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The paper discusses the peculiarities of structural modelling (forecast of the depths of the reflecting horizons) 

based on the seismic and drilling data system. Seismic data are represented by vertical time values and the stacking 
velocity of borehole data that are the depth marks of the reflecting horizons. Vertical time and the depth of the reflect-
ing horizons are bound by the equation of average velocity but the average velocity is not determined in a seismic ex-
periment, therefore an issue of choosing a velocity model of a complex natural object arises. The task of structural 
modelling is solved by the selection of formal expressions containing correlations between the parameters of the un-
derlying model and kinematic parameters of the wave field. The optimal decision on model selection is determined 
by the minimum discrepancy between the predicted and actual values of the depth of the sample boreholes. A practi-
cal example shows possible variants of the interpretation model. 

An inverse kinematic problem on converting the vertical time of the reflected waves at the depth of horizons is 
solved in each production report on the results of seismic work and is probably the most common objective of seismic 
exploration. Considering the variety of research objects and the apparent obviousness of the solution, this topic is un-
derrepresented in scientific literature.  
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Introduction. Since the introduction method of reflected waves (MRW) and to the present 

day, structural maps of geological boundaries are the necessary and most important result of the 
seismic surveys. The success of solving tasks of structural geology defines unambiguous line of 
geological objects with the events of the wave field, which are connected by the equations of geo-
metrical seismic surveys. Two types of environment settings are unknown in structural expressions: 
a velocity model and reflection point depths.  

Let several reflecting horizons be described by a set of hodographs of reflected waves. For this 
system we define the thick-bedded model of the environment and the method of solution of direct 
kinematic problem. The task of the structural interpretation is to estimate parameters of the struc-
tural velocity model of the environment based on the minimisation of the functional describing the 
discrepancy between model and real hodographs of reflected waves. In such a setting, the KING 
system of kinematic interpretation of hodographs was implemented in 1980-s [5]. The task of se-
lecting parameters in the depth-velocity model was solved on the basis of the mainframe in the ab-
sence of graphical controls solutions and interactivity.  

In principle, in the same setting, but at a new technical level, the problem of selection of pa-
rameters of the structural velocity model for depth migration is solved on pre-stack of 3D-data. We 
note that the issue of finding minimum always has a solution, but in order that the solution satisfies 
a priori data (marks of the depths of the reflecting horizons – RH – is specified in borehole depths 
points), a formation model of the environment is amended by formal parameters, taking into ac-
count the velocity «anisotropy». But even with a significant complication of the model, the results 
of depth migration are presented not in a depth, but in a time scale, as in processing of seismic data, 
issues of full harmonisation of seismic and borehole data do not yet have satisfactory solutions [6, 8]. 
This fact determines the relevance of the problem analysis for structural expressions at the stage of 
seismic data interpretation. 

The applied problems of structural interpretation address two kinematic parameter of the hodo-
graph common midpoint: vertical time t0 and stacking velocity vs. The kinematic parameters (time 
sections of amplitudes of the reflected waves and the breakdown of stacking velocity) are obtained 
in the process of digital processing of seismic data, and the parameter t0 appears as a result of phase 
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correlation of reflection amplitudes. We assume that the phase correlation result is determined 
uniquely on temporary cuts of amplitudes, therefore, two kinematic parameters are the result of 
seismic data processing. 

It is considered that the vertical time t0 describes the time of passing the beam vertically from 
the line of harmonisation of seismic observations to the reflecting boundary and back without taking 
into account the refraction at the interfaces of the velocity medium model. Reference line can be 
defined above the surface of the observation – in this case the medium model introduces a dummy 
layer with predetermined velocity. In addition, compensation of lateral heterogeneity of the upper 
part of the section are procedures for replacing velocity – changing structure and parameters of the 
velocity medium model and, accordingly, changes the vertical time of the reflected waves.  

In general, the vertical and effective velocity of the reflected waves are not the result of meas-
urement of the parameters of the wave field during execution of field experiment and present the 
result of the reconstruction field based on equations describing the propagation of waves for a par-
ticular model of a medium. So, if variable surface topography compensates static corrections, then 
stacking velocity is distorted due to the limitations of this conversion method. Distortion effect of 
the reflected wave velocity occurs in the compensation of the static corrections for immersed per-
mafrost inhomogeneities. We should also note the widely known fact that vertical distortion of time 
and effective velocity due to error in the measurement of low-frequency static corrections [7].  

