motion and equations of rotation and oscillation 

In order to derive conditions of dynamical equilibrium and to write analytical equations of 

motion  the structure of the potential and kinetic energy of the body should be expanded. 

Relationship (16) prompts, that in order to solve dynamical problem of a nonuniform 

gravitating body, the force function and the moment of inertia should be separated into additive 

components related to the uniform part of a system and its nonuniformities. Such a separation 

of the dimensionless form-factors α2 and β2  was done by Garcia Lambas et al. [9] with our 

interpretation [10] by introduction of an auxiliary function  

Ψ( s ) = ( )ρ ρ
ρ

r
s

x dx
−

∫ 0

00

2 ,                       
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where s = r/R  is ratio of the running radius to radius of the sphere R;  ρo the mean density of 

the sphere of radius r ; ρr is the radial density; x is the running coordinate; the value (ρr - ρo) 

satisfies drr
R

o
or

2)(∫ − ρρ = 0   and  the function Ψ(1)=0. 

The function Ψ( s ) expresses radial change of mass density of the nonuniform sphere 

relative to its mean value at the distance r/R. After the variable change by the above function  

the potential U and kinetic K=Jpω 2 energies of the nonuniform self-gravitating sphere were 

expanded into the form[10]   

U=α GM
R

xdx
x

dx GM
R

2 2
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6MR xdx MR= −
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⎦
⎥∫ .                                                                               (18) 

or after reduction    

U=(α2
0 + α2

t + α2
γ )

GM
R

2

,                                                                                   (19)  

K=(β0
2-2βt

2)MR2ω2,                                                                                               (20) 

where α2
0 = β0

2  and 2α2
t = βt

2, and subscripts o , t, γ mean the radial, tangential and dissipative 

components of the considered values. 

Because the potential and kinetic energies of a uniform body are equal (α0
2=β0

2=3/5) , then 

U0=K0 ,                                                                                                                   (21) 

E0=U0+K0 = 2U0 .                                                                                                 (22) 

From the same Eqs.(17)-(18) the dynamical equilibrium for the interaction between 

uniform part and nonuniformities (tangential component) are written as 

2Ut=Kt ,                                                                                                                  (23) 

Et=Ut+Kt=3Ut,,                                                                                                      (24) 

where E0 , Et ,U0 , K0 , Ut , Kt  are the corresponding total, potential and kinetic oscillation and  

rotation energies of the above interaction. 

Eqs.(21)-(24) present the averaged virial theorem for a self-gravitating uniform and 

nonuniform system, which serves as the condition of their dynamical equilibrium [11]. 

Evidently, the potential energy Uγ  in (19) irradiating from the body’s outer shell is irretrievably 

lost and provides mechanism of the body evolution. In accordance with classical mechanics, for 

the above considered nonuniform gravitating body, being a dissipative system, the torque N is 
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not equal to zero, the angular momentum L of the sphere is not a conservative parameter, and 

the energy is continuously spent during the motion, i.e. 

N dL
dt

= > 0,  L const≠ . , E≠const.>0. 

Physically ”a system cannot be conservative if friction or other dissipation forces are present, 

because F.ds due to friction is always positive and integral cannot  vanish”[12]: 

F ds⋅∫ >0. 

After we found that the resultant of the body’s gravitational field is not equal to zero and 

the system’s dynamical equilibrium is kept by virial relationship between the potential and 

kinetic energies, the equations of a self-gravitating body motion can be derived. 

Earlier the Jacobi’s virial equation was applied to study dynamics of a self-gravitating 

sphere [8, 10, 13]. Jacobi [7] derived it from the Newton’s equations of motion of n mass points 

and reduced the n-body  problem to the particular case of one-body task with two independent 

variables, namely, with the force function and the polar moment of inertia, in the form [6, 8]  

Φ&&  =2E - U                                                                                                             (25) 

where Φ=1/2I is the Jacobi function; I is the polar moment of inertia; E=U+K is the total 

energy; U and К are the potential and kinetic energy. 

Eq.(25) represents the energy conservation law and describes, through scalar U and Φ 

characteristics, the gravitational interaction of n particles (n→∞) constituting the system. 

