РУДЫ ФЕТАЛЛЫ № 4/2018

Кулешевич Людмила Владимировна¹

кандидат геолого-минералогических наук ведущий научный сотрудник kuleshev@krc.karelia.ru

Алексеев Иван Александрович²

доцент

кандидат геолого-минералогических наук заведующий кафедрой геологии месторождений полезных ископаемых i.alekseev@spbu.ru

Лавров Олег Борисович¹

научный сотрудник руководитель музея геологии докембрия petrlavrov@list.ru

Дмитриева Антонина Васильевна¹

научный сотрудник dmitrievaa-v@yandex.ru

¹ ФГБУН Институт геологии КарНЦ РАН, г. Петрозаводск

 2 Институт наук о Земле ФГОУ ВПО СПГУ, г. Санкт-Петербург

ЗОЛОТО-РЕДКОМЕТАЛЛЬНОЕ РУДОПРОЯВЛЕНИЕ РАЯЛАМПИ В ХАУТАВААРСКОЙ СТРУКТУРЕ: ЗАКОНОМЕРНОСТИ ЛОКАЛИЗАЦИИ И МИНЕРАЛОГО-ГЕОХИМИЧЕСКИЕ ИНДИКАТОРЫ, РЕСПУБЛИКА КАРЕЛИЯ

Рассматриваются результаты комплексных геологических исследований, данные изучения околорудных метасоматитов и состава руд нового для региона золото-редкометалльного рудопроявления Раялампи в Хаутаваарской структуре Южной Карелии. Метасоматические изменения габбро и вмещающих толщ в северо-северо-западных зонах рассланцевания сопровождались формированием золото-висмутового оруденения, находящегося в единой зональности с золотосодержащим сульфоарсенидным. Установленная рудная зональность отражает стадийность гидротермального процесса и пульсационный характер поступления рудообразующих растворов. Бедная сульфидная вкрапленность (1–6%) внешней зоны замещается сульфоарсенидами (1-6%) промежуточной зоны и затем золото-висмутовой минерализацией (1–2%) центральной части рудной зоны. На участке проявления арсенопиритовой минерализации содержание As возрастает до 5,3, Pb до 0,28, Cu до 0,12%, содержание Аи составляет 1,92, W 34,5, Ві 7,4 г/т. В центральной части рудной зоны оруденение продуктивной стадии представлено самородным высокопробным золотом в ассоциации с самородным висмутом и высоковисмутовыми минералами. Содержание Au 7,8-283 г/т, Bi - 0,8%.

Ключевые слова: Au-Bi, Au-S-As минерализация, рудопроявление Раялампи, метасоматические изменения, габбро, зеленокаменная структура, Карелия.

По результатам геолого-поисковых работ, проводимых в Карелии в 1970–1989 гг., Хаутаваарская архейская зеленокаменная структура признана перспективной на обнаружение золота. Производственным геологическим организациям рекомендованы поиски золота с использованием геолого-поисковых моделей (шесть основных типов) высокопродуктивных месторождений в зеленокаменных поясах, разработанных с учётом обстановок их размещения и устойчивых ассоциаций с конкретными рудоносными литофациальными комплексами [5]. На Хаутаваарской площади установлен ряд небольших рудопроявлений золота (рис. 1), занесённых в кадастр Республики Карелия [14], однако новых открытий в последующие годы не было. Поскольку на Земле золоторудные месторождения докембрийского возраста представлены наиболее широко [4, 15] (~50% крупных (>100 т), а также огромное количество средних и мелких промышленно важных объектов), поиски золота в Карелии продолжались.

В соответствии с существующими систематиками [15, 17, 18, 20–22] гидротермальные месторождения и проявления золота в зе-

ленокаменных поясах Карелии можно отнести к следующим основным типам:

- орогенные мезотермальные (гидротермальные в сдвиговых зонах);
- связанные с интрузивными комплексами (гранитоидами, гранит-порфирами, граносиенитами–монцогранитами;
- золотосодержащие колчеданно-полиметаллические руды (VMS-тип).

В последнее десятилетие по итогам геолого-поисковых работ ООО «Онего-золото», а также геохимических и металлогенических исследований, проводимых рядом геологических организаций, на Хаутаваарской площади утверждены запасы месторождения Новые Пески, выделены перспективные проявления и литохимические аномалии. Подтверждена связь золото-сульфидного и молибденового оруденения с граносиенит-монцогранито-

Рис. 1. СХЕМА ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ И РАЗМЕЩЕНИЯ МЕСТОРОЖДЕНИЙ И РУДОПРОЯВЛЕНИЙ НА ХАУТАВААРСКОЙ ПЛОЩАДИ (составлена Л.В.Кулешевич с использованием материалов Карельской геологической экспедиции и [14]):

1 – вулканогенно-осадочные толщи лопийского надгоризонта (3,0-2,85 млрд лет), хаутаваарская серия; 2 граниты-рапакиви (1,54 млрд лет); 3 – К-граниты (~2,7 млрд лет); 4 – дифференцированные умереннощелочные массивы Хаутаваарского комплекса (2,74 млрд лет), их названия; 5 – Шуйский тоналит-трондьемит-гранодиоритовый комплекс (~2,86 млрд лет); 6 – гранитогнейсы; 7 – габбро комплекса Виетукка (2,91 млрд лет); 8 – ультрабазиты; 9–12 – месторождения (а) и рудопроявления (б): 9 – медно-цинково-колчеданные, 10 – молибденовые, 11 – (платино)-медно-никелево-сульфидные, 12 – золото-редкометалльные, золото-сульфидные; 13 – зоны деформаций; 14 – участок Раялампи; цифры на схеме – рудопроявления и месторождения (1 – Корбозеро, 2 – Чалка, Мулдусельга, Северный рудник, 3 – Шуйское, «Планшет-2», Хаутаваарское колчеданное, 4 – Хаутаваарское никелевое, 5 – Лоухиваара, 6 – Северное и Центральное Хаутаваарское, 7 – Хаутаваарское молибденовое, 8 – Виетуккалампи, 9 – Раялампи, 10 – Коруд, 11 – Хюрсюля (никелевое), 12 – Хюрсюля (золото-сульфидное), 13 – Шуереченское, 14 – С-77 ЮК, 15 – Новые Пески, 16 – Улялегское)

вым Хаутаваарским массивом [8–10]. Установлено, что к сдвиговым зонам деформаций и рассланцевания в северо-западном ореоле последнего приурочена золото-теллуридно-медно-сульфидная минерализация [11].

Цель настоящей работы – поиски золота южнее Хаутаваарского массива. Авторами рассматриваются результаты комплексных геологических исследований и изучения состава руд и околорудных метасоматитов, благодаря которым обнаружен новый для региона золото-висмутовый тип оруденения (рудопроявление Раялампи), находящийся в единой зональности с золотосодержащим сульфоарсенидным типом и отнесённый к золото-редкометалльной рудной формации.

Фактический материал представлен образцами вмещающих и интрузивных пород, рудовмещающих габброидов, их изменёнными разностями, аншлифами с рудной минерализацией, литохимическими пробами. Основные задачи исследований включали изучение геологического строения рудопроявления Раялампи, выявление закономерностей локализации золоторудной минерализации и особенностей рудной зональности, определение минерального и геохимического составов руд и их генезиса, установление поисковых критериев и минералого-геохимических индикаторов оруденения.

