СТРУКТУРА ПРОМЕРЗАЮЩЕГО ПОДОЗЕРНОГО ТАЛИКА НА СТАЦИОНАРЕ ПАРИСЕНТО (П-ОВ ГЫДАН) ПО ДАННЫМ ЭЛЕКТРОТОМОГРАФИИ

Александр Николаевич Шеин

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат физико-математических наук, старший научный сотрудник лаборатории геоэлектрики; Забайкальский государственный университет, 672039, Россия, г. Чита, ул. Александро-Заводская, 30, доцент, тел. (383)330-41-22, e-mail: SheinAN@ipgg.sbras.ru

Владимир Владимирович Оленченко

Институт нефтегазовой геологии и геофизики им. А. А. Трофимука СО РАН, 630090, Россия, г. Новосибирск, пр. Академика Коптюга, 3, кандидат геолого-минералогических наук, ведущий научный сотрудник, зав. лаборатории геоэлектрики, тел. (383)330-79-08, e-mail: OlenchenkoVV@ipgg.sbras.ru

Ярослав Константинович Камнев

Государственное казенное учреждение Ямало-Ненецкого автономного округа «Научный центр изучения Арктики», 629008, Россия, г. Салехард, ул. Республики, 73, кандидат физико-математических наук, старший научный сотрудник, тел. (34992)4-64-21, е-mail: KamnevYK@gmail.com

Антон Иванович Синицкий

Государственное казенное учреждение Ямало-Ненецкого автономного округа «Научный центр изучения Арктики», 629008, Россия, г. Салехард, ул. Республики, 73, кандидат геолого-минералогических наук, директор, тел. (34992)4-42-18, e-mail: geolosoph@gmail.com

В работе представлены результаты исследований подозёрного талика методом электротомографии. Исследования проводились на одном из палеоозер – хасырее. Зондирования выполнены по двум перпендикулярным профилям трехэлетродной установкой с максимальным разносом AO 435 м. По результатам двумерной инверсии выявлена область низкого удельного электрического сопротивления пород на глубине 25-30 м, связанная с промерзающим подозёрным таликом. Установлено, что глубина промерзания в переделах спущенного озера за период с 1996 г по 2018 составила 17-22 м, а приблизительная скорость промерзания 1 м/год. Породы таликовой зоны имеют сопротивления 5-15 Ом м. Промерзающие породы в контурах молодого палеоозера имеют УЭС в первые сотни Ом м. В границах более древнего хасырея удельное электросопротивление промёрзших пород достигает нескольких тысяч Ом м.

Ключевые слова: мерзлота, хасырей, подозерный талик, электротомография, полуостров Гыдан.

STRUCTURE OF FREEZING TALIK UNDER LAKE AT THE PARISENTO FIELD STATION (GYDAN PENINSULA) ACCORDING TO ELECTRICAL RESISTIVITY TOMOGRAPHY

Alexandr N. Shein

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 3, Prospect Akademik Koptyug St., Novosibirsk, 630090, Russia, Ph. D., Senior Researcher; Transbaikal State University, 30, Aleksandro-Zavodskaya St., Chita, 672039, Russia, Associate Professor, phone: (383)333-41-22, e-mail: SheinAN@ipgg.sbras.ru

Vladimir V. Olenchenko

Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, 3, Prospect Akademik Koptyug St., Novosibirsk, 630090, Russia, Ph. D., Leading Researcher, Head of laboratory, phone: (383) 330-79-08, e-mail: OlenchenkoVV@ipgg.sbras.ru

Yaroslav K. Kamnev

Arctic Research Center of the Yamal-Nenets Autonomous Distric, 73, Respublika St., Salekhard, 629008, Russia, Ph. D., Senior Researcher, phone: (34992)4-64-21, e-mail: KamnevYK@gmail.com

Anton I. Sinitskiy

Arctic Research Center of the Yamal-Nenets Autonomous Distric, 73, Respublika St., Salekhard, 629008, Russia, Ph. D., Director, phone: (34992)4-42-18, e-mail: geolosoph@gmail.com

The article presents the results of studies of freezing talik under lake with using of electrical resistivity tomography. The research was conducted on one of paleolake – khasyrey. The measurements performed in two perpendicular profiles by pole-dipole array with a maximum spacing of 435 m. According to results of two-dimensional inversion, an area of low electrical resistivity of rocks at a depth of 25-30 m associated with a freezing talik under lake was identified. It was determined that the depth of freezing within drained lake for the period from 1996 to 2018 is 17-22 m. The approximate rate of freezing is 1 m/year. Formation of talik have a resistance of 5-15 $\Omega \cdot m$. Frozen formations in the contours of young paleolake have apparent resistivity hundreds $\Omega \cdot m$. Within the boundaries of the more ancient khasyrey apparent resistivity of the frozen rocks up to several thousand $\Omega \cdot m$.

Key words: permafrost, khasyrey, talik under lake, electrical resistivity tomography, Gydan peninsula.

Введение

Гыданский полуостров остаётся одной из наиболее перспективных для промышленного освоения и в тоже время одной из слабо изученных территорий, как и большинство арктических районов. Важной задачей для таких территорий является оценка современного состояния криолитозоны и организация мониторинговых наблюдений за трансформацией криолитозоны под влиянием климатических изменений и антропогенной нагрузки во всех природных подзонах. С этой целью в 80-е годы на Гыданском полуострове были организованы несколько стационаров, один из которых – «Парисенто» – находился в западной его части, в среднем течении реки Юрибей в районе одноимённого озера. Стационар работал до 1995 года, а спустя 20 лет правительством ЯНАО был поднят вопрос о необходимости возобновления экологического мониторинга криолитозоны. В 2016-2018 гг. Научным центром изучения Арктики (г. Салехард) при участии Института нефтегазовой геологи и геофизики СО РАН были организованы комплексные научные экспедиции на стационар Парисенто.