Eq.(25) is also derived from the Euler’s equations  for continuous medium, and from equations 

of Hamilton, Einstein, and quantum mechanics [8]. Its time averaging form U=2K atΦ&&  =0 

gives the Clausius’ virial theorem. It’s known that Clausius deducing the theorem for 

application to thermodynamics and, in particular, to assessing and designing of the Carnot’s 

machines. As the machines operate in the Earth’ outer force field, Clausius introduced the 

coefficient 1/2 to the term of the kinetic energy, i.e. 

2

2
1

i
i

ivmK ∑= . 

As Jacobi has noted, the meaning of the introduced coefficient was to take into account 

only the kinetic energy generated by the machine, but not by the Earth gravitational force [7]. 

That was  demonstrated by the work of a steam hammer for driving in piles. The machine just 

rises up the hammer, but it falls down under the action of the force of gravity. That is why the 

coefficient 1/2 of the kinetic energy of a uniform self-gravitating body in Eqs. (21)-(22) has 

disappeared. In the own force field the body moves due to release of the own energy. 
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Because of two independent variables U andΦ&&   Eq.(25) was used in analytical dynamics 

mainly for qualitative analysis of stability of gravitating systems [6, 7, 14]. 

Earlier [8] by means of relation U Φ ≈ const, an approximate solution of Eq.(25) for a 

nonuniform body was obtained. Now, after expansion of the force function and polar moment 

of inertia, Eq.(25) at Uγ=0 can be written separately for the radial and tangential components. 

In accordance with (22) and (24) the two equations are as follows 

Φ&& 0 = −
1
2 0 0E U ,                                                                                                     (26) 

Φ&& t = −
1
3

E Ut t .                                                                                                      (27) 

Taking into account the relationship (21) and (23) between the potential energy and the 

polar moment of inertia through the structural coefficients α0=β0
2 and 2αt=βt

2, both Eqs. (26), 

and (27) are reduced to an equation with one variable and have rigorous solution: 

Φ
+−=Φ

BA&& ,                                                                                                (28) 

where A and B are constant values. 

The general solution of Eq.(28) is [8]  

[Φ = −
B
A

1 εcos(ξ−ϕ)],                                                                                        (29) 

t = 4
2 3 2

B
A( ) / [ξ−εsin(ξ−ϕ)].                                                                                    (30) 

Here ε and ϕ are integration constants depending on the initial values of Jacobi function Φ and 

its first derivativeΦ&  at the time moment t0; ξ is auxiliary independent variable (here, the time is 

independent variable); A=A0=_1/2E0>0; B=B0=U0 Φ0  for radial oscillations; 

A=At=_1/3Et,>0;  B=Bt=Ut Φ t  for rotation of the body. 

The expressions  for the Jacobi function and its first derivative in the explicit form can be 

obtained after transforming into the Lagrangia series [8] 

⎥
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Radial frequency of oscillation ωor and angular velocity of rotation ωtr of the shells are [8]  

ωor=
U
J

GM
r

Gor

or

r r

or
r= =

α
β

π ρ0
2 3 0

4
3

,                                                                   (31) 
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ωtr= = =
2 2 4
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β

π ρ   ,                                                              (32) 

where U0r and Utr are radial and tangential components of the force function (potential energy); 

J0r and Jtr=2/3J0r  are the polar and axial moment of inertia; ρ ρ0
1

r
r

r
VV

r dV
r

= ∫ ( ) ; ρ(r) is the law 

of the radial density distribution; ρ0r is mean density value of the sphere with a  radius r; Vr is 

the sphere volume with radius r; 2αtr=βtr
2; ker is the dimensionless coefficient of the energy 

dissipation or tidal friction of the shells equal to the shell oblateness.  

The relations  (29)-(32)  express  the Kepler’s laws of rotation. In the case of uniform 

mass density distribution the frequency (31) of oscillation of the sphere’s shells with radius r is 

ωor =ωo=const. It means that here all the shells are oscillating with the same frequency. Thus, it 

appears that the only nonuniform systems are rotating. 