Поисковые работы на участке Раялампи сопровождались комплексом геолого-геохимических исследований – детальным картированием, выделением зон рассланцевания и метасоматически изменённых пород, выявлением системы прожилков с вкрапленной сульфидной, арсенопиритовой или висмутовой рудной минерализацией. Литохимическое опробование, проводившееся сотрудниками Института Наук о Земле (г. Санкт-Петербург), позволило найти и оконтурить перспективные аномалии по спутникам золота (As, Bi, Pb, Cu). На основе синтеза всех полученных данных разрабатывались поисковые критерии.

Изучение состава габбро, вмещающих пород, зон метасоматического изменения и рудной минерализации в них проводилось с помощью химического анализа и масс-спектрометрического метода с индуктивно связанной плазмой (ICP-MS). Рудные минералы и околорудные метасоматические ассоциации определялись под микроскопом и исследовались с использованием электронного сканирующего микроскопа VEGA II LSH с микроанализатором INCA Energy-350 в Аналитическом центре ИГ КарНЦ РАН (г. Петрозаводск). Содержание благородных металлов и их спутников определялось методом ICP-MS.

В геологическом строении Хаутаваарской структуры по местной стратиграфической шкале в лопийском надгоризонте мезоархея выделяют пять свит [13], относимых к хаутаваарской серии (см. рис. 1): виетуккалампинская, лоухиваарская, калаярвинская, кульюнская, усмитсанъярвинская. Виетуккалампинская свита (3,0-2,94 млрд лет) представлена андезибазальтами, андезитами, дацитами, риолитами и вулканогенно-осадочными толщами. Лоухиваарская свита (2,98 млрд лет) объединяет подушечные, миндалекаменные и массивные лавы, туфы толеитовых базальтов и коматиитов. Калаярвинская свита представлена переслаивающейся толщей агломератовых, лапиллиевых и псаммитовых туфов и туффитов кислого-среднего состава, прослоями лав, слоистых осадков и углеродсодержащих сланцев с горизонтами колчеданно-полиметаллических руд (с цинком и медью). Эти породы, судя по возрасту секущих их порфировых даек, формировались ранее чем 2,85 млрд лет назад. Они перекрываются толеитовыми базальтами кульюнской свиты и вулканогенно-осадочным комплексом усмитсанъярвинской. Вулканогенно-осадочные толщи лопийского надгоризонта и прорывающие их интрузивы формировались в разных геодинамических условиях 3,0–2,85 млрд лет назад [16].

Интрузивный ультрабазит-базитовый магматизм представлен пластовыми и дайковыми телами перидотитов и габбро, встречающимися на двух возрастных уровнях хаутаваарской серии. Массив габброидов, расположенный западнее оз. Виетуккалампи (см. рис. 1), сечёт нижнюю её часть (виетуккалампинскую и лоухиваарскую свиты) и имеет возраст 2914±9 млн лет [1]. Дайки габброидов (комплекс Виетукка) прослеживаются от оз. Виетуккалампи на юго-восток до участков Раялампи и Коруд. Раннеорогенный этап формирования Хаутаваарской структуры завершился складчатостью и метаморфизмом эпидот-амфиболитовой фации умеренных давлений, внедрением гранитоидов Шуйского тоналит-трондьемит-гранодиоритового комплекса и комагматичных им риодацитовых даек (~2,86 млрд лет), секущих в том числе колчеданные горизонты в калаярвинской свите. В осевой части Хаутаваарской структуры деформированные вмещающие толщи секутся неоархейскими умереннощелочными массивами Хаутаваарского комплекса, возраст которого 2,74 млрд лет. Завершается позднеархейский магматизм образованием калиевых гранитов – массивов в обрамлении Хаутаваарской структуры, а также малых тел и пегматитов комплекса Виртаойя (~2,7-2,68 млрд лет), секущих зеленокаменные породы. Эти интрузии и региональная субмеридиональная сдвиговая зона (вдоль восточной границы структуры с оперяющими северо-западными зонами рассланцевания) сформировались на орогенном этапе и завершают позднеархейскую эволюцию структуры [8].

К неоархейским массивам относятся внутриструктурные умереннощелочные интрузии санукитоидной серии (Хаутаваарский, Коруд, Чалкинский, Восточно-Хюрсюльский массивы) (см. рис. 1), дифференцированные от монцогаббродиоритов до граносиенитов (табл. 1). Они секут смятые и метаморфизованные зеленокаменные толщи и обычно приурочены к узлам зон деформаций. Породы отличаются повышенными щёлочностью, магнезиальностью, содержаниями Sr, Ba, REE, что обусловливает изменения вмещающих толщ в ореоле и, судя по их геохимии, генерированы глубинным маг-

Компоненты	Монцо- габбро	Монцо- диориты	Кварцевые монцо- диориты	Грано- сиениты	Монцо- граниты	Изменённые граносиениты вблизи кварцевого штокверка	Золото- сульфидно- кварцевые жилы*
SiO ₂ , macc. %	53,29	57,83	61,74	67,96	69,94		
TiO ₂	0,88	0,66	0,62	0,44	0,35		
Al ₂ O ₃	15,68	15,04	17,66	14,62	14,10		
Fe_2O_3	3,08	2,48	2,15	1,25	0,95		
FeO	4,71	3,45	2,01	1,78	1,49		
MnO	0,14	0,10	0,06	0,05	0,04		
MgO	5,92	4,46	2,13	1,82	1,22		
CaO	6,87	4,65	1,98	1,63	1,56		
Na ₂ O	3,36	3,61	4,09	3,84	3,91		
K ₂ O	3,19	4,48	6,06	5,29	5,31		
ППП	1,63	2,37	1,02	0,96	0,71		
P_2O_5	0,58	0,43	0,27	0,14	0,16		
Σ	99,32	99,54	99,79	99,79	99,73		
mg#	0,59	0,59	0,49	0,53	0,48		
Σalk	6,55	8,09	10,15	9,13	9,22		
Na ₂ O/K ₂ O	1,05	0,82	0,67	0,74	0,74		
ΣREE, г/т	249	218	346	251	199	237–614	7-63
Со	28,17	22,6	10,23	7,93	6,26	5–9	1–7
Ni	56,28	59,69	25,36	20,87	20,40	20–33	10–56
Cu	36,83	89,8	15,85	17,44	13,88	18–29	21-355
Zn	131	101,85	40,62	37,59	26,27	32–40	3–16
As	21,31	31,54		9,06	8,07		14–30
Мо	2,21	2,18	1,42	4,51	3,59	0,1–13	3–948
Ag	0,30	0,65	0,82	1,56	0,91	1,2–2	1–10
W	0,48	1,76	2,77	1,56	2,87	2–5,8	0,8–21
Pb	9,22	42,07	13,04	20,67	26,59	22–53	53-426
Bi	0,74	0,36	0,30	0,14	0,15	0,2–2,6	13–96
Те	1,3	1,92	0,25	0,35	0,30	0,88–1,16	1,31–21,2
Au						<1,1	1,3–21
Число анализов	3	2	1	9	8	3	5

1. ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ПОРОД ХАУТАВААРСКОГО МАССИВА

* Проявление Центральное Хаутаваарское.