Even without these factors, values of the effective rate correspond to the average velocity only 
for homogeneous velocity model of a medium. For real environments, a vertical velocity gradient is 
always present, so the difference between the average and effective velocity increases with increas-
ing RH depths. Let us consider the example on the materials of Tomsk Oblast. Here, in borehole 
points, the vertical time and the stacking velocity vs of the reflected wave were found according to 
the GIS-defined depth values of the reference B horizon (roof of the Bazhenov formation) and re-
sults of seismic works. The data obtained allow perform of average and effective velocity compara-
tive analysis. The average values for the sample was at the average velocity of 2511 m/s and 
2721 m/s for stacking velocity (Fig.1, a). An analytical formula of recalculation of effective rate to the 
middle one do not exist. The use of Urupov-Dix formulas to calculate interval velocities and subse-
quent estimation of the average velocity reduces the difference between the velocity values, but 
does not solve the problem completely. We can assume that the effective velocity (or stacking ve-
locity) is the problem of interpretation of the attribute of the wave field, that is only correlation-
associated to the target parameter of the average velocity to the reflecting horizon.  

The analysis of velocity graphs, shows that the difference between the two sequences does 
not describe a constant value, i.e., we are unable to bring the stacking velocity to the average to 

 

Fig.1. The average ratio of vs and vc are effective velocities at the B horizon 
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use the vc = vs – a equation. The velocity dependence is also inadequately described by an equation 
vc = avs. A consistent description of the vc distribution (vs) is obtained by the linear regression equa-
tion (Fig. 1, b).  

The definition of the structural modelling task. Following the S.V. Goldin's ideas, the problem 
of determining the depth of a reflecting horizon can be represented as follows [2]. D is for a study area 
in the plane ),( yx . We assume that at any point M(x, y) parameters t0(M) and vs(M) are defined as verti-

cal and effective velocity of the reflected wave, which is single-valued functions of the variable M. The 
depth of the horizon is determined by the equation 

2/)()()( c0 MvMtMh  , 

where )(c Mv  is the average velocity before the reflecting boundary. 
To determine the unknown )(c Mv  parameter, we can consider two solutions. We relate the av-

erage velocity in the M point to the value: a) vertical time ))(()( 0c MtfMv  ; b) the effective veloc-
ity ))(()(c MvfMv s . 

The result provides two tasks of structural modelling. In the first case, the prediction is per-
formed only at the vertical time of the reflected waves, and for the second, the source data are the 
vertical time and effective velocity (stacking velocity) of the reflected waves.  

The specific formulation is characterised by a certain structure of the input data and the model, 
linking the unknown parameters with the original data. The source data for the considered problem 
include borehole and seismic information: 1) borehole information, the depth and position of target 
horizons intersection; 2) seismic data, i.e. time tracking of the reflecting horizons and stacking ve-
locity of the RH.  

We are to perform: 1) a forecast of the surface describing the depth of the target horizon within 
the study area; 2) an estimation of the forecast error. 

Special conditions: the predicted depth values at the points of the layer intersection should ex-
actly coincide with the borehole depth unless it has been proven the need for the borehole data error 
accounting of the.  

Curves of deep wells logging are also directly related to the problem of structural construc-
tions. Taking into consideration the vertical travel time curves of seismic logging cause a certain 
version of the three-dimensional velocity model, considered in [4]. 

Forecasting problem. To estimate the depth of the seismic horizon, it is necessary to deter-
mine the relationship between the temporal field variables (vertical time t0, stacking velocity vs) and 
the predicted parameters (depth h or average velocity vc). Let's divide the solution of the forecast 
problem into four stages.  

1. The formation of the training sample. Since the depth values are specified only at the bore-
holes points, it is necessary to determine the values of seismic parameters at these points to obtain a 
training sample. Additionally, the mean velocity values can be calculated from the depth and verti-
cal time values at the boreholes points: 0c /2 thv  . 