The oblateness. coefficient ker for the outer shell is determined by Eqs.(31)-(32) and is 

equal to ratio of the radial oscillation frequency to the angular velocity, i.e. 

k
G

e
t t= =

ω
ω

ω

π ρ

2

0
2

2

0
4
3

. 

It was found, that in general case of a triaxial (a, b, c) ellipsoid with the ellipsoidal law of 

density distribution, the dimensionless coefficient ke∈[0,1] is equal to [8]  

k F f
r =

( , )
sin
ϕ
ϕ

  a b c
a

2 2 2

23
+ + , 

where ϕ= −arcsin a c
a

2 2

2  ,f= −
−

a b
a c

2 2

2 2 , and F(ϕ,f) is an incomplete elliptic integral of the 

first degree in normal Legendre’s form. 
 

                                   4. Oscillations and rotation of the Earth 

Eq.(31) shows that the body’s radial oscillations are not dependant on  phase state of the 

mass and are determined by its mean density. Correctness of Eq.(31) was confirmed by the 

observation results. By Eq.(31) and by our measurements period of radial oscillation of the 

Earth’s outer shell is 1.4 h [8, 15, 16] and the Sun’s one is ~2.8 h  [17]. By Eq. (32) period of 

rotation of the Earth’ outer shell is ~ 24 h. Here the coefficient of dynamical oblateness is ker = 

1/289.37 which was determined by the satellite measurements [2]. 

The Earth axis obliquity of the upper shell is determined by ratio of torques (potential 

energy) of the uniform (equilibrated) and nonuniform (unbalanced) body state  
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  Θ = 23.5o ,                         (33)    

where αp  is the perturbation coefficient of the Sun and Moon which we accept equal to 0.006. 

In order to understand physics of the Earth precession and wobbling effects, its mass 

density differentiation  should be clarified.  
 

                                   5. Gravitational mass density differentiation 

The Earth has spherical shell structure. In order to understand physics of the gravitational 

differentiation in terms of the Earth mass density and the nature of the Archimedes and Coriolis 

forces, let us consider interaction effects between the body envelopes. 

It’s known from the Newton’s theorem of the gravitational interaction between a material 

point and a spherical layer, that the latter does not affect on the point located inside. To the 

contrary, the outside located material point is affected by the layer. Roche’s tidal dynamics is 

based on the above theorem. His approach is as follows. 

There are two interacting bodies of masses M and m (Fig.2a). Let  M>>m and R>>r, 

where r is the radius of the body m, and R is the distance between the bodies M and m. 

Assuming that the mass of the body M is uniformly distributed within the sphere of radius R, 

we can write the accelerations of the points A and B of body m as 

( )
q GM

R r
Gm
rA =

−
−2 2 ,         

( )
q GM

R r
Gm
rB =

+
+2 2 .  

The relative tidal acceleration of the points A and B is 

( ) ( )
q G M

R r
M

R r
m

rAB =
−

−
+

−
⎡

⎣
⎢
⎢

⎤

⎦
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=2 2 2

2  

( )
=

−
−

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
≈

4
3

4 23

2 2 2

π ρ ρG R Rr

R r
rM m  ( )8

3
2π ρ ρGr M m− .                                    (34) 

Here ρ M M= / 4
3
πR3 and ρm m= / 4

3
π r3  are the mean density distribution for the sphere of 

radius R and r. Roche’s criterion states that the body with a mass m  is stable against  the tidal 

force disruption of the body M if the mean density of the body m is at least double that of the 

body M in the sphere of radius R. Roche considered the problem of the interaction between two 

spherical bodies without any interest to their creation history and to haw the forces appeared. 

We use the Roche’s tidal dynamics to assess the stability of a nonuniform spherical envelope. 
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 Apply Roche’s dynamics to a spherical layer of radius R and thickness r R RB A= −  (Fig. 

2b). The layer of mass m and mean density ρm=m/4π RA
2r is affected in point A by tidal force of 

the sphere of radius RA. The mass of the sphere is M and its mean density ρΜ = M / 4
3

3πR A
. .  The 

tidal force in point B is generated by the sphere of radius R+ r and mass M+ m. Then the 

accelerations of the points A and B are  

q GM
RA

A

= 2        and      
( )

( )
q

G M m

R r
B

A

=
+

+
2 .  