матическим источником, сопровождавшимся смешением мантийного и корового материала [8, 9].

Петро- и геохимические особенности дифференциатов Хаутаваарского массива, вмещающих толщ и габбро рудопроявления Раялампи указаны в табл. 2 (см. также табл. 1) и вынесены на рис. 2. Гидротермально-метасоматические изменения пород сопровождаются аномальными концентрациями Mo, Cu, Pb, Ag, Bi, Te, As, W, Au (см. табл. 1), золотосульфидно-кварцевой и молибденитовой минерализацией массива и его ореола (см. рис. 1) [9–11]. Предполагается, что золото-сульфидная и золоторедкометалльная минерализация, выявленная в пределах массива, его ореола, а также в меридиональной сдвиговой зоне, трассируемой цепочкой небольших однотипных внутриструктурных массивов в южной части площади, завершила неоархейский флюидно-магматический этап формирования Хаутаваарской площади ~2,7 млрд лет назад.

На рудопроявлении Раялампи (рис. 3) вмещающие толщи, расположенные западнее группы озёр, представлены андезитами и андезибазальтами виетуккалампинской свиты. Андезибазальты прорываются дайкой габбро северо-западного простирания. Восточнее интрузии развиты сланцы по туфам среднего состава и кварц-плагиопорфиры (субвулканические дациты-риодациты) калаярвинской

Породы	SiO ₂	TiO ₂	AI_2O_3	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	H_2O	ППП	P_2O_5	S	Сумма	Na_2O+K_2O
1	56,68	0,81	14,41	3,9	5,31	0,142	3,07	11,97	1,31	0,43	0,09	1,6	0,1		99,82	1,74
2	57,2	1,34	11,25	2,13	12,64	0,182	3,21	5,64	3,3	0,8	1,86	0,22			99,97	4,16
3	73,1	0,46	14,16	0,5	1	0,02	0,85	1,47	6,18	1,06	0,2	0,67	0,2		99,87	7,24
4	69,5	0,35	10,77	4,53	1,79	0,022	0,6	2,4	2,58	1,32	0,59	5,39	0,07		99,91	3,9
5	70,32	0,49	13,04	1,31	1,94	0,075	1,06	3,01	4,18	1,53	0,42	2,34	0,25		99,97	5,71
6	65,36	0,53	15,88	1,06	3,09	0,055	2,55	2,44	4,52	2,7	0,11	1,33	0,28		99,91	7,22
7	62,52	0,72	16,02	2,18	3,73	0,075	1,61	5,88	2,15	1,75	0,14	2,8	0,29		99,87	3,9
8	62,18	0,67	15,53	1,66	2,73	0,112	2,46	3,94	4,73	1,58	0,22	3,76	0,27		99,84	6,31
9	52,56	1,62	11,8	4,95	13	0,255	2,88	6,81	3,52	0,64	0,18	1,64	0,1		99,86	4,1
10	55,12	1,5	14,23	2,48	8,97	0,161	3,88	6,95	3,43	1,04	0,12	1,68	0,14		99,7	4,47
11	52,98	1,35	13,02	3,63	10,33	0,214	4,21	6,6	2,96	0,33	0,21	3,62	0,13		99,58	3,29
12	50,92	1,57	13,66	3,8	10,69	0,177	3,82	8,89	2,62	0,42	0,1	3,17	0,16		100	3,04
13	49,96	1,77	11,44	6,18	13,28	0,226	4,46	7,1	2,48	0,65	0,18	2,15	0,1		100	3,13
14	48,74	0,48	16,96	1,64	7,97	0,183	7,53	9,11	2,08	1,99	0,11	2,97	0,08	0,04	99,82	4,07
15	58,10	1,17	12,09	4,62	10,27	0,143	2,05	4,19	3,18	0,18	0,18	3,12	0,23	2,14	99,99	3,36
16	55,94	1,42	11,67	4,67	11,71	0,206	2,43	4,92	2,96	0,34	0,34	2,44	0,21	0,71	99,86	3,30
17	55,36	1,36	12,23	3,67	12,43	0,218	2,73	5,64	2,87	0,62	0,23	2,15	0,22	0,29	99,73	3,49
18	54,36	1,43	11,92	4,22	12,85	0,215	2,73	5,64	2,66	0,41	0,29	2,66	0,22	0,95	99,61	3,07
19	56,40	1,31	12,26	3,45	11,70	0,207	2,84	5,06	3,07	0,76	0,25	2,25	0,21	0,82	99,77	3,83
20	57,06	1,12	10,81	10,06	6,68	0,141	2,00	2,96	3,21	0,56	0,35	4,67	0,22	0,16	99,84	3,77
21	74,72	0,60	8,44	3,77	3,45	0,127	0,81	3,90	2,01	0,16	0,42	1,42	0,09	0,28	99,92	2,17
22	73,26	0,84	7,60	2,86	6,68	0,122	1,49	2,82	2,03	0,33	0,31	1,49	0,14	0,12	99,97	2,36
23	73,76	0,62	8,53	3,91	3,88	0,078	0,89	2,24	3,09	0,19	0,50	2,03	0,12	0,88	99,84	3,28

2. ХИМИЧЕСКИЙ СОСТАВ ВМЕЩАЮЩИХ ПОРОД И ГАББРОИДОВ РУДОПРОЯВЛЕНИЯ РАЯЛАМПИ (масс. %)

Примечание. 1, 2 – вмещающие андезибазальты (2 – с вкрапленностью сульфидов и ильменитом); 3–5 – кварц-плагиопорфиры, риодациты (3, 5 – массивные, 4 – рассланцованные с пиритовой вкрапленностью); 6–8 – плагиопорфиры дацитового состава; 9–13 – габбро, западный участок рудопроявления; 14–20 – габбро, восточный участок (14 – с биотит-хлоритовыми изменениями, 20 – изменённое с сульфидной вкрапленностью); 21–23 – интенсивно окварцованные габбро

свиты, севернее вмещающие толщи и габброиды прорываются Хаутаваарским массивом, южнее – массивом Коруд. Составы основных типов пород рудопроявления Раялампи приведены в табл. 2.

Дайка габбро изучаемого рудопроявления блокирована (см. рис. 3), но хорошо выделяется при измерениях магнитного поля. В восточной части участка чёрные габбро интенсивно ожелезнены с поверхности, в западной части вблизи озёр породы светло-зеленоватые в связи с их эпидотизацией. Габброиды содержат ∑(FeO+Fe₂O₃) от 10 до 19,46, ТіО₂ до 1,77% (см. табл. 2). С габбро Виетуккалампинского комплекса [12] их сближает выраженная железистость, однако они имеют повышенные содержания SiO₂ и Na₂O, низкие – MgO и CaO, что роднит их по составу с диоритами. Содержание К₂О локально растёт до 1,99% за счёт биотита (см. табл. 2). От монцогаббро Хаутаваарского комплекса (см. табл. 1) они отличаются низким содержанием суммы всех щелочей и редкоземельных элементов.