2. Model fitting. To solve the problem, it is necessary to determine at least one velocity model, 
which relates the kinematic parameters of the reflected waves with the average velocity or directly 
with the horizons depth. Estimation of model parameters is performed by minimizing the value of 
the function describing the deviation of the predicted and actual depths at the boreholes points. It is 
also acceptable to minimize the deviation between the predicted and observed time when selecting 
the parameters of a model. 

3. Calculation of the depth-velocity model parameters in the context of seismic data determination. 
4. Accordance of the forecast and actual depth values at the boreholes points (scatter of dis-

crepancies). 
The rationale for the linear dependence of the depth on the RH vertical time. The linear 

regression equation is most commonly used in the analysis of depth-time dependence of the RH. 
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We show that this formal construction is physically meaningful to describe a certain type of struc-
tural model. 

Let us assume that the depth h and the vertical time value of t0 are known in K wells. Then 
determine the linear regression between depth and vertical time 

bath  0 . (1) 

Note that for the vertical hodograph of the seismic logging (SL), the h(t) dependence is deter-
mined by a continuous increasing function that allows a piecewise linear approximation correspond-
ing to the layered model. Consequently, the representation of the time-to-depth correlation by the 
linear regression equation within a uniform layer is reasonable in case of seismic logging data.  

Equation (1) represents the unique dependence of the depth on the reflection time. Following 
[1], let's differentiate the function according to t0: 

const.
0

 a
dt

dh
 (2) 

The a parameter characterises the rate of boundary depth change with the vertical time. For 
brevity, we call this parameter a gradient of the linear function (1). For the layered model with con-
stant velocity layers   )/)(2)();()(( 0 iii vxhxtxhxh , the gradient is given by 

.
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dxv
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dh
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 (3) 

It is easy to show that the expression (3) has a constant value if the layer thicknesses are determined 
by the linearly dependent functions  

iii cxfdxh  )()(  

with arbitrary factors ii cd , . Then 

const
2

0

  a
v

d
d

dt

dh

i i

i

i
i . (4) 

Let's consider a special case of the two-layered model, where thicknesses of two layers with 
constant velocity are described by arbitrary functions of the profile coordinates: 

.)()(;)()( 222111 cxfdxhcxfdxh   

Accordingly, the depth and vertical time for the lower boundary are given by:  

);()()()( 2121 ccxfddxh   

 .)//()()//(2)( 221122110 vcvcxfvdvdxt   (5) 

Equation (4) is modified to 

    .const///5,0 221121
0

 avdvddd
dt

dh
 

The obtained equation (5) shows that the dependence of h(t0) can be an increasing (a > 0), a 
decreasing (a < 0) and a constant (a = 0) function of vertical time. 

Let's express the a gradient value as a function of the k factor characterising the ratio between 
thicknesses of layers of the depth model: 

.
)//1(2

1
,/

21
12 vkv

k
addk




  (6) 
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A positive k value corresponds to a 
direct linear dependence between the 
layer thicknesses, and negative shows 
the inverse effect. Direct dependence 
reflects an inherited development of the 
strata, the reverse relationship does not 
have a simple geological interpretation, 
but is generally interesting for formal 
analysis. The graph of a(k) dependence 
for two-layered medium with layer ve-
locity of 20001 v  m/s and 30002 v m/s 
is shown in Fig.2.  

We note the following features: 
1. At the point 5,1k  the function 

graph has a gap  , here the denominator of the expression (6) is equal to zero: 

./,//,/,0//1 121212121221 vvddvvddkvvkvkv   

Substituting the expression for d2 in equation (5), we determine that the break point corresponds 
to the variable RH depth at a constant value of the RH vertical time (Fig.3): 

);()()/1()( 211221 ccxfvvddxh   

  .const//2)( 22110  vcvcxt  

A sharp graph change at the 12 / vvk   rupture point is defined by almost infinite depth 
change at a small vertical time change.  

2. The a gradient a is equal to zero at the 1k  point that corresponds to the 12 dd   rela-
tionship. From equations (5) we conclude that the value a = 0 corresponds to constant depth at a 
variable value of the vertical time (Fig.4). 

