DOI: 10.24411/0869-7175-2019-10034

УДК 550.84:551.494 © А.И.Малов, 2019

Геохимические индикаторы формирования подземных вод Юго-Восточного Беломорья

А.И.МАЛОВ (Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр комплексного изучения Арктики им. академика Н.П.Лаверова Российской академии наук (ФГБУН ФИЦКИА РАН); 163061, г. Архангельск, набережная Северной Двины, 23)

Выяснены источники формирования состава и эволюции подземных вод на юго-восточном побережье Белого моря. Для этого были изучены более пятидесяти проб подземных вод из водоносных горизонтов четвертичных, каменноугольных и вендских терригенно-карбонатных отложений. Установлено, что в пресных водах отношение Na/Ca повышается от 0,2 до 40. Это связано с последовательной заменой процесса растворения карбонатов на процессы гидролиза Na-алюмосиликатов и смешивания пресной воды с солёной. В солоноватых и солёных водах отношение Na/Ca снижается до 1–4. Наиболее вероятным процессом является гидролиз Ca-алюмосиликатов, который указывает на значительное время взаимодействия водапорода.

Ключевые слова: подземные воды, химический состав, геохимические индикаторы, Юго-Восточное Беломорье.

Малов Александр Иванович доктор геолого-минералогических наук

malovai@yandex.ru

Geochemical indicators of groundwater formation in the South-Eastern Belomorye

A.I.MALOV (Federal Center for Integrated Arctic Research of RAS)

The specific objective of the study is to clarify the sources of formation of the composition and evolution of groundwater on the southeastern coast of the White Sea. To solve it, more than fifty groundwater samples from aquifers of Quaternary, Carboniferous and Vendian terrigenous-carbonate sediments were studied. The ratio of Na/Ca rises from 0,2 to 40. It is due to successive replacement of the process of calcite dissolution in the recharge area on the watershed by the process of hydrolysis of sodium aluminosilicates in the transit zone and by the processes of mixing fresh water with salt water and brines. In the brackish and salty waters the Na/Ca ratio is reduced to 1–4. The most probable process is the hydrolysis of Ca-aluminosilicates, which indicates a significant time of water–rock interaction.

Key words: groundwater, chemical composition, geochemical indicators, South-Eastern Belomorye.

Рассматриваемая территория – одна из наиболее освоенных на Европейском Севере России. Здесь сосредоточены значительные ресурсы питьевых и минеральных подземных вод, которые, однако, используются в крайне ограниченных количествах. Это связано со сложными гидрохимическими условиями в водоносных горизонтах. Территория находится на морском побережье и неоднократно затапливалась морем, о чём свидетельствует практически повсеместное развитие морских отложений микулинского межледниковья и в меньшей степени, преимущественно на приустьевых участках рек, впадающих в Белое море, отложений валдайских и голоценовых трансгрессий. В это время совершалось засоление водоносных горизонтов. В континентальные периоды происходило их рассоление за счёт инфильтрующихся в областях питания атмосферных осадков. Поэтому в настоящее время химический состав подземных вод может быть объяснён смешением солёной морской воды с пресной метеорной, обогащённой растворённым веществом отложений водоносных горизонтов. Кроме того, установлены очаги разгрузки рассолов нижнепермского возраста вблизи морского побережья [2, 4], из-за чего также возможно их участие в формировании химического состава подземных вод. Отсутствие чётко выраженных водоупоров при добыче питьевых и минеральных вод зачастую приводит к осложнениям, выражающимся в существенном изменении их состава по сравнению с кондициями. Отдельные аспекты феноменологической концептуальной модели области исследований, главным образом качественные, рассматривались ранее, в частности, в работе [5]. Однако всестороннее изучение естественных геохимических индикаторов (Ca²⁺, Mg²⁺, Na⁺, K⁺, HCO₃⁻, Cl⁻, SO₄²⁻) для определения взаимодействия между водой и породой отсутствует. Поэтому конкретной задачей исследования было выяснение естественной эволюции химии подземных вод в позднем плейстоцене–голоцене. Результаты этого исследования обеспечивают лучшее понимание взаимосвязи различных потоков подземных вод вблизи морского побережья и способствуют их более обоснованному и эффективному использованию в современный период антропогенного воздействия.