Рис. 2. ДИАГРАММА СОСТАВОВ ИНТРУЗИВНЫХ И ВМЕЩАЮ-ЩИХ ПОРОД РУДОПРОЯВЛЕНИЯ РАЯЛАМПИ:

 габбро; 2 – монцогаббро-граносиениты дифференцированного Хаутаваарского массива; 3 – вмещающие толщи (андезибазальты, андезиты, дациты, риодациты)

Рис. 3. СХЕМА ГЕОЛОГИЧЕСКОГО СТРОЕНИЯ РУДОПРОЯВЛЕ-НИЯ РАЯЛАМПИ (составлена Л.В.Кулешевич):

калаярвинская свита: 1 - вулканогенно-осадочные толщи (<math>a - осадки, 6 - туфы), 2 - субвулканические порфировые тела дацитов-риодацитов, отчасти агломератовые туфы; <math>3 - базальты, андезибазальты; <math>4 - вулкано-генно-осадочная толща среднего и кислого составов виетуккалампинской свиты (a - дациты, 6 - андезиты); 5 - ультраосновные породы; <math>6 - умереннощелочные породы Хаутаваарского комплекса; <math>7 - граниты Шуй-ского комплекса; <math>8 - габбро; рудные зоны: 9 - установленные, 10 - литохимические аномалии, обусловленные сульфидной вкрапленностью; <math>11 - рудопроявление Раялампи (<math>a - золото-висмутовое (восточный участок), 6 - золото-арсенопиритовое (западный)); 12 - северозападные зоны рассланцевания; <math>13 - северо-восточные тектонические зоны, блокирующие габбро

Минеральная ассоциация метаморфизованных габбро представлена Са-роговой обманкой, раскисленным плагиоклазом, эпидотом, кварцем, магнетитом и ильменитом. Титаномагнетит (3–6%) распадается с выделением ламеллей ильменита и затем полностью замещается им. Дайки габброидов и вмещающие их толщи деформированы и смещены более поздними северо-восточными сдвигами (~70°), блокирующими всю структуру. Северо-западные зоны рассланцевания сопровождаются низкотемпературными метасоматическими изменениями пород. По габбро и основным породам развиваются прожилковая и пятнистая эпидотизация (или пропилитизация, по [6]), актинолит, раскисленный плагиоклаз. В зонах более позднего прожилкового окварцевания выделяются хлорит, альбит, кварц, реже биотит.

Золото-сульфоарсенидная минерализация выявлена на западном участке у оз. Раялампи в интенсивно окварцованных габброидах (табл. 3; см. рис. 3). Изменения пород проявлены неравномерно, прослеживаются по простиранию дайки на расстояние до 1,5 км. В изменённых габбро можно выделить центральную зону окварцевания с сульфоарсенидами, непосредственно примыкающую к ней кварц-хлоритовую и внешнюю наиболее широко проявленную зону пропилитов с сульфидной вкрапленностью [11]. Центральная часть рудной зоны окружена интенсивно хлоритизированными породами с вкрапленностью сульфидов и сульфоарсенидов (арсенопирита или кобальтина). В ассоциации с ними встречаются редкие единичные зёрна микронного размера – галенита, висмутотеллуридов, гессита, алтаита, золота. Внешняя зона изменения представлена эпидотизированными габброидами (пропилитами), которые содержат гнёзда и вкрапленность сульфидов (1–10%) – пирротина, халькопирита, реже пирита, кобальтина, сфалерита (Fe 3,7–9,7%). Здесь кобальтин и пирит выделяются первыми, замещаются пирротином и халькопиритом. Медь распределена неравномерно (см. табл. 3). Её содержание в неизменённых габбро и вмещающих толщах не превышает 70 г/т, в метасоматитах по габбро с сульфидной вкрапленностью возрастает до 288-387 г/т, а в рудной зоне в зальбандах прожилков – до 469-1166 г/т. Содержания Со, Sb, Bi, Pb в ряду от слабо изменённых пород к рудной зоне увеличиваются в 2–10 раз, As – в 100 раз.

В центральной части золото-сульфоарсенидной зоны брекчированные и рассланцованные габбро насыщены маломощными кварцевыми жилами северо-западного (330°), реже северо-восточного (70°) простирания. У оз. Раялампи тонкие сближенные прожилки образуют зону окварцевания мощностью 0,5–1 м при общей мощности зоны изменения до 5–20 м. Кварцевые прожилки обычно окружены хлоритом, содержат альбит, реже в них встречаются биотит, мусковит, калишпат, турмалин, что отражается в химическом составе изменённых пород (см. табл. 2). Рудная минерализация представ-

Элементы	1	2	3	4	5	6	7	8	9	10	11	12	13
Ті, масс. %	0,61	1,08	1,12	0,92	0,81	1,16	1,15	0,83	1,87	0,62	0,24	0,64	0,27
Мп, масс. %	0,06	0,16	0,13	0,12	0,14	0,12	0,07	0,07	0,08	0,03	0,016	0,03	0,017
Р, г/т	392	270	556	409	399	636	531	418	298	165	150	190	150
V	162	750	559	580	575	499	531	486	882	377	144	383	156
Cr	31	16	22	17	9,3	12	9	27	11	16	22	13	25
Со	15	52	39	46	42,2	63	458	569	11	126	30	138	32
Ni	38	10	27	17	26,2	74	78	78	11	14	18	26	33
Cu	14	16	11	288	322	387	539	1166	234	1082	469	1166	541
Zn	32	101	70	62	75	78	92	77	64	59	161	71	198
As	-	-	14	18	10,5	22	3143	2421	5632	43 660	20 810	52 730	25 310
Мо	0,76	-	0,71	0,68	0,63	0,74	1,1	1,5	1,5	0,77	1,66	0,82	2,0
Ag	0,14	0,22	0,1	0,34	0,51	0,49	0,94	1,24	0,97	1,4	2,14	1,17	1,88
Sb	0,67	0,49	1,46	0,92	0,66	1,73	15,3	11,7	5,52	77,5	28,8	90	33
Те	-	-	-	-	0,21	-	2,01	1,75	0,43	2,57	0,85	2,6	1,7
∑REE	38	48	70	52	61	69	34	35	24	12	9	13	10
W	0,88	1,16	12,3	0,91	1,25	3,87	3,88	3,74	34,5	6,78	6,46	6,9	7,2
Pb	5,5	4,9	4,8	4,9	5,4	7,7	11,4	12,5	514	506	1693	545	2037
Bi	0,22	0,43	0,15	0,25	0,16	0,45	2,88	2,43	0,94	7,35	3,67	7,2	3,7
Au	-	0,092	0,1	-	-	0,04	0,19	0,15	-	1,37	0,42	1,92	0,53
Pt	0,043	0,058	0,031	-	-	0,051	0,079	-	0,075	0,021	-	-	0,02

3. СОДЕРЖАНИЕ РУДОГЕННЫХ ЭЛЕМЕНТОВ В ГАББРО, МЕТАСОМАТИТАХ И РУДНОЙ ЗОНЕ ЗАПАДНОГО УЧАСТКА РУДОПРОЯВЛЕНИЯ РАЯЛАМПИ

Примечание. 1 – вмещающие андезибазальты; 2 – габбро; 3–13 – изменённые габбро: 3–6 – внешняя зона изменённых (пропилитизированных) габбро с сульфидами, 7–8 – околорудная зона (кварц-хлоритовые метасоматиты с вкрапленностью арсенопирита), 9–13 – арсенопирит-кварцевая жильная зона; прочерк – ниже предела обнаружения.

