——— ГЕОЛОГИЯ —

УДК 553.4:553.061.4(571.65)

РЕЛИКТОВЫЕ СУЛЬФИДЫ В ТЕРРИГЕННЫХ ПОРОДАХ ВЕРХНЕ-КОЛЫМСКОГО РЕГИОНА

© 2009 г. Е. Э. Тюкова, А. В. Волков, член-корреспондент РАН А. А. Сидоров

Поступило 30.03.2009 г.

Дисперсная сульфидизация в черносланцевых толщах имеет региональное развитие в складчатых поясах Северо-Востока России. В результате проведенных там исследований было выделено несколько типов зон сульфидизации [1]. Ранее показано [2], что крупные зоны тонкой сульфидизации в терригенных толщах имеют, по-видимому, различную природу – от гидротермально-осадочной до эпигенетической (глубинно-флюидной). По времени формирования зоны сульфидизации достаточно четко могут быть разделены на доаккреционные (преимущественно седиментогенные), синаккреционные (в значительной степени метаморфизованные) и постаккреционные (связанные с глубинной тектоно-магматической активизацией региона). Эти зоны, масштабы которых исключительно велики, практически еще не изучены.

В настоящем сообщении изложены результаты комплексных минералого-геохимических исследований агрегатов сульфидов сферической формы, отобранных за пределами известных месторождений и рудных полей в синаккреционных зонах сульфидизации Верхне-Колымского региона (рис. 1). Подобные образования описаны в рудах и вмещающих породах других металлогенических провинций [3–5]. Реконструкция их генезиса важна с точки зрения понимания истории регионального метаморфизма и его роли для мобилизации металлов и флюидов. Геотектонической позиции сульфидной минерализации Верхне-Колымского региона посвящена работа [6].

Изученные образцы представлены не претерпевшими приповерхностного окисления полевошпат-кварцевыми мелкозернистыми песчаниками, алевропесчаниками и тонкослоистыми алевролитами, зачастую с примесью вулканогенного материала. Породы в различной степени подвержены разнонаправленному кливажу, серицитизированы, гидрослюдизированы, карбонатизированы и сульфидизированы. На микроуровне наблюдаются сутурные поверхности растворения. В более глинистых и углистых разностях плоскостной кливаж проявлен интенсивнее, вплоть до формирования "аспидных сланцев". Поверхности кливажа подчеркиваются скоплениями тонкодисперсного углеродистого материала, ориентированными чешуйками слоистых минералов, графита и линзовидными сульфидными агрегатами (рис. 2).

Главным сульфидным минералом терригенных пород является пирит, который хорошо визуально диагностируется и образует рассеянную вкрапленность (до 1–10 мм), желваки, прожилки и линзовидные стяжения (до 1.0–1.5 см, рис. 2). Сульфиды распространены неравномерно, их количество в среднем составляет 0.5–0.7%.

Мелкие (около 0.01 мм) сферические агрегаты пирита установлены в наиболее молодых отложениях юрской и, в меньшей степени, пермской систем (рис. 3). Строение агрегатов однородное микроглобулярное, микрокристаллитовое, зональное скорлуповатое, однородное массивное (рис. 3). Нередка зональная структура, образующаяся при перекристаллизации микроглобулярного пирита в микрокристаллический часто с радиальным расположением кристаллов (рис. 3б). Центральная часть таких образований обычно выполнена зернами породы, сфалеритом, халькопиритом или галенитом (рис. 3г-к). Подчеркнем, что в терригенных породах, содержащих сферические агрегаты сульфидов, кливаж, вторичные карбонаты и гидрослюды распространены незначительно.

Крупные идиоморфные метакристаллы пирита зачастую содержат реликты сферических образований, что может свидетельствовать о формировании первых в результате перекристаллизации последних (рис. 4а–в).

В интенсивно кливажированных терригенных породах вместо углистого вещества появляются чешуйки графита и стильпномелана, ориентированные по плоскостям кливажа. В некоторых случаях графит образует скорлуповатые агрегаты

Северо-Восточный комплексный

научно-исследовательский институт

Дальневосточного отделения

Российской Академии наук, Магадан

Институт геологии рудных месторождений,

петрографии, минералогии и геохимии Российской Академии наук, Москва

Рис. 1. Распространение зон тонкой сульфидизации на Северо-Востоке России. *1* – породы черносланцевой формации; *2* – главные золотоносные районы; *3* – зоны сульфидизации; *4* – район исследований.