Геолого-гидрогеологические условия. Исследования выполнены в пределах Северо-Двинской впадины (39°30'-41°57'в.д. и 64°06'-64°48'с.ш.), являющейся продолжением на суше Двинского залива Белого моря. Она вытянута с северо-запада на юго-восток от Двинской губы Белого моря до устья р. Пинега.

В настоящее время впадина представляет собой открытое в сторону моря чашеобразное углубление в карбонатно-терригенных отложениях среднего карбона (C_2) и терригенных – нижнего карбона–верхнего девона (C_1 – D_3) падунской (Vpd) и мезенской (Vmz) свит венда (рис. 1). Длина впадины 120 км, максимальные размеры поперечного сечения (по берегу Двинского залива): ширина поверху составляет 100–110, а ширина дна 30–40 км, абсолютная отметка дна –60 м. Уклон склонов 2°–3°.

Впадина заполнена в основном глинистыми отложениями бореального моря микулинского межледниковья (mQIIImk), существовавшего здесь от 140-145 до 70 тыс. лет назад [1]. По работе [6], собственно микулинское море существовало здесь 130-117 тыс. лет назад, а в период 117-20 тыс. лет назад на территории накапливались морские осадки других трансгрессий и аллювиально-озёрные отложения. В данной работе на рис. 1 все они показаны индексом mQIIImk. Площадь их распространения в пределах впадины составляет более 7000 км², мощность достигает в центральных частях впадины 50-70 м. Глинистые отложения характеризуются значительной плотностью и прочностью. Это может быть объяснено уплотнением их под собственным весом, а также под весом перекрывавшего их 70-11,5 тыс. лет назад [1] или 20-17 тыс. лет назад [6] валдайского ледника, нагрузка от которого при мощности до 1000 м могла достигать значительных величин.

Снизу глины подстилаются 10–15-метровым слоем суглинков московской морены (gQIIms). Возраст московского оледенения >130–140 тыс. лет [1, 6].

Ниже залегает мощная толща терригенных отложений венда, представленная переслаиванием песчаников, алевролитов и аргиллитов падунской, мезенской и усть-пинежской свит. Её мощность составляет 600–700 м.

Падунская свита, залегающая выше абсолютной отметки -150 м, на территории Северо-Двинской впадины сложена в основном алевролитами, реже песчаниками, разделяющимися прослоями аргиллитов. Породы преимущественно красновато-коричневого цвета с линзами и пятнами бледно-зелёных тонов. Для алевролитов характерно преобладание (до 70%) крупнозернистой (0,01-0,05 мм) фракции; почти постоянно присутствуют пелитовые частицы (до 30%). Среди обломочных зёрен: кварца до 98%, полевых шпатов до 10% и слюд около 1%. Цемент преимущественно глинисто-железистый. Глинистые минералы представлены гидрослюдами, каолинитом, хлоритом. Вверх по разрезу отмечается рост содержаний каолинита и снижение примеси хлорита вплоть до полного исчезновения. В верхней части разреза мощностью порядка 50 м алевролиты слабосцементированы.

Отложения мезенской свиты в верхней части разреза (-150...-300 м) представлены тонким переслаиванием аргиллитов (35-40%) с алевролитами (35-40%) и песчаниками (20-30%). Окраска от пестроцветной до полностью красноцветной в отдельных разрезах. Алевролиты мезенской свиты мелко- и крупнозернистые. В обломочном материале содержатся (в %): кварца 80-95, полевых шпатов 3-8 и слюды 1-2. Иногда присутствуют полиминеральные обломки пород (до 3-4%). Цемент обычно смешанного состава: гидрослюды, хлорит, карбонат, каолинит, гидроксиды железа.