лена арсенопиритом, галенитом, пиритом, ильменитом, в небольшом количестве присутствует Соарсенопирит, реже шеелит, сфалерит, тонкодисперсные золото, висмутотеллуриды, антимонит. Текстура руд неоднородная, вкрапленная, гнездово-прожилковая (рис. 4, *a*).

Арсенопирит образует мелкие игольчатые, ромбические и более крупные кристаллы размером до 1-5 мм (см. рис. 4). Содержание As в рудах составляет 0,24-5,3%, (см. табл. 3), в арсенопирите возрастает от ранних генераций игольчатых кристаллов к поздним ромбическим и крупным метакристаллам, при этом соотношение S/As уменьшается от 1,38 до 1,2–1,14. По составу арсенопирита и хлорита из околорудных метасоматитов начальная температура рудообразования оценивается в 380°С [11]. В приповерхностной зоне арсенопирит замещается скородитом и гидроксидами железа. Шеелит в ассоциации с арсенопиритом образует зёрна размером до 40 мкм. Он установлен в кварце, в микровключениях (1-15 мкм) в ильмените и повсеместно отмечается в шлихах на изучаемой

площади. Пирит в ассоциации с арсенопиритом наблюдается редко, более широко он распространён в виде сульфидной вкрапленности и прожилков во внешней зоне изменённых пород. Из поздних сульфидов определены халькопирит, галенит и более редкий антимонит (1–7 мкм). Золото (1–4 мкм) встречается в арсенопирите и сохраняется в скородите при окислении арсенопиритовых руд. Оно на 5,1– 33,35% состоит из серебра, преобладают золотинки с содержанием Ag 18–23%.

Содержания элементов в центральной части рудной золото-сульфоарсенидной зоны участка составляют, г/т: Cu 1166–3200, Pb 2037–2800, Sb 77,5, Co 569, Bi 7,35, W 34,5, Te 2,6, Ag 2,14, Mo до 1,66. Содержание Au невысокое 0,15–1,92 г/т (см. табл. 3). Распределение Ti, V – типоморфных для габбро элементов – неравномерное: в изменённых габбро их содержание выше за счёт присутствия ильменита, в окварцованных породах вблизи рудных тел – снижается. Концентрация платиноидов низкая (см. табл. 3). Золото-сульфоарсенидная минерализация сопровождается литохимической аномалией с характерными типоморфными для этой зоны элементами – As, Cu, Pb, которые служат геохимическими индикаторами при выделении внешнего ореола золото-редкометалльной минерализации.

Золото-висмутовая минерализация была обнаружена на восточном участке рудопроявления. Тонкая вкрапленная минерализация приурочена к линейной зоне северо-западного рассланцевания и прожилкового окварцевания в восточном эндоконтакте интрузии габброидов. Изменения однотипны с западным участком. Зона окварцевания сложена маломощными прожилками северо-западного (330, 280°), реже северо-восточного простирания. Её видимая мощность составляет 6–10 м, протяжённость по геофизическим данным достигает 200 м. Толщина отдельных и сближенных прожилков в основном 0,1-2, жил до 10-15 см. Сульфидная (халькопирит-пирротиновая) вкрапленность фиксирует внешний ореол рудной зоны: выделяется визуально по ожелезнению пород и аномалией в геофизических полях. Золото-висмутовая минерализация продуктивной стадии тяготеет к зальбандам прожилков и более крупных жил. Установлены три сменяющие друг друга ассоциации: сульфидная (халькопирит-пирротиновая); ранняя арсенопиритовая с шеелитом; продуктивная золото-висмутовая с последовательной сменой золото-висмутовой, золото-теллуридно-висмутосульфидной, золото-висмуто-свинцово-сульфидной рудных ассоциаций. Изменение габброидов сопровождается проявлением рудной и геохимической зональности. В центральной части окварцованной зоны возрастают концентрации почти всех рудогенных элементов – Си, Ві, Аи, Те (табл. 4). В центральной части собственно рудной зоны установлены максимальные содержания Bi, Au, Te, в зальбандах наиболее крупной жилы отмечаются, в том числе, Мо, Pb, Ag.

Ранняя сульфидная минерализация сопровождается эпидотовыми изменениями. Вкрапленность сульфидов (1–6%) представлена преимущественно пирротином, который срастается с ильменитом и халькопиритом, а при окислении замещается марказитом и гидроксидами железа. В ассоциации с сульфидами иногда появляются минералы более поздней стадии – галенит, гиссенит (Cu₂Pb₂₆Bi₂₀S₅₇). Халькопирит выделяется на ранней и заключительной стадиях рудообразования.

Золото-сульфоарсенидная рудная стадия на восточном участке рудопроявления Раялампи проявлена ограниченно. Она начинается с выделения редких сульфоарсенидов, шеелита, молибденита. С арсенопиритом и кобальтином (Со 2,69–31,93%) иногда встречаются небольшие золотинки. Шеелит образует редкие кристаллы (до 1–2 мм), которые содержат эмульсионные включения висмута (1–4 мкм) и секутся тонкими просечками с висмутином. Поскольку сульфоарсенидная ассоциация на восточном участке редкая и практически полностью вытесняется висмутовой, концентрации элементов ранней стадии также низкие, г/т: As 79, Sb 6,1, W 2,7, Mo 10,6 (см. табл. 4).

Продуктивная золото-висмутовая стадия рудообразования сопровождается привносом Bi, Au, Pb, Те и отложением минералов золота и висмута. Последние представлены мелкими зёрнами, игольчатыми кристаллами и их совместными срастаниями (рис. 5). Сначала выделяются самородный висмут, высоковисмутовые теллуровисмутиды и Pb-Bi сульфосоли, такие как теллурожозеит, сульфожозеит, реже хедлейит, ингодит, сульфоцумоит, тетрадимит (малораспространённые из-за низкого, до 42-151 г/т, содержания Те в рудах). Затем при возрастании в рудообразующих растворах роли S висмут и теллуровисмутиды замещаются висмутином, который иногда, при содержании Рb до 5-6%, сам замещается более редким галеновисмутитом (табл. 5; см. рис. 5, а). В поздних ассоциациях появляются Pb-Bi сульфосоли (ашамальмит и более редкие) с разным соотношением Pb/Bi (см. табл. 5). При окислении висмутовые минералы замещаются бисмитом Bi_2O_3 .