(рис. 4д). Сульфидные линзовидные образования, сопряженные с рассланцеванием, могут содержать агрегаты пирротина различного размера или мелкую (0.05 мм) вкрапленность халькопирита, пирротина, а также сферические агрегаты пирита в срастании с Fe–Co–Ni-сульфоарсенидами и редкие зерна "серого" монацита (рис. 4). В некоторых случаях раскристаллизованные относительно крупные образования пирита в результате стрессовых напряжений претерпевают растворение и их внешние зоны имеют пламевидные границы.

По данным химико-спектрального анализа пирит содержит 0.004–1.3 г/т Au; 0.1–1.8 г/т Ag; по данным нейтронно-активационного анализа содержание Со в пирите достигает 100 г/т. Микрорентгеноспектральное исследование сферических образований пирита было затруднено из-за структуры, представленной микроагрегатами очень мелких частиц (табл. 1). Суммарное содержание примесей As + Co + Ni достигает 1 мас. %, а в метакристаллах пирита не превышает 0.4 мас. %.

Характерными чертами сферических сульфидных образований в изученных породах являются: их широкое распространение в виде очень мелкой рассеянной вкрапленности; приуроченность к породам, наименее подвергнутым динамометаморфизму; фрамбоидальное, скорлуповатое и зональное строение; наличие микровключений Fe– Co–Ni-сульфоарсенидов, сфалерита, галенита и монацита; повышенное по сравнению с раскристаллизованным пиритом содержание элементов

Рис. 2. Линзовидная вкрапленность пирита по плоскостям кливажа в слоистой осадочной породе.

ТЮКОВА и др.

Рис. 3. Морфология и ассоциации сферических образований в осадочных породах (в – снято на сканирующем микроскопе LEO1430VP в обратно рассеянных электронах, ОИГГМ СО РАН, оператор А.Т. Титов). Q – кварц, Sph – сфалерит, Ga – галенит, Ру – пирит.

Рис. 4. Взаимоотношения ранних сферических образований и более поздних метакристаллов пирита (а–в). Новообразованные минеральные фазы (г–е): Gr – графит, Mnz – монацит, Grd – герсдорфит, Asp – арсенопирит. (Фото г снято на сканирующем микроскопе LEO1430VP в обратно рассеянных электронах, ОИГГМ СО РАН, оператор А.Т. Титов.)

примесей. Достоверные признаки биогенного происхождения сферических образований (закономерные биогенные структуры) не обнаружены. В большей степени имеющимся признакам отвечает коллоидное происхождение сфер с последующей их раскристаллизацией. Сочетание микротекстур пород свидетельствует, что они в различной степени подвергались стрессовым воздействиям. По экспериментальным данным [7], в условиях сжатия и деформации сдвига в твердых телах происходит увеличение растворимости минералов и миграционной способности ком-

РЕЛИКТОВЫЕ СУЛЬФИДЫ

№ обр.	Fe	S	As	Со	Ni	Сумма	Характеристика образца
155/M-98	40.728	48.286	0.172	0.154	0.112	89.452	Сферы пирита с включениями сфалерита
	42.934	50.354	0.136	0.238	0.053	93.715	То же
	41.733	48.198	0.187	0.112	0.1	90.33	»
	42.317	49.224	0.167	0.221	0.115	92.044	»
	43.5	49.08	0.269	0.412	0.239	93.5	»
153/M-98	40.994	47.846	0.351	0.232	0.131	89.554	Сферический пирит
	41.736	51.428	0.068	0.116	0.123	93.471	Кайма пирита вокруг галенита
	43.238	52.807	0.013	0.11	0.037	96.205	То же
	46.082	53.266	0.121	0.124	0.1	99.693	Кайма пирита вокруг сфалерита
145/M-98	41.579	49.532	0.037	0.01	0.015	91.173	"Розетка" пирита
	41.842	49.677	0.128	0.029	0.153	91.829	То же
	43.284	49.945	0.122	0.106	0.052	93.509	»
149/M-98	43.407	50.99	0.338	0.248	0.138	95.121	Сферический пирит
	44.694	54.034	0.491	0.302	0.255	99.776	То же
	43.926	49.264	0.02	0.013	0	93.223	»
	43.334	49.102	0.286	0	0	92.722	»
	43.851	50.483	0.389	0.167	0.146	95.036	»
173/M-98	42.791	51.143	0.263	0	0	94.197	Глобулярный пирит
140_M-98	45.548	51.397	0.226	0.096	0.041	97.308	Центр кристалла
	45.184	52.524	0.148	0.029	0.03	97.915	То же, но ближе к краю
	45.527	52.724	0	0	0	98.251	То же
	44.85	51.745	0.297	0.081	0.011	96.984	Центр кристалла
	45.903	51.992	0.103	0.064	0	98.062	То же
	41.655	47.46	0	0.177	0.052	89.344	Край кристалла
155_M-98	45.525	51.322	0.108	0.064	0	97.019	Центр кристалла
	45.525	51.504	0.091	0.016	0	97.136	То же
	44.911	52.31	0.002	0.071	0.127	97.421	Кристалл
153_M-98	45.062	52.369	0.092	0.019	0.06	97.602	Центр кристалла
	43.742	51.011	0.022	0	0	94.775	Край кристалла
149_M-98	47.73	53.972	0.074	0.084	0.128	101.988	Кристалл пирита
	46.465	53.181	0.016	0.093	0.224	99.979	То же