Сверху микулинские глины перекрываются 10– 15-метровым слоем отложений валдайского ледниковья (gQIIIvd), представленных в основном моренными валунными суглинками. На локальных участках развиты флювиогляциальные (fQIIIvd) и озёрно-ледниковые (lgQIIIvd) пески. На ограниченных площадях валдайские, реже непосредственно микулинские породы перекрываются 3–5-метровым слоем современных песчаноглинистых отложений: аллювиальных (aIV), озёрных (IIV), болотных (pIV), морских (mIV).

Долина нижнего течения р. Северная Двина проходит примерно по тальвегу Северо-Двинской впадины. Её ширина от 15 км в устье до 2 км в наиболее узкой части. Долина эрозионного происхождения, образована водными потоками валдайского ледника и прорезает почти до подошвы, а местами полностью толщу глин микулинского межледниковья (см. рис. 1); в верхней части Северо-Двинской впадины она частично врезается в суглинки московской морены.

Долина реки заполнена песчано-глинистыми верхнечетвертичными и современными отложениями (QIII– IV): флювиогляциальными, морскими, аллювиальными, озёрно-болотными. Их суммарная мощность достигает 40–50 м.

Для 90-метровой толщи водоносного комплекса алевролитов и песчаников падунской свиты венда,

Рис. 1. Концептуальный схематический разрез системы подземных вод перпендикулярно главной оси Северо-Двинской впадины:

1 — границы стратиграфических подразделений, описание которых приведено в тексте; 2 — изолинии общей минерализации подземных вод, г/л; 3 — место отбора пробы и её наименование

располагающейся под центральной частью Северо-Двинской впадины, характерна обращённая зональность [8] с понижением минерализации подземных вод от 29 до 5 г/л (см. рис. 1). Она возникла в первую очередь благодаря опреснению подземных вод в результате длительного существования континентальных условий в мезозое и кайнозое. После трансгрессии микулинского моря ~130 тыс. лет назад опреснение подземных вод под Северо-Двинской впадиной прекратилось. Затем в эту зону инфильтрогенных вод стали поступать седиментогенные солёные поровые воды из морских глин микулинского межледниковья, отжимаясь под весом валдайского ледника. Эти воды оттесняли опреснённые воды вниз и в стороны, а также частично смешивались с ними в результате дисперсии. Глубина проникновения отжатых вод составила порядка 90 м, то есть до кровли слабопроницаемых по сравнению с отложениями падунской свиты венда отложений мезенской свиты (средние коэффициенты фильтрации, соответственно, 0,56 и 0,03 м/сутки). Следующий не менее существенный процесс формирования химического состава подземных вод в верхней части комплекса терригенных отложений венда – подток пресных вод из областей питания на бортах впадины. Этот подток начался после того, как эрозионная деятельность потоков от тающего ледника привела к образованию долины р. Северная Двина, прорезающей толщу микулинских глин почти на полную мощность (см. рис. 1). Солёные воды из водоносного комплекса терригенных отложений падунской свиты венда стали перетекать в долину реки, а им на смену начали подтекать пресные воды из областей питания [7, 9].

Материал и методы. В 2006 г. были отобраны десять проб, а в период 2012–2014 гг. – сорок одна проба подземных вод из четвертичных, каменноугольных и вендских водоносных горизонтов (см. таблицу).