По данным опробования (см. табл. 4) содержание золота в рудной золото-висмутовой зоне достигает 283 г/т. Содержания прочих элементов-индикаторов оруденения составляют, г/т: Ві 11–7891, Pb 0,1–1520, Te 2,2–151, W 0,5–2,66, Cu 31–167, As 5,4– 79, Мо 1,7-10,6. Золото отлагается совместно с минералами висмута в основную продуктивную стадию. Обычно оно высокопробное, содержит 3-13% Ад, реже до 1–17% Ві (табл. 6). Золото ассоциирует с самородным висмутом и высоковисмутовыми минералами, образует мальдонит Au₂Bi. При усилении роли S в растворах оно выделяется в срастании с висмутином и входит в состав джонассонита Au(Bi, Pb)₅S₄. Встречаются своеобразные эвтектические прорастания золота, мальдонита и висмута (см. табл. 6, рис. 5, в), золота и висмутина, срастания с жозеитом (см. рис. 5, г, д), ингодитом и самостоятельные кристаллы непосредственно в кварце

Рис. 4. РУДНАЯ МИНЕРАЛИЗАЦИЯ ЗАПАДНОГО УЧАСТКА РУДОПРОЯВЛЕНИЯ РАЯЛАМПИ:

а – вкрапленно-прожилковая текстура арсенопиритовой минерализации; *б* – игольчатый арсенопирит-1; *в* – ромбические кристаллы арсенопирита-2 и игольчатые кристаллы, образующие метакристалл арсенопирита-3

Эле- менты	1	2	3	4	5	б	7	8	9	10	11	12	13	14	15	16	17	18	19
Ті, масс. %	0,27	0,85	0,7	0,93	0,88	0,85	0,90	0,68	0,45	0,71	0,86	0,14	0,29	0,26	0,25	0,46	0,38	0,55	0,44
Мп, масс. %	0,13	0,15	0,12	0,14	0,14	0,14	0,15	0,09	0,06	0,1	0,12	0,02	0,06	0,03	0,10	0,09	0,09	0,08	0,06
Р, г/т	203	585	713	701	622	615	584	635	389	720	923	220	282	411	271	407	360	416	385
V	180	181	90	173	182	184	224	153	84	41	56	6	76	13	58	88	109	135	111
Cr	220	30	22	16	30	26	21	16	42	34	17	37	47	33	34	24	32	28	33
Со	38	33	34	40	52	47	44	15	33	50	21	3	16	7,4	18	32	14	12	44
Ni	121	22	17	17	22	19	20	13	31	25	21	27	32	21	25	21	23	20	28
Cu	27	75	77	167	182	200	239	280	225	497	122	31	139	98	42	167	63	52	301
Zn	81	91	79	101	84	87	100	60	37	61	74	10	33	26	36	53	39	53	32
As	30	21	32	1,3	26	22	22	28	39	19	5,4	78	33	42	37	79	53	33	27
Мо	0,3	1,2	1,1	0,92	0,9	1,3	1,3	1,1	2	1,4	10,6	4,5	2,5	2,2	2,3	3,2	3,4	1,7	1,2
Ag	0,05	0,1	0,1	0,51	0,1	0,2	0,2	0,4	0,3	0,5	24,1	1,2	0,9	0,8	0,4	0,3	0,3	0,2	0,2
Sb	0,4	0,6	0,6	0,87	0,8	0,7	0,7	0,5	0,4	0,7	6,1	2,5	0,5	1	0,2	0,4	1,2	0,4	0,5
Те	0,1	0,2	0,2	0,13	0,3	0,2	0,4	0,9	2	1,3	151	35	42	7	11	14	4,1	2,2	0,3
∑REE	21	67	73	81	65	65	77	39	26	99	69	8	26	23	11	30	27	30	33
W	0,9	0,7	0,8	0,78	0,7	0,7	0,9	0,6	0,8	0,9	2,66	0,7	0,6	0,7	0,5	0,7	1,2	0,8	0,8
Pb	8	6	6,7	6,5	6	8,3	5,8	29	7	12	1520	23	10	35,2	8	27	0,1	5,0	6,7
Bi	0,2	1,8	2,8	1,54	4,8	2	2,2	7,4	8,6	29	7891	1319	117	364	36	45	14	11	3,0
Au	0,09	0,7	0,6	-	-	0,4	1,2	1,3	3,9	4,5	283	126,7	57,5	18,2	28,6	14,7	8,2	7,8	0,7
Pt	0,06	0,2	0,2	0,066	0,3	0,3	0,2	0,2	0,1	0,25	0,08	0,1	0,1	0,09	0,1	0,1	0,1	0,1	0,13

4. СОДЕРЖАНИЕ РУДОГЕННЫХ ЭЛЕМЕНТОВ ВО ВМЕЩАЮЩИХ ГАББРОИДАХ, МЕТАСОМАТИТАХ И РУДНОЙ ЗОНЕ ВОСТОЧНОГО УЧАСТКА РУДОПРОЯВЛЕНИЯ РАЯЛАМПИ

Примечание. 1 – изменённые андезибазальты (вмещающая толща); 2, 3 – габбро; 4–6 – габбро с сульфидной вкрапленностью (внешний ореол); 7–10 – изменённые габбро (околорудный ореол с вкрапленностью сульфидов и редко висмутидов); 11–18 – рудная золото-висмут-кварцевая прожилковая зона; 19 – кварцевая жила.

Рис. 5. ЗОЛОТО-ВИСМУТОВАЯ МИНЕРАЛИЗАЦИЯ ВОСТОЧНОГО УЧАСТКА РУДОПРОЯВЛЕНИЯ РАЯЛАМПИ:

а – висмут (1) замещается висмутином (2); *б* – срастание золота (1), висмутотеллурида (2), висмутина (3); *в* – эвтектическое срастание золота (1) и мальдонита (2), висмут (3); *г* – золото (1) в теллурожозеите (2) и висмутине (3); *д* – сульфожозеит (1), золото (2, 3), висмутин (4); *е* – золото в кварце

(см. рис. 5, *e*). Высокосеребристое золото (25,67% Ag) отмечается редко, установлено в единичных зёрнах в срастании с галеновисмутитом.

Позднеархейские деформации и внедрение массивов Хаутаваарского комплекса предопределили формирование благоприятных структур для проникновения растворов на Хаутаваарской площади. Рудолокализующей структурой для отложения благороднометалльной минерализации оказалась рассланцованная в восточном эндоконтакте (330° CC3) и блокированная (70° CB) дайка габбро рудопроявления Раялампи. Растворы, вызвавшие поздние изменения вмещающих пород и рудоотложение, завершают формирование монцогранитграносиенитовых массивов. Об этом свидетельствует близкий по набору элементов гранитофильный геохимический профиль оруденения (Bi, Pb, Te, Mo, As, W), совпадающий с таковым штоквер-

ков Хаутаваарского массива и проявлений в его ореоле [9–11]. Изменения основных вмещающих пород и дайки габброидов на рудопроявлении Раялампи сопровождаются ранней эпидотизацией (с сульфидной вкрапленностью), а на более поздней стадии – кварц-хлоритовыми (с биотитом) изменениями и окварцеванием. К северо-северо-западным зонам рассланцевания тяготеют маломощные кварцевые прожилки с тонкозернистым кварцем сероватого цвета с золото-арсенидной и золото-висмутовой минерализацией. Последовательность рудоотложения (сульфиды – сульфоарсениды – золото-висмутовая ассоциация) отражает стадийность гидротермального процесса и пульсационный характер поступления рудообразующих растворов. Прожилково-вкрапленная пирротиновая минерализация ранней непродуктивной стадии хорошо выделяется в магнитном и