 

 

Fig.2. Dependence of the a gradient on the k = d2/d1 ratio  
of the depth model characteristics 
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Fig.3. Depth model of 12 / vvk  (a) and the RH vertical time graphs (b) 
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Fig.4. Depth model of k = –1 (a) and the RH vertical time graphs (b)  
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3. In the range 15.1  k  of the gradient a is negative, which corresponds to the decrease of 
depth at the increasing RH vertical time (Fig.5). 

4. The point of intersection with ordinate axis ( 0k ) indicates the constant thickness of the 
second layer. The value of the 10002/1  va  m/s gradient is determined by velocity of the first 
layer (Fig.6).  

5. Asymptotics of 15002/)( 2  vka  m/s corresponds to a model in which the thick-
ness variation of the first layer is low, compared with thickness variation of the second one (Fig.7). 
Within limits, this model version corresponds to the constant thickness of the first layer. 

To conclude this part, let us consider a model with low dependence between layer thicknesses. 
The linear h(t0) dependence is defined, but depth value deviations as compared to the regression line 
(Fig.8), are interpreted as forecast errors. 

The results of model experiments allow conclusion that the equation of a linear relationship 
between depth and vertical reflection time corresponds generally to a multi-layered model with a 

 

Fig.5. Depth model of k = –1,4 (a) and a graph of h(t0) (b) 
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Fig.6. The depth model of k = 0 (a) and a graph of h(t0) (b) 
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Fig.7. Depth model of k = 4 (a) and a graph of h(t0) (b) 
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linear dependence between layer thicknesses. A linear dependence between the interval thicknesses 
or between the time values of reflecting horizons can serve as this model's indicators. 

Selection of the interpretation model. Selection of the velocity model is demonstrated on the 
example of a training sample in Tomsk Oblast. Here, in 11 deep boreholes, the values of vertical 
time and horizon depths with conditional indexes G and B are determined. The RH time values with 
ascending second variables are shown in Fig.9. For the target B horizon, the values of stacking ve-
locity are also determined and shown in Fig.2.  

At the first analysis stage, we assume that the predicted kh  parameter, kt0  variable value and the 

calculated kv  value of the average velocity for the B horizon are known in K points of the bore-

holes. Even for this simple data systems several options for depth-velocity model are possible. 
1. The distribution of )(xv  average velocity in study area can be obtained by interpolating the 

average velocity calculated in points of the boreholes.  
2. The velocity value is determined as a function of vertical time of reflection: ))(()( 0 xx tfv  . 

3. Horizon depth is determined as a function of vertical time of reflection: ))(()( 0 xx tfh  . 

4. Vertical time of reflection is determined as a function of the horizon depth: ))(()(0 xx hft  . 

The average velocity model v(x). The simplest decision is to interpolate the average velocity 
according to the vk number of values. The average velocity model corresponding to this equation is 
described by the v0 expression including constant and variable components: 

 

Fig.8. Depth model with the nonlinear dependence of the 
layer thickness (a), t0 (t1) plot (b); h (t0) distribution (c) 
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Fig.9. Vertical time values at borehole points 
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vkk evv  0 . 

Estimation of the v0 parameter is determined by minimising functional describing the discrep-
ancy between actual and estimated depths of borehole points: 

.)2/(/min,)2/()(
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 velocity estimation, we define the he  discrepancy between the predicted and the actual 

depths and the h  value of the standard forecast error for each well:  
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Fig. 10 shows the average velocity model for the B horizon described by the h = 1255.8t0 equa-
tion. The standard forecast error of the sample h = 17.9 m.  

A linear regression model v(t0). The equation of linear dependence of the average velocity on 
the reflection time is converted to dependency of depth on reflection time:  

.)(,2/)(2/, 0
2
000000 ctdtthtbatvtbatv   (7) 

The depth is expressed by a parabolic equation with zero fixed term (Fig. 10). The standard 
depth forecast error of the sample h = 16.7 m.  

A linear regression model h(t0). The approximation result based on h(t0) the linear regression 
equation  

hebath  0  (8) 

shown in Fig. 10. In the interval change of the t0 variable, the regression line is almost superim-
posed on the parabolic equation (7). The standard forecast error of the sample, h= 16.8 m.  