Определения рН и температуры производились непосредственно на самоизливающих, эксплуатируемых и наблюдательных скважинах с использованием полевой экспресс-лаборатории. Пробы воды фильтровали через фильтрующую насадку Миллекс диаметром 33 мм, диаметр пор 0,45 мкм. Пробы на катионы подкисляли 70% особо химически чистой HNO3. Щелочность измерялась методом потенциометрического титрования соляной кислотой на автоматизированном титраторе (Metrohm 716 DMS Titrino), используя Gran method с пределом обнаружения 10⁻⁵ М и аналитической точностью 2% на основе воспроизводимости повторных анализов [13]. Концентрации основных анионов (Cl. SO₄) были измерены методом ионной хроматографии (HPLC, Dionex ICS 2000) с погрешностью 2%. Концентрации кальция, магния, натрия и калия определяли с погрешностью 1-2%, используя Perkin-Elmer 5100 PC атомно-абсорбционный спектрометр (ААС) [13]. Общая минерализация подземных вод (М) определялась путём суммирования компонентов их состава.

Результаты и обсуждение. *Химический состав подземных вод*. Сводные химические данные по составу подземных вод и их типам на исследуемой территории приведены в таблице.

Общая минерализация пресных подземных вод в исследуемом районе составляет 171–939 мг/л. В четвертичных и каменноугольных водоносных горизонтах эти воды имели Ca-Mg-HCO₃ композицию, которая в вендском водоносном комплексе была характерна для подземных вод с минерализацией до ~300 мг/л. При М ~300–600 мг/л вода приобретала Na-HCO₃, а при М ~600–1000 мг/л – Na-Cl состав. В целом для пресных вод Ca-Mg-HCO₃ состава свойственна слабощелочная реакция с pH 7,5–8,7, в среднем 8,1, а для Na-HCO₃ вод – pH 7,6–9,2, в среднем 8,7. Температура подземных вод была сравнительно низкой и составляла 3,7°–5,2°С.

Общая минерализация солоноватых вод – от 2523 до 10 088 мг/л с преобладанием Na и Cl в их составе. Максимальное доминирование Na⁺ характерно для наименее минерализованных вод. Воды с минерализацией 5–6 г/л заметно обогащены кальцием, его содержание составляет 30–37 мг-экв/л. Содержание SO₄^{2–} в этих водах также сравнительно высокое – 15–30 мг-экв/л.

Минерализация солёных вод в водоносном комплексе падунских отложений венда составила 12,7–27,6 г/л при Na-Cl составе. Относительное содержание Ca²⁺ и SO₄²⁻сравнительно невысокое – 40–80 мг-экв/л и 20– 40 мг-экв/л, соответственно.

Эволюция химического состава подземных вод. Пресные воды. Наименее минерализованные воды (М до 0,3 г/л) неравновесны по отношению к гипсу и ангидриту [10], но поскольку не наблюдается тренда в отношении SO₄-Са и отмечается дефицит SO₄ относительно Са (рис. 2, A), растворение гипса играет подчинённую роль.

Для этих вод характерен Ca-Mg-HCO₃ состав, что связано с неравновесностью атмосферных осадков, талых и наименее минерализованных вод по отношению к кальциту, анортиту, лабрадориту, андезину, диопсиду [10].

На графике (Ca+Mg)-HCO₃ (см. рис. 2, Б) для этих вод с M до 0,3 г/л наблюдается корреляция в соотношении 1:1. По мере повышения M увеличивается дефицит Ca и Mg. На графике Na-HCO₃ (см. рис. 2, В) для этих вод наблюдается обратная картина, то есть с увеличением минерализации милиграмм-эквивалентное содержание Na повышается по экспоненциальной зависимости. Соответственно, Na/Ca возрастает до 40 (см. рис. 2, Г). Значения хлор-щелочных индексов [Cl-(Na+K)]/Cl и [Cl-(Na+K)]/(SO₄+HCO₃) отрицательные (см. рис. 2, Д), что указывает на ионный обмен Ca и Mg воды на Na водовмещающих отложений [14].

Это можно связывать с насыщением подземных вод по отношению к кальциту и доломиту и частичным осаждением карбонатов кальция. Одновременно повышается относительная роль гидролиза натриевых алюмосиликатов (Na-монтмориллонит, альбит) [11].