The relative tidal acceleration of the points A and B is 

( ) ( )
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q GM
R R r
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R r

G G r Gr R r
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= −
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8
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4 4 2
3

2 2 2

π ρ π ρ π ρ ρ , .

                                       (35) 

Eqs.(34)-(35) give a possibility to understand, in principle, the nature of attraction and 

repulsion of the body mass and the nature of the Earth geotectonic and earthquake effects. 

It follows from the above considered task of tidal acceleration of an outer nonuniform 

spherical layer, that at ρМ≠ρm Eq.(35) reveals a mechanism of the gravitational density 

differentiation of masses. If ρМ < ρm , then the shell immerses (is attracted) up to the level of 

ρМ=ρm. At ρМ >ρm the shell floats up to the level of ρМ=ρm and at ρМ >2/3ρm  the shell becomes 

a self-gravitating one. Thus, in case when the density increases to the sphere’s center, which is 

the Earth’s case, then each overlying stratum appears to be in a suspended state due to 

repulsion by the Archimedes’ forces which, in fact, are a radial component of the gravitational 

interaction forces. 

Effect of the gravitational differentiation of mass explain the nature of creation of the  

Earth’s crust and the oceans, geotectonic, orogenic and seismic processes, including the 

earthquakes. All those phenomena appears to be a consequence of the continuous process of 

gravitational differentiation of the planet’s mass density. We assume that this effect was one of 

the dominating during creation of the Earth and the Solar system as a whole. For instance, 

mean value of the Moon density is less then 2/3 of the Earth’ one, i.e. ρМ < 2/3ρm. If one 

assume, that this relation was kept during the Moon formation, then, in accordance with Eq. 

(35), this body has created at earliest stage of the Earth mass differentiation. Creation of the 

body from the separated shell should be occurred by means of the cyclonic eddy mechanism, 

which has been proposed in due time by Descartes and which was unjustly rejected. If we take 
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into account existence in the nonuniform mass of the tangential interaction forces, then the 

above mechanism seems to be realistic [10].         

The mean structural form-factor of the axial moment of inertia, determined by the artificial 

satellite data, is β2
⊥=0,3315 [4]. Therefore, in accordance with (19)-(20), the polar radius of 

inertia of the Earth is rm=3/2r⊥m= 15 0 3315 2. ,⋅ R =0,70516R=4.493.106 m and the radius of 

gravity is rg= αR 2 = 0,8164R=5,201.106m. Thus, Bullen’s interpretation of the Earth’s 

density distribution based on seismic data [2] should be reconsidered. Gravitational 

differentiation of mass density seems to have direct relation to the Earth creation and evolution.  
 

                                    6. Radial density distribution of the Earth 

Let us consider the key subject, namely, the radial distribution of the Earth’ density, the 

function of which is the gravitational potential. As it is known, the modern conception on this 

problem is based on velocity of the longitudinal and transversal seismic waves. Bullen’s 

approach gives the following picture of interpretation of seismic data [2, 4]. The density of the 

upper crust is 2.7-2.8 g/cm3 and it increases towards the Earth’s center up to ~13 g/cm3, 

changing the values  by jump along the Moho discontinuity, the upper  and lower mantel  and 

the outer and inner core borders. Despite velocity of the longitudinal seismic waves below the 

upper core border decreases and the transversal waves in the inner core are absent, the density 

and hydrostatic pressure in the center accepted up to now is maximum. Bullen proposed that 

interpretation after, as he said, unfortunate approximation of seismic data by a parabolic curve 

where the density of the core would decrease to the center. This was because Bullen hasn’t had 

an idea about the planet’s self-gravitational effects. Now his conception on the density 

distribution ought to be reconsidered. 