The regression is t0(h). In the above linear regression equation (8) the random component he  is 

defined as the measurement error of the h depth of horizons at borehole levels, and the explanatory 
variable t0 is considered to be specified precisely. The assumption that the borehole depth is known 
exactly, and the time of reflections contains errors, is more consistent with the real situation. In [3] 
this situation is described as "errors of explanatory variables" that lead to biased estimates of pa-
rameters of the linear regression equation. If t is a standard error of thet0 variable, the offset of the 

a factor is estimated by the expression )/( 222
htta  . 

This model contradiction can be neutralised if using a linear regression equation to describe 
vertical time as a function of horizon depth:  

tebaht 0 .  

After estimating the factors, the t0(h) regression equation is modified to  

.//)( 00 abatth
   (9) 

The regression factors are selected by minimizing the discrepancies between the forecast and 
actual values reflection time, so the depth forecast error increases to 18.2 m according to the equa-
tion (9).  

Thus, two linear dependences of the horizon depth on the vertical time of the reflected wave 
were found with one sample. We assume that the vertical reflection time within the study area var-
ies in the range of 1.9 and 2.1 s and calculate the depth horizon using the equation of the straight 
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h(t0) and reverse t0(h) dependence (Fig.11). The discrepancy between the solutions for a specified 
reflection time change interval (0.2 s) is from –18 to 33 m. The t0(h) dependence determines a solu-
tion with more rapid changes of reflecting boundary depth.  

The two-layer model. We introduce the problem statement of the vertical time value and the 
depth of the reflecting G horizon. We expect that the parameterisation of the depth model with two 
layers allows reduction of the forecast error for the target B horizon.  

As it was previously shown, the linear regression equation describes correctly the dependence 
of the depth on the vertical time, if a linear correlation exists between the depth values (or vertical 
time boundaries). Fig.12 shows a graph of the )( G

0
B
0 tt  joint distribution of the vertical times of two 

horizons. The linear dependence between time values of the two horizons is missing, which is the 
cause of significant depth forecast error with a linear regression equation.  

If the temporary thickness of the two cross-section intervals varies independently, then it is 
logical to consider a model with an independent thickness estimation for each interval. Figure 13 
presents two graphs characterizing the h(t0) distribution for horizon G and the correlation )( th dd be-
tween the B-G interval thickness and interval time. 

For horizon G (Fig.13, a), the dependence h(t0) is described by the linear regression equation. 
The standard error value is h = 4.2 m. For the B-G interval, the linear dependence is determined by 
the low coefficient of determination R2 = 0.49 and the forecast error of the interval thickness is  
h = 24 m. Thus, the complication of the model, performed by dividing the medium into two inter-
vals, leads to an increase in the forecast error of the horizon B depth, compared with a linear de-
pendence on one variable. 

In the considered task, only two horizons are set, therefore, by the sweeping of the explanatory 
variables and model parameters, it is easy to establish that for estimating the B-G interval thickness, 

 

Fig.11. The discrepancy between the RH depth estimation for 
regression models h(t0) and t0(h)  
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a practically important variant of the model is determined as a linear dependence of the average ve-
locity of B-G interval on the vertical time. G – top of the analysed interval (Fig.14), 

2/)( G
0

B
0

GBGBG
010

GB ttvdtaav h   
. (10) 

This solution suggests to estimate the first layer thickness by the linear regression equation and 
to describe the lower interval velocity model by the average velocity equation )( G

0
G tvB . The stan-

dard error of the of the B horizon depth forecast in case of a two-layered model )( G-BG
hh dhhe


  

is 9.8 m. 
Effective velocity model. Let's consider a problem when the seismic data is represented by the 

functions of the vertical time and stacking velocity of the reflected wave: )(0 xt , )(xsv . In addition, 
the values of the average velocity vс are calculated at the boreholes points. 

To recalculate the stacking velocity to the average one, we use a formal linear regression equa-
tion vs ebavv c , where ve  – is the random component. The graph of the vc(vs) distribution is 
shown in Figure 1, b. The depth of the horizon is determined by the formula 

2/)())((2/)()()( 00 xxxxx tbvatvh sc


 . (11) 

The value of the depth forecast standard error for this model is h = 11.69 m.  
Effective depth model. In the previous task, the stacking velocity was adjusted to the average 

one. Meanwhile, the ultimate goal is to select a velocity model that minimizes the divergence of the 
depths at the boreholes points. 