При дальнейшем увеличении общей минерализации подземных вод до 0,6-0,9 г/л концентрация Cl возрастает до 106-272 мг/л благодаря процессам смешивания пресной воды с солёной, которая разгружается в речные долины. Однако по отношению к теоретическим линиям растворения галита (см. рис. 2, Е, у=х) и разбавления морской воды (y=0,86x) содержание натрия увеличивается в 1,5-2 раза. Это свидетельствует о существенной роли других процессов перехода Na в раствор. Пересыщение подземных вод по отношению к альбиту значительно возрастает [10], поэтому можно предположить наличие катионного обмена щелочноземельных элементов со щелочными элементами. На рис. 2, А показан дефицит Са по отношению к SO₄, то есть минимальные концентрации Са (в среднем 11 мг/л) в пресных подземных водах с минерализацией 0,6-0,9 г/л поддерживаются в основном за счёт растворения гипса.

Солоноватые и солёные подземные воды. На графике Ca-SO₄ (рис. 3, А) дефицит SO₄ по отношению к Са

Рис. 2. Графики концентраций ионов (мг-экв/л) и их соотношений в пресных подземных водах с группировкой по значениям общей минерализации:

минерализация (в г/л): 1 – 0–0,3; 2 – 0,3–0,6; 3 – 0,6–0,9

Название пробы	Дата отбора/ глубина отбора, м	<i>T</i> , °C	рН	М, мг/л	Na ⁺	Ca ²⁺	Mg ²⁺	K⁺	Cl⁻	SO4 ²⁻	HCO ₃ -	Тип воды*
Пресные воды в четвертичном водоносном комплексе (fQIIIvd)												
8q	06.05.2014/20	3,9	7,8	233	24	19,1	9,57	2,23	12,4	12	154	Na-Ca-Mg-HCO ₃
Il	29.04.2014/20	4,1	7,8	463	9,15	66,5	33,6	2,28	3,26	26,3	322	Ca-Mg-HCO ₃
Пресные воды в каменноугольном водоносном комплексе (С2)												
20	10.05.2014/20	4,5	7,5	171	7,28	20,1	11,3	0,35	5,35	4,77	122	Ca-Mg-HCO ₃
3u	10.05.2014/40	4,0	7,7	285	23,6	28,5	15,1	1,35	8,1	11,9	196	Ca-Mg-Na-HCO ₃