I/			Ŧ	V	Dh	-			Зональное зерно		
КОМПО- Ненты	висму- тин	Сульфо- жозеит	теллуро- жозеит	Хед- лейит	РБ- ИНГОДИТ	Тетра- димит	Сульфо- цумоит	Бурсаит	Галено- висмутит	Ашамаль- мит?	
S	18,88	5,98	2,78		5,97	6,02	3,77	15,99	17,18	14,33	
Bi	81,32	81,88	74,86	80,11	67,82	61,05	68,66	38,69	61,08	27,77	
Pb					5,00			45,32	21,74	57,90	
Te		12,14	22,36	19,89	21,20	32,93	27,57				
Сумма	100	100	100	100	99,99	100	100	100	100	100	

5. СОСТАВ СУЛЬФИДОВ, ТЕЛЛУРИДОВ, СУЛЬФОТЕЛЛУРИДОВ И СУЛЬФОСОЛЕЙ ВИСМУТА (масс. %)

6. СОСТАВ ЗОЛОТА И ЗОЛОТО-ВИСМУТОВЫХ МИНЕРАЛОВ (масс. %)

Компоненты	Золото		Серебристое золото	Висмут- содержащее золото	Мальдонит		Джонассонит		Золото- содержащий тетрадимит	
S								9,75	9,13	6,44
Bi					14,85	33,48	35,38	69,93	73,48	58,40
Pb								5,75	3,25	
Те										25,95
Au	100	97,24	86,67	74,33	85,15	66,52	64,17	14,57	14,14	9,21
Ag		2,76	13,33	25,67						
Сумма	100	100	100	100	100	100	99.55	100	100	100

электрическом полях и может быть оконтурена геофизическими методами. Малозолотоносная арсенопиритовая ассоциация (с вольфрамом) ранней стадии продуктивного этапа и богатая золото-висмутовая минерализация являются производными единого гидротермального процесса и относятся к одной золото-редкометалльной рудной формации, что отражается в геохимических особенностях оруденения. Подобные закономерности типичны и для других подобных золото-висмутовых месторождений Сибири, связанных с гранитами [2, 3, 7].

Ведущие минералы золото-висмутового оруденения – самородный висмут, висмутин, золото. Экспериментально доказано, что высокое содержание Ві способствует экстракции золота из первичных «родоначальных» магматических расплавов и последующему обогащению ими флюидных систем с кристаллизацией уже при более низких температурах: формирование золото-висмутового оруденения по LBC-модели (liquid bismuth collector model) [23]. Минералы золото-висмутовой ассоциации образуются в условиях низкой фугитивности серы. Совместно кристаллизуются золото, мальдонит и висмут (температура золото-висмутовой эвтектики 241°С). При *T* >371°С сосуществуют золото и висмутин, представленные графическими сра-

станиями в рудах. Мальдонит с висмутом устойчив в интервале 371–116°С, при понижении температуры он разлагается на Au и Bi. Даже незначительное увеличение количества S в конце рудообразующего процесса сопровождается сменой высоковисмутовых ассоциаций на Bi-Te-S, Bi-S, Bi-Pb-S минералы, а в висмутовых минералах – постепенным увеличением содержания Pb. Образуется непрерывный ряд сульфотеллуридов Ві и сульфосолей Bi-S, содержащих Pb (Pb-висмутин, реже галеновисмутит и замещающий его ашамальмит). Температура стабильности висмутина-галеновисмутита и Pb-Bi сульфосолей ~375°С [19], причём совместное нахождение галеновисмутита с висмутином возможно и при более низких температурах ~300°С. В срастании с ними в висмутине достаточно часто встречаются вростки джонассонита Au(Bi,Pb)₅S₄, устойчивого в этой ассоциации, иногда совместно с золотом. На поздней стадии появляется также высокосеребристое золото, хотя содержание Ад в рудах очень низкое.

Опробование руд и околорудно-изменённых пород восточного и западного участков рудопроявления Раялампи позволило выявить повышенные концентрации Bi, Te, Au, As, Pb, Cu, W, Mo, Te, Sb. Ранняя сульфидная и золото-сульфоарсенидная минерализация предшествовала отложению минералов золото-висмутовой стадии продуктивного этапа на рудопроявлении. Стадийность рудообразования обусловливает геохимическую зональность. Наблюдается значительное увеличение концентраций Au и его элементов-спутников от зоны околорудно-изменённых пород к центральным частям рудной зоны, г/т: Bi от 2–29 до 1319–7891, Pb от 6–29 до 35–1520, Te от 0,4–2 до 2–151 (см. табл. 4). Содержание Au возрастает от 1,2 до 127–283 г/т.

Основные поисковые признаки золото-редкометалльного оруденения на Хаутаваарской площади:

- выявленные на ранних стадиях геохимических работ литохимические аномалии элементовспутников (As, Cu, Pb, Bi, Te);
- структурный контроль: сочетание северо-северо-западных зон рассланцевания и северовосточных деформаций с отчётливыми смещениями, блокировкой вмещающих пород, формирующих узлы;
- локализация оруденения в зонах северо-западного рассланцевания в северо-восточном борту интрузии габброидов;
- установление кварцевых вкрапленно-прожилковых линейных жильных и штокверковых зон, сопровождающихся изменениями пород и сульфидной (преимущественно пирротиновой) минерализацией;
- выделение в геофизических полях аномальных зон, обусловленных вкрапленной пирротиновой минерализацией (более ранней относительно продуктивной стадии);
- зональные метасоматические изменения пород: смена эпидотизации (пропилитизации) кварц-(биотит)-хлоритовыми метасоматитами и кварцевыми прожилковыми зонами;
- обнаружение арсенопиритовой и редкометалльной минерализации;
- установление рудной зональности: смена сульфидов (пирротина, халькопирита) сульфоарсенидами, затем минералами висмута.

Рудная зональность проявления Раялампи представлена тремя основными зонами: сульфидной, золото-сульфоарсенидной и золото-висмутовой. На западном участке развита золото-сульфоарсенидная минерализация (Au 1–2 г/т), на восточном – наиболее продуктивная золото-висмутовая (Au 7,8–283 г/т). Элементы-индикаторы золотого оруденения – Bi, Te, Pb, As, W. B связи с широким развитием габброидов в структуре повышенные концентрации Cu, Co, Zn не являются прямыми индикаторами золоторудных проявлений, но на предварительном этапе позволяют выделить перспективную зону.

В заключение следует отметить, что золотовисмутовый тип оруденения в Хаутаваарской архейской зеленокаменной структуре обнаружен впервые. Несмотря на некоторую пространственную разобщённость, золото-висмутовая и золото-сульфоарсенидная минерализация (восточного и западного участков проявления Раялампи) находится в единой зональности и относится к одной золото-редкометалльной рудной формации. Установленные минеральные ассоциации позволяют оценивать условия образования оруденения интервалом температур (400–370)–(200–116)°С.

Работа выполнена в рамках госбюджетной темы НИР Института геологии КарНЦ РАН при частичной поддержке гранта РФФИ 18-35-00447/18.