We have analyzed the whole range of possible formal density distribution curves 

calculated by applying parabolic law in the form ρr=ρ0(ax2+bx+c), (where х=r/R; a, b, с are 

numerical coefficients; ρ0 is the mean density of the body). The numerical coefficients were 

taken by applying the following equation of the total body mass 

M= 4 4 4
3

3
5

3
4

2

0

2

0
0

2

2 0
3π ρ π ρ πρr r dr r a r

R
b r

R
c dr R a b c

R R

∫ ∫= − + + = − + +( ) ( ) ( ) , 

where the term − + + =
3
5

3
4

1a b c  makes it possible to calculate and plot the curves in the 

dimensionless form. Fig. 3 shows the curves starting from a linear one with its maximum in the 

body geometrical center (curve 1) up to linear relationship with the maximum on the surface 
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(curve 7). Curves 1-7 cross the mean density line 10 within the shell of the inertia radius 

rm=0.775R, which coincides here with the radius of gravitation rg. The spectrum of curves 

should reproduce a picture of the mass density redistribution connected with its differentiation 

during the Earth’s history. It follows from (35), that during  creation of the Earth its outer 

stratum of mass should have higher density than the mean density of the underlying layers. 

Otherwise, farther creation of the body would be broken off. Hence, the possible initial density 

distribution of the created Earth seems to be defined by the curves 7-8 with density value of ~7-

8 g/cm3. The modern evolutionary stage of the mass density redistribution should be 

characterized by the curves 5-6 with a density ~ 2-3 g/cm3 (or lower) at the surface, ~1-2 g/cm3 

in the geometric center and 7-8 g/cm3 close to the mantel and core border. The density curve, 

which corresponds to the structural form-factors β2=0.49725, (β2
⊥=0.3315) of the polar and 

axial moments of inertia and α=0.6601 determined by the artificial satellite orbits, is situated 

within the same ranges. 
 

                7. Radial distribution of the force function and the gravity force 
 

The curves of radial distribution of the gravitational potential and the gravitational force 

(pressure) for a test mass m=1 are calculated using the same density distribution equations. Fig. 

4a,b shows these curves in the dimensionless form. The calculation was done with the aid of 

equations known in the gravitational theory [6] 

U(r)= ]4 4 3
20
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( ) . 

Fig. 4a and 4b show that the gravitational potential in the body center is of a maximum 

value, whereas its first derivative (the gravitational force) is equal to zero. It means that the 

force pressure in a body increases from center to the surface shell. 

Four additional curves of the density distribution, which satisfy β2
⊥=0.3315, are presented 

in Fig. 5. The integral values of the motion and their radial, tangential and dissipative 

components were calculated (Table II) using the equations of the gravitational theory [6].  

Taking into account the tidal condition (35) we come to the conclusion that curve 4 in Fig. 

5 and curve 6 in Fig. 4 present in first approximation the Earth’s radial density distribution, 

force function and force distribution. In this case the considered distribution of the Earth’s 

density and force field allows us to assume that the planet really has liquid outer core, as it is  
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discussed in literature [2], and even gaseous inner core . But the liquid mass should have 

density in the center close to 1g/cm3 and force pressure of about 1 kg/cm2 (see Fig. 5, line 4). 

 
Тable II. Physical and dynamical characteristics of the Earth used for plotting the radial  
density distribution curves presented in Fig. A5, 
 ___________________________________________________________________________ 

Number of curve        1                             2                            3                             4                       

ρs, g/cm3                    2.76                        2.08                      1.65                       1.03224 

ρc, g/cm3                   13.8                        10.455                   6.315                     1.6284 

ρmax, g/cm3 /km         13.8 / 0                   10.455 / 0              8.26 / 2096            8.57 / 3122 

β2
⊥                            0.33(3)                   0.3315                   0.3315                   0.3315238 

β2                              0.50                       0.49725                 0.49725                  0.49725858 

β2
t                              0.10                       0.10275                 0.102752                0.10 2714 

α                               0.6607142             0.6607374             0.6607374              0.660143 

αt                              0.05                       0.05                       0.0513714              0.0513571 

αγ                              0.0107142             0.009366               0.009366                0.0087859 

rg , km                       5178.6                   5178.7                   5178.6                    5176.4 

rm , km                       4504.9                   4492.6                   4492.6                    4492.7 

 

Specification: ρs , ρс , ρmax are the densities at the surface, center and maximal value; β2
⊥, 