Mk	23.04.2013/40	4,8	8,2	543	52	51,5	23,8	7,73	20,4	154	233	Ca-Na-Mg-HCO ₃ -SO ₄
Пресные воды в водоносном комплексе падунских отложений венда (Vpd)												
Br	26.04.2013/120	3,7	8,3	233	24	17,4	14,7	2,36	19,3	9,04	146	Mg-Na-Ca-HCO ₃
Ch	24.04.2013/120	4,3	7,8	235	18,5	15,9	15	2,86	1,1	0,6	181	Mg-Na-Ca-HCO ₃
28	25.04.2013/120	3,9	8,6	239	20,8	13,8	13,7	5,01	5,44	8,39	172	Mg-Na-HCO ₃
Le	29.04.2014/60	5,0	8	244	6,78	32	12,6	6,37	2,26	1,64	167	Ca-Mg-HCO ₃
3e	10.05.2014/90	4,8	8,7	249	15,1	33,5	15,4	4,36	1,81	1,53	164	Ca-Mg-HCO ₃
28	10.05.2014/120	3,9	8,6	268	18,9	25,2	13,5	1,54	3,25	8,78	197	Ca-Mg-Na-HCO ₃
26	25.04.2013/140	4,4	8,5	313	55,1	13,5	12	3,53	28,5	15,5	185	Na-HCO ₃
26	14.09.2013/140	4,3	8,6	325	55	13,5	11,8	3,52	34,4	14,5	192	Na-HCO ₃
36	25.04.2013/140	5,2	8,5	326	57,1	12,1	10,8	3,2	27,5	15,9	200	Na-HCO ₃
36	10.05.2014/140	5,2	8,2	336	47,1	24,6	11,9	3,35	19,1	14,7	215	Na-Ca-HCO ₃
10	25.04.2013/140	4,3	9,2	389	97,8	3,66	3,93	4,48	51,7	26	201	Na-HCO ₃ -Cl
22	10.05.2014/140	4,6	8,5	395	83,8	14,7	8,16	3,89	41,6	29,7	214	Na-HCO ₃
10	14.09.2013/140	4,4	9,1	401	98,3	3,85	4,1	4,66	48,3	23,3	218	Na-HCO ₃ -Cl
22	25.04.2013/140	4,6	8,4	480	118	13,8	13,1	5,96	72,7	30,5	226	Na-HCO ₃
Is	23.04.2013/40	4,7	7,6	490	98,8	24,3	15,6	3,96	106	42,2	200	Na-HCO ₃ -Cl
4	25.04.2013/150	4,7	9,2	625	183	3,43	3,99	5,6	129	49,7	250	Na-HCO ₃ -Cl
21	25.04.2013/180	4,7	8,4	669	177	14,8	15,2	5,28	172	56,6	229	Na-Cl-HCO ₃
4	14.09.2013/150	4,7	9,1	686	209	4,62	5,29	7,12	150	61,1	249	Na-Cl-HCO ₃
21	10.05.2014/180	4,7	8,6	719	199	17,7	18,8	6,52	174	64,7	239	Na-Cl-HCO ₃
9mz	11.05.2014/200	4,7	7,6	725	212	20,7	10,1	5,03	189	77,4	210	Na-Cl-HCO ₃
6	11.05.2014/180	4,5	9,1	748	214	9,06	5,42	5,1	190	80,9	244	Na-Cl-HCO ₃
Lo	11.05.2014/180	4,7	9	828	251	5,26	3,6	5,98	201	48,4	313	Na-Cl-HCO ₃