Таблица 1. Состав сферических образований и метакристаллов пирита, мас. %

Примечание. Анализ выполнен на микроанализаторе SX-50, U = 15 кВ, $I_{30H,Z} = 30$ нА; эталон – FeS₂, FeAsS, аналитические линии – K_{α} , для As – L_{α} ; аналитик И.А. Брызгалов, МГУ.

понентов. В наиболее древних породах региона, относящихся к пермской системе, и в пределах рудных узлов терригенные толщи сильнее деформированы с образованием наложенных текстур, таких как кливаж. Для них можно предполагать более существенное перераспределение вещества, в том числе и рудного. Разнообразие деформационных микротекстур свидетельствует о неоднократных деформациях. Кремнезем при растворении кластогенного кварца под давлением образовывал птигматитовые кварцевые прожилки, линзы и каймы в "тенях давления" кристаллов пирита. В терригенных породах региона содержится существенное количество вулканогенного материала и нельзя исключать его роль как источника ряда компонентов, например, таких как редкоземельные элементы, которые входят в состав монацита.

При динаметаморфизме сферические сульфидные образования сегрегировались в линзовидные агрегаты по плоскостям кливажа, служили затравками или перекристаллизовывались в ограненные метакристаллы. Дальнейшее стрессовое воздействие на породу иногда приводило к морфологически выраженному частичному растворению кристаллов пирита по направлениям кливажа, обеднение их элементами-примесями. Более существенное воздействие приводило к преобразованию пирита в пирротин с включениями халькопирита и Fe–Ni–Co-сульфоарсенидов. К похожим результатам приводил также контактовый метаморфизм со стороны гранитоидных интрузий. При пирротинизации пирита, помимо серы, мобилизуются другие компоненты, важные для золото-кварцевых рудообразующих систем, в том числе CO₂[8]:

 $2FeS_2 + 2H_2O + C = 2FeS + 2H_2S + CO_2.$

Применительно к региональным процессам эти реакции рассматривались ранее в [9]. На основании полученных материалов можно предполагать, что значительную роль в качестве энергетического источника преобразования пород имели пластические деформации, которые фиксируются проявлениями кливажа и связанной с ним перекристаллизацией минералов. Наблюдается отчетливая преемственность в развитии минеральной и геохимической систем от терригенных пород к рудоносным кварцевожильным образованиям.

Таким образом, в пределах разнообразных и разновозрастных зон сульфидизации реликтовые сульфиды в определенной степени отражают первичную геохимическую обстановку периода осадконакопления и дальнейшую ее эволюцию. При изучении многочисленных зон сульфидизации [1] состав реликтовых сульфидов позволяет прогнозировать геохимическую специализацию и степень унаследованности постседиментационного оруденения.

Работа выполнена при финансовой поддержке РФФИ (проект 08–05–00135) и Программы ОНЗ РАН № 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. Волков А.В., Сидоров А.А., Савва Н.Е. и др. Тихоокеанский рудный пояс: материалы новых исследований (К 100-летию Е.А. Радкевич). Владивосток: Дальнаука, 2008. С. 36–51.
- 2. Сидоров А.А., Томсон И.Н. // Вестн. РАН. 2000. Т. 70. № 8. С. 719–724.
- 3. Brown A.C. // Econ. Geol. 1971. V. 66. P. 543-573.
- 4. *Юдович Я.Э., Кетрис М.П.* Мышьяк в углях. Сыктывкар, 2004. 106 с.
- Large R.R., Maslennikov V.V., Robert F.D. // Econ. Geol. 2007. V. 102. P. 1233–1267.
- Геодинамика, магматизм и металлогения Востока России / Под ред. А.И. Ханчука. Владивосток: Дальнаука, 2006. Т. 2. 418 с.
- 7. Ениколопян Н.С. // ДАН. 1986. Т. 288. № 3. С. 657-660.
- 8. Hall T. // Miner. Mag. 1986. V. 50. P. 223-229.
- 9. Ворошин С.В., Акинин В.В., Махоркина Т.И. // ДАН. 1993. Т. 330. № 6. С. 733–735.