β2, β2
t are the form-factors of the axial, polar and tangential parts of the kinetic energy;  α,  αt , 

αγ are the form-factors of the polar, tangential and dissipative parts of the potential energy;  rg ,  
rm are the reduced gravitational and inertial radii. 
                                         

8. Precession and wobbling of the axis 

It is observed by the seismic data that there are jump changes in density at the borders of 

the lithosphere and upper mantel (~350-400 кm), the upper and lower mantel (~ 1000 km), the 

lower mantel and outer core (2700-2900 кm) and between the outer and inner core (5400-6370 

кm). In accordance with Eq. (32) the above borders can be considered as surfaces of the shells 

angular velocity  and the oblateness change. It is obvious, that by Eq. (33) integral effect of the 

shells rotation  appears in precession of the planet’s axis, which also reflects rotation of the 

ellipsoids of inertia and gravitation. The upper and lower mantel having majority mass of the 

planet should make the main contribution to that effect. The inner core having zero velocity of 

the transverse seismic waves represents a liquid or gaseous creature with small density and law 
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pressure (~1.5 bar). The observed daily rotation of the Earth relates to an upper shell, which 

seems to extend up to the Moho discontinuity (350  km).  

        The Earth crust and oceans are “floating” in suspended state on the underlying upper  

shell. It follows from Eqs. (29)-(32), that  the shell is rotating according to the Kepler’s lows. It 

means that during half turn of each turnover the angular velocity of the shell accelerates and the 

second half turn it is slowing down. At the same time the crust and the oceans, being in 

suspended state and because of inertial effect of their mass, are damping at the shell 

acceleration and, vice versa,  they accelerates during the shell is slowing down. These effects of 

inertial wobbling of the Earth’s crust and oceans are observed as daily and half daily nutation. 

Analogously the Earth’s outer force field accelerates and slows down the Moon’s orbital 

motion and initiates the biweekly and monthly nutation of the Earth’s axis. There is the same 

effect in the Earth orbital motion about the Sun. It gives annual and semiannual and the 

Chandler 420 day wobble. The last effect is proportional to 27 days period of the Moon and the 

Sun rotation and is equal to 365/27 ≅ 14 month. 

The inertial wobble of the Earth’s crust and oceans with their reverse acceleration and 

damping is known in geophysics as the Coriolis’ effect. In addition to the wobbling it also 

explains the plate tectonics, ocean’s currants, irregularity in the Earth rotation, short periodicity 

in the wether and climate change and synchronism in wobbling and tidal effect.      

The Sun and the Moon have definitely the same nonuniform (shell) structure. By the same 

reason their shells axes precess  accordingly. If so, the Moon’s precession effect gives the 

major Earth’s  axis nutation  with period of 18.6 yr. The precession of the Sun’s upper shell 

gives effect of the planet’s orbit rotation.  

That is the nature of the Earth’s axis precession and wobbling (nutation) following from 

dynamics of the of self-gravitating planet. 
 

                                                            9. Conclusion 

It follows from the presented solution that Mac Millan’s two component model [18] for 

explanation of the nature of interaction potential energy and Coimmi’s approach [19-21] in 

deriving Hubble’s flow from interaction of the homogeneous substratum and angular 

momentum from interaction of the heterogeneities with homogeneous substratum are found 

successful application in celestial body dynamics and geophysics in the framework of classical 

mechanics methods. Solution of the problem of dynamics of a self-gravitating body has great 

number of new applications in the Earth and environmental sciences.  
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                                                                      Captions 
 

Fig. 1. Separation of the Earth moment of inertia from its relative motion in the solar force 

            field. 
 

Fig. 2. Roche’s tidal forces for two bodies (a) and for nonuniform   spherical layer (b). 
 

Fig. 3. Formal parabolic curves of the Earth radial density distribution. 
 

Fig. 4. Formal curves of the Earth radial distribution of force function (a) and gravity forces 

               (b) for the test mass m=1 at parabolic law of mass density distribution. 
 

Fig. 5. Possible curves of the Earth radial density distribution at the value of form- factor 

               β⊥2 = 0.3315 found by analysis of the artificial satellite orbits. 
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