Основные компоненты химического состава и типы подземных вод

Окончание таблицы

Название пробы	Дата отбора/ глубина отбора, м	<i>Т</i> , °С	рН	М, мг/л	Na ⁺	Ca ²⁺	Mg ²⁺	K⁺	Cl⁻	SO ₄ ²⁻	HCO ₃ -	Тип воды*
16	26.04.2013/180	4,0	8,6	939	282	9,82	12,9	8,58	272	140	214	Na-Cl-HCO ₃
Солоноватые воды в четвертичном водоносном комплексе (fQIIIvd)												
Kw	23.09.2012/70	5,0	8,3	3239	980	15,2	25	7,81	935	634	642	Na-Cl-SO ₄
К2	23.09.2012/0,1	4,4	7,8	3930	1147	107	50,1	14,1	1331	847	435	Na-Cl-SO ₄
Солоноватые воды в водоносном комплексе падунских отложений венда (Vpd) (см. рис. 3, солоноватые1)												
14	21.09.2012/180	4,9	7,9	2523	792	49,6	48,4	6,88	1009	292	325	Na-Cl
15	18.04.2006/150	6,6	7,2	4968	905	632	96	20	2294	732	124	Na-Ca-Cl
I4	18.04.2006/150	6,7	7,1	5144	1000	588	143	18,8	2486	753	122	Na-Ca-Cl
Mi	29.04.2014/140	5,0	7,4	6011	979	744	175	24,1	2607	1428	53,4	Na-Ca-Cl-SO ₄
Сильносолоноватые воды в водоносном комплексе падунских отложений венда (Vpd) (см. рис. 3, солоноватые2)												
Mm	16.09.2013/80	5,8	7,5	7418	1666	436	350	33	2234	2626	73,2	Na-Cl-SO ₄
B1	24.09.2012/120	5,7	7,7	8399	1960	495	298	33,6	3034	2323	255	Na-Cl-SO ₄
La6	24.09.2012/120	6,3	8,4	9065	2107	620	232	29,6	3524	2510	42,7	Na-Cl-SO ₄
No	18.04.2014/120	6,8	8,3	10088	2058	936	254	28	4057	2715	38,1	Na-Ca-Cl-SO ₄
Солёные воды в водоносном комплексе падунских отложений венда (см. рис. 3, солёные Vpd)												
Vo	16.09.2013/90	5,3	7,3	12725	3456	799	379	51,1	7327	959	54,9	Na-Cl
Vo	18.04.2006/90	5,7	6,7	19170	5104	996	714	75	11812	198	278	Na-Cl
13	18.04.2006/90	5,7	6,9	21012	4682	1974	575	69	11451	1546	242	Na-Ca-Cl
13	21.09.2006/90	5,7	6,4	21080	5280	1810	450	66	11561	1703	262	Na-Ca-Cl
I2	18.04.2006/90	5,7	6,6	21288	4675	1903	868	72	11812	1654	268	Na-Ca-Cl
I1	18.04.2006/90	5,9	6,7	26781	7270	1578	709	99	14666	2063	348	Na-Cl
I1	12.05.2006/90	5,9	7,1	27136	7355	1663	685	118	14846	2032	338	Na-Cl
Ts	18.04.2006/90	5,9	7,1	27180	7179	1659	755	135	14766	2091	331	Na-Cl
I1	21.09.2006/90	5,9	7	27552	7412	1698	742	118	15080	1898	376	Na-Cl
Солёные воды в водоносном комплексе мезенских отложений венда (см. рис. 3, солёные Vmz)												
8mz	11.05.2014/240	6,7	7,6	15640	4074	1185	338	48,3	7857	2136	1,53	Na-Cl
27	18.04.2013/220	6,7	7,3	16583	4532	761	419	47,5	8497	2275	53,4	Na-Cl
La5	18.04.2013/210	6,8	8,1	17030	4564	783	393	39	8551	2685	15,3	Na-Cl
B2	18.04.2014/260	6,9	7,6	27482	6673	2423	630	57,3	15147	2515	38,1	Na-Ca-Cl

Примечание. *Указаны катионы и анионы с содержанием выше 25 мг-экв,% в порядке убывания.

Рис. 3. Графики концентраций ионов (мг-экв/л) и их соотношений в солоноватых и солёных подземных водах с группировкой по значениям общей минерализации (на А, Б, Г):

подземные воды: 1 – солоноватые1, 2 – солоноватые2, 3 – солёные Vpd, 4 – солёные Vmz

отмечен для всех проб из водоносного комплекса падунских отложений венда (см. рис. 3, А, солёные Vpd), а также для образцов Mi, 14-5 солоноватой воды из водоносного комплекса падунских отложений венда (см. рисунки 1 и 3, А, солоноватые1) и двух проб солёных вод из водоносного комплекса мезенских отложений венда (B2, 8 mz) (см. рис. 3, А, солёные Vmz). В этих пробах Na/Ca снижается до 1–4 (см. рис. 3, Б), хлор-щелочные индексы положительные (см. рис. 3, В).

Это указывает на то, что в водоносных горизонтах, помимо растворения гипса, есть и другие источники Са. Наиболее вероятен процесс гидролиза Са-алюмосиликатов, неравновесных с солоноватыми и солёными подземными водами [3]. Этот процесс идёт по механизму диффузионной кинетики [12], что свидетельствует о значительном времени взаимодействия вода– порода для перечисленных проб. Образцы 15, 14, Мі, характеризующие солоноватую воду с М 5–6 г/л, особенно отличаются по степени метаморфизации в результате взаимодействия вода–порода (см. рис. 3, Г).

В заключение следует ещё раз отметить, что цель исследования – выяснение источников формирования состава и характеристика подземных вод на юго-восточном побережье Белого моря.