The vertical time and stacking (effective) velocities values are known at the seismic prospect-
ing points. This allows us to calculate the function, which we'll call «effective depth» of the hori-
zon: 2/0tvh ss  . The hs values are shifted relative to the true depths since the stacking velocities are 
shifted relative to the average ones. But the hs values can be used as explanatory variables of the 
regression equation for the horizon depth forecasting (Fig.15): 

hss edtvddhdh  20121 )2/( . 

The h(hs) dependence is characterized by a higher coefficient of determination than in the aver-
age velocity estimation described in the previous example. While the value of the depth forecast 
error h = 13.42 m is greater than for the effective velocity model.  

How to take into account the randomness of the result. We take into account that the regression 
equation coefficients and forecast errors are random variables, i.e. the minimum error determined by 
the limited sample does not guarantee a better solution. It may be recommended to perform the calcu-
lation of all variants and estimate the discrepancy between the depth maps. It is possible that the dis-
crepancy will be insignificant, then the problem of choosing a model is no longer required. With a 
significant difference, it is permissible to obtain weighted mean values of several solutions. 

 

Fig.14. The dependence of the average velocity within  
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If we accept the condition of independence of the forecast error for certain model types, then 
we can propose maps averaging with due regard to the forecast error of each implementation. Let's 
obtain, for example, two worthwhile results: the effective velocity model (10) and the two-layered 
model with an interval velocity estimation (11). The estimated solution errors, determined by a 
sample from 11 boreholes, are 11.7 and 9.8 m, respectively. 

On the set of points x, two solutions )(),( 21 xx hh , with the estimated forecast error variance, are 

determined: 21, DD . The value of the required function at an arbitrary point x is defined as the 

weighted sum of the basic data: 

),()()( 2211 xxx hwhwh   

where 121  ww .  

The variance of the sum of two independent variables is determined by the formula 

2
2
21

2
1 DwDwDe  . 

The determining of weights that ensure a minimum of variance 21, ww , considering an additional 

condition, is determined by the functional minimizing: 

)1(),,( 212
2
21

2
121  wwDwDwwwD , 

where  – undetermined Lagrange multiplier [1]. 
The minimum functional point is determined by the condition of equality to zero of the partial 

derivatives: 
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It is easy to determine that the weight multipliers are determined by the 

)./();/( 21122121 DDDwDDDw   

An estimation of the standard error of the forecast depth of the target horizon is calculated ac-
cording to the formula (11) h = 7.5 m.  

Conclusion. Estimation of the seismic horizons depth is a standard forecasting problem, where 
the kinematic parameters of the wave field are used as explanatory variables: vertical time and 
stacking velocity of the reflected waves. The absence of a functional dependence between the pre-
dicted parameters of the medium and the parameters of the wave field determines the multivariance 
of the correlation between the horizon depth and the kinematic parameters of the wave field. Model 
variants are determined by the model's structure and basic data. The criterion of the adequate model 
is the minimum discrepancy between the predicted and actual depths at the boreholes points. As a 
rule, structural imaging is carried out according to a series of reflections, which determines the pos-
sibility of solving the problem within the framework of a single-layer or multilayer model. 

The standard single-layer model is described by the linear dependence of the depth on the ver-
tical time. It is shown that this equation corresponds to a multilayer model under the condition of a 
linear dependence of the layer thickness. It is noted that the values of the linear regression model 
parameters are consistent with the parameters of the thick-layer model, determined from seismic 
logging data, only in the ultimate versions of the velocity model. 

Restrictions on the structure of the model are eliminated when using the effective velocity of 
the reflected waves. However, this parameter is rarely used in solving practical problems, since 
stacking velocity estimates are unstable to errors of the model parameters and methods of the het-
erogeneity compensation of the upper part of the section. 
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The multilayer model assumes the sequential determination of the thickness or velocity of cer-
tain intervals of the section. The selection of explanatory variables for this model is limited only by 
the vertical time of reflections. The model is ideal for layers with a constant velocity, but the fore-
cast result is unpredictable in the case of lateral velocity heterogeneities of the layers.  

In each particular case, the velocity model selection is a non-trivial problem, also including an 
analysis of the wave field kinematic transformation in the seismic data processing.  
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