СПИСОК ЛИТЕРАТУРЫ

- Архейский возраст габбро и гранат-биотит-амфиболкварцевых метасоматитов Au-PGE проявления Виетуккалампи в Хаутаваарской структуре / А.А.Носова, А.В.Самсонов, Ю.О.Ларионова и др. // Золото Фенноскандинавского щита: мат-лы Междунар. конф. Петрозаводск: Изд-во КарНЦ РАН, 2013. С. 131–134.
- Гамянин Г.Н., Горячев Н.А. Аѕ и Ві как индикаторы генетических особенностей орогенных золоторудных месторождений Северо-Востока России // Геологические процессы в обстановках субдукции, коллизии и скольжения литосферных плит: мат-лы Всеросс. конф. с международным участием. Владивосток, 2011. С. 334–336.
- 3. Гармаев Б.Л., Дамдинов Б.Б., Миронов А.Г. Золото-висмутовое проявление Пограничное (Восточный Саян): состав и связь с магматизмом // Геология рудных месторождений. 2013. Т. 55. № 6. С. 533–545.
- Геодинамические факторы образования крупных и суперкрупных докембрийских золоторудных концентраций / Ю.Г.Сафонов, В.В.Попов, А.В.Волков и др. // Крупные и суперкрупные месторождения: закономерности размещения и условия образования. М., 2004. С. 15-46.
- Геолого-поисковые модели золоторудных месторождений зеленокаменных поясов / Г.В.Ручкин, В.Д.Конкин, Л.М.Ганжа и др. // Руды и металлы. 2000. № 4. С. 5–15.
- Гордон Ф.А. Поисковые признаки и предпосылки золотого оруденения Северо-восточной части Хаутаваарской структуры (Южная Карелия): Автореф. дисс... канд. геол.-минер. наук. – СПб, 2017.

- Горячев Н.А., Гамянин Г.Н. Золото-висмутовые (золоторедкометалльные) месторождения Северо-Востока России: типы и перспективы промышленного освоения // Золоторудные месторождения Востока России. Магадан, 2006. С. 50–62.
- Дмитриева А.В. Металлогеническая специализация неоархейского умереннощелочного магматизма центральной Карелии: Автореф. дисс... канд. геол.-минер. наук. – СПб., 2017.
- 9. Дмитриева А.В., Кулешевич Л.В., Вихко А.С. Петрохимические особенности Хаутаваарского массива и его рудная специализация (Южная Карелия) // Тр. КарНЦ РАН. 2015. № 2. С. 52–72.
- Кулешевич Л.В., Дмитриева А.В. Аu-S-кварцевое Мосодержащее проявление Центральное в Хаутаваарском дифференцированном массиве, Южная Карелия // Руды и металлы. 2015. № 5. С. 38–50.
- Кулешевич Л.В., Лавров О.Б., Дмитриева А.В., Тытык В.М. Золотосодержащая полиметаллическая и сульфоарсенидная минерализация экзоконтакта Хаутаваарского массива (Южная Карелия) // Тр. КарНЦ РАН. 2017. № 11. С. 59–77.
- Кулешевич Л.В., Слюсарев В.Д., Лавров М.М. Благороднометалльная минерализация Хаутавааро-Ведлозерской площади // Геология и полезные ископаемые Карелии. 2009. Вып. 12. С. 12–25.
- 13. *Металлогения* Карелии / Отв. ред. С.И.Рыбаков, А.И. Голубев. Петрозаводск: КарНЦ РАН, 1999.
- Минерально-сырьевая база Республики Карелия. Кн. 1 / Под ред. В.П.Михайлова, В.Н.Аминова. – Петрозаводск: Карелия, 2005.
- 15. Сафонов Ю.Г. Золоторудные и золотосодержащие месторождения мира – генезис и металлогенический

потенциал // Геология рудных месторождений. 2003. Т. 45. № 4. С. 305–320.

- Светов С.А. Магматические системы зоны перехода океан-континент в архее восточной части Фенноскандинавского щита. – Петрозаводск: КарНЦ РАН, 2005.
- Distribution, character, and genesis of gold deposits in metamorphic terranes / R.J.Goldfarb, T.Baker, B.Dube et al. // Econ. Geol. 100th Anniversary volume. 2005. P. 407–450.
- Gold deposits in metamorphic belt: overview of current understanding, outstanding problems, future research, and exploration significance / D.I.Groves, R.J.Goldfarb, F.Robert et al. // Econ. Geol. 2003. Vol. 98. P. 1–29.
- Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types / D.I.Groves, R.J.Goldfarb, M.Gebre-Mariam et al. // Ore Geology Reviews. 1998. Vol. 13. P. 7–27.
- Luxn L.Y.Chang, Syed H.Hoda. Phase relations in the system PbS-Cu₂S-Bi₂S, and the stability of galenobismutite // American Mineralogist. 1977. Vol. 62. P. 346–350.
- Models and Exploration Methods for Major Gold Deposit Types / F.Robert, R.Brommecker, B.T.Bourne et al. // Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration. 2007. Plenary Session: Ore Deposits and Exploration Technology. Paper 48. P. 691–711.
- 22. *The characteristics*, origins, and geodynamic settings of supergiant gold metallogenic provinces / R.Kerrich, R.Goldfarb, D.Groves et al. // Science in China (ser. D). 2000. Vol. 43. P. 1–68.
- 23. Tooth B., Brugger J., Ciobanu C.L., Liu W. Modeling of gold scavenging by bismuth melts coexisting with hydro-thermal fluids // Geology. 2008. Vol. 36 (10). P. 815–818.

RAJALAMPI GOLD-RARE METAL OCCURRENCE IN THE HAUTAVAARA STRUCTURE, KARELIA: LOCALIZATION PATTERN, MINERALOGICAL AND GEOCHEMICAL INDICATORS L.V.Kuleshevich¹, I.A.Alexeyev², O.B.Lavrov¹, A.V.Dmitrieva¹ ('Institute of Geology KarRC, Petrozavodsk, ²Institute of Earth Sciences, SPbGU, St.Petersburg)

The authors report the results of the integrated geological study of magmatism, near-ore metasomatic rocks and ore composition of the Rajalampi gold-rare metal occurrence, new to the region, in the Hautavaara structure, Southern Karelia. Metasomatic alterations of gabbro and host rocks in a NNW-trending shear-zone were accompanied by the formation of Au-Bi mineralization located in common zoning with Au-bearing sulphoarsenide. The ore zoning revealed reflects the stepwise pattern of a hydrothermal process and the pulsed pattern of the supply of ore-forming solutions. The poor sulphide dissemination of the external zone (1-6%) is replaced by sulphoarsenides (1-6%) of the intermediate zone and then by the gold-bismuth mineralization (1-2%) of the central part of the ore zone. In the arsenopyrite mineralization zone As concentration increases to 5,3, Pb 0,28, Cu 0,12%, Au 1,92, W 34,5 and Bi 7,4 g/t. In the central part of the ore zone productive-stage mineralization is represented by native highgrade gold associated with native bismuth and high-bismuth minerals. Au concentration is 7,8–283 g/t, Bi – 0,8%.

Keywords: Au-Bi, Au-S-As mineralization, Rajalampi ore occurrence, metasomatic alterations, gabbro, greenstone structure, Karelia.