Установлено, что химический состав пресной воды развивается в направлении (Ca-Mg-HCO₃)–(Na-HCO₃)–(Na-Cl). Отношение Na/Ca повышается от 0,2 до 40. Это связано с последовательной заменой процесса рас-

творения карбонатов в областях питания на водоразделах на процессы: гидролиза алюмосиликатов натрия в транзитной зоне, а затем смешивания пресной воды с солёной водой, катионного обмена щелочноземельных элементов со щелочными элементами и растворения гипса вблизи зон разгрузки на побережье и в палеодолинах.

В солоноватых и солёных водах отношение Na/Ca снижается до 1–4. Это указывает на то, что в водоносных горизонтах есть и другие источники Ca, помимо растворения гипса. Наиболее вероятным процессом является гидролиз Ca-алюмосиликатов, который указывает на значительное время взаимодействия вода– порода. Солоноватая вода с минерализацией 5–6 г/л особенно отличается по степени модификации вследствие процессов взаимодействия вода–порода.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты 18-05-60151_ Арктика и 18-0501041_А), УрО РАН (проект АААА-А18-118012390242-5)- и Министерства образования и науки России (проект АААА-А19-119011890018-3).

СПИСОК ЛИТЕРАТУРЫ

- Болиховская Н.С., Молодьков А.Н. Схема периодизации, корреляция и возраст климатических событий плейстоцена / Фундаментальные проблемы квартера: итоги изучения и основные направления дальнейших исследований. – Новосибирск, 2009. С. 75–78.
- Гатальский М.А. Подземные воды и газы палеозоя северной половины Русской платформы. Л.: Гостоптехиздат, 1954.

- 3. *Зверев В.П.* Система природных вод Земли. М.: Научный мир, 2013.
- Коротков А.И. Гидрогеохимический анализ при региональных геологических и гидрогеологических исследованиях. – Л.: Недра, 1983.
- Коротков А.И., Потапов А.А., Румынин В.Г. Редкие типы минеральных вод Среднерусского артезианского бассейна. – СПб.: Наука, 2013
- Лисицын А.П. Система Белого моря. Т. І. Природа водосбора Белого моря. – М.: Научный мир, 2010.
- 7. *Малов А.И.* Взаимодействие вода-порода в песчано-глинистых отложениях венда Мезенской синеклизы // Литология и полезные ископаемые. 2004(1). № 4. С. 401-413.
- Малов А.И. Экологические функции подземных вод. – Екатеринбург: УрО РАН, 2004(2).
- 9. Малов А.И. Использование геологических реперов для оценки времени нахождения подземных вод в водоносном горизонте по уран-изотопным данным на примере Северо-Двинской впадины // Литология и полезные ископаемые. 2013. № 3. С. 274–285.
- Малов А.И., Сидкина Е.С., Рыженко Б.Н. Модель месторождения алмазов им. М.В.Ломоносова как системы «вода-порода»: формы миграции, насыщенность подземных вод относительно породообразующих и рудных минералов, экологическая оценка качества вод // Геохимия. 2017. № 12. С. 1128–1140.
- 11. Шварцев С.Л. Общая гидрогеология. М.: Альянс, 2012.
- Helgeson H.C. Kinetics of mass transfer among silicates and aqueous solutions // Geochemica at Cosmochimica Acta. 1971. Vol. 35. № 5. P. 421–469.
- Pokrovsky O.S., Schott J., Dupre B. Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basic terrain in Central Siberia // Geochimica at Cosmochimica Acta. 2006. Vol. 70. № 3. P. 3239– 3260.
- Schoeller H. Geochemistry of groundwater / Groundwater studies an international guide for research and practice. – Paris, 1977. Vol. 15. P. 1–18.

ПОДПИСЧИКАМ

Оформить подписку на журнал «Отечественная геология» можно в почтовых отделениях связи по каталогу «Газеты. Журналы» ОАО Агентства «Роспечать» (подписной индекс 70824)

Периодичность – шесть номеров в год.

На электронную версию журнала можно подписаться на сайте Научной Электронной библиотеки: https://elibrary.ru