На прилегающей к стационару территории широко распространены хасыреи, представляющие собой заторфованные котловины спущенных термокарстовых озёр с сочетанием травяно-сфагново-кустарничковых болот, мелких озерков и формирующихся бугров пучения [1]. В пределах одного хасырея в 80-е годы прошлого столетия были выполнены электрические зондирования методом ВЭЗ с целью установления границ многолетнемёрзлых пород и оконтуривания промерзающего подозёрного талика. В ходе экспедиции 2018 года на этом хасырее, были проведены повторные геофизические исследования, целью которых являлось определение границ подозёрного талика и сравнение полученных результатов с данными прошлых лет.

В настоящее время известны исследования на хасыреях, связанные с изучением эмиссии метана [4]. Термокарстовые озера и хасыреи хорошо дешифрируются на космических снимках и являются наиболее пригодными геоморфологическими индикаторами климатических изменений, что позволяет использовать дистанционные методы для изучения динамики термокарстовых процессов в зоне вечной мерзлоты [3, 5]. Практически нет работ по изучению строения подозёрных таликов геофизическими методами, за исключением измерений ВЭЗ проведённых ВСЕГИНГЕО, скважинных термометрических исследований [6, 8] и исследований со льда [9]. Остаётся неизвестной структура, и самое главное – дальнейшая динамика промерзания талика. Этот процесс может приводить к образованию крупных бугров пучения (пинго), которые по одной из версий [2] являются причиной воронок взрыва.

Характеристика объекта исследований

Стационар Парисенто расположен в Тазовском районе Ямало-Ненецкого автономного округа, в центральной части полуострова Гыдан, на широте 70,1°. Участок исследования относится к зоне сплошного распространения многолетнемерзлых пород мощностью 200-300 м и температурой до -8°C. Мощность сезонно-талого слоя колеблется в широких пределах: от 55-65 см на полигональных торфяниках и до 170-180 см на песчаных раздувах, лишенных растительности. Льдистость мёрзлых пород достигает 90%. По результатам режимных наблюдений, проведённых ВСЕГИНГЕО с 1985 по 1990 гг., среднегодовая температура воздуха составила -11.2°C. На территории стационара Парисенто преобладающее положение в рельефе занимает поверхность верхнечетвертичной морской равнины с отметками 10-46 м. В пределах равнины развиты заозёрные (до 40%) территории, к пологоволнистым участкам обычно приурочены хасыреи.

В 80-90 гг. на территории были заложены наблюдательные профили (рис. 1), а площадь разбита на несколько контрольных участков. На одном из них в 5 км к юго-востоку от стационара расположен хасырей, который состоит из трёх уровней (каскадов), два из которых чётко дешифрируются на космоснимке (рис. 1). Судя по геоморфологическим признакам спуск озера происходил в два этапа. Первое – более древнее озеро – имело размер 1550 м по длинной оси. Затем оно уменьшилось до озера размером 830 м, которое существовало ещё длительное время.

Рис. 1. Схема расположения наблюдательных профилей 1984-1986 гг: 1- линии профилей; 2- скважины; 3 - контуры каскада хасыреев

В пределах хасырея было пробурено более десяти скважин глубиной 12 м и составлены инженерно-геологические разрезы. Верхняя часть разреза внутри хасырея состоит из мёрзлых суглинков, а за пределами спущенного озера разрез сложен супесью и песком. На обоих профилях с глубины 6,0-8,5 м вскрыт талик в скважинах 161, 162 (профиль XII) и скважинах 16, 17, 18 (профиль II-II).

Существование мощной таликовой зоны отражается и на кривых ВЭЗ проведёнными в 80-90 гг. в точках бурения скважин.

На топографической карте масштаба 1:200000, отражающей состояние местности за 1977 год, озеро размером 830 м ещё отмечено. В 1996 году его уже не было, а промерзание сверху достигло глубины 8,5 м. Таким образом подозёрный талик на момент исследований промерзал приблизительно в течение 30 лет.

Методика исследований

Для изучения современного строения таликовой зоны были заложены два профиля ЭТ вдоль буровых профилей XII и II-II (рис. 2) Длина первого профиля (вдоль пр. XII) составляла 1910 п.м., второго (вдоль пр. II-II) – 1190 п.м. Привязка профилей на местности осуществлялась с помощью портативных навигаторов Garmin GPSMAP 64st с точностью до 3 м.

Зондирования методом электротомографии (ЭТ) выполнены с аппаратурой Скала-48. Расстояние между электродами составляло 10 м. Последовательность подключения электродов соответствовала прямой и встречной трёхэлектродной установке с максимальным разносом AO 435 м. Решение обратной задачи электроразведки выполнялось с помощью программы Res2Dinv, при этом применялся робастный способ инверсии. В результате двумерной инверсии строились модели геоэлектрических разрезов. Переобработка архивных кривых ВЭЗ проведена с помощью программы IPI2Win.

Рис. 2. Схема измерения методом ЭТ:

1 – скважина и её номер; 2 – профиль электротомографии и пикеты, м; 3 - контуры каскадов хасырея

Результаты исследований

На рис. 3 представлены результаты переинтерпретации архивных данных ВЭЗ. Кривая кажущегося сопротивления ВЭЗ 5, полученная за пределами хасырея, монотонно возрастает (рис. 3, a) и относится к четырёхслойному типу КА, в котором $\rho_1 < \rho_2 > \rho_3 < \rho_4$. Это говорит о том, что точка зондирования находится в зоне ММП. Второе зондирование (ВЭЗ 7) проводили в центре хасырея и характер кривой здесь совершенно другой, типа КН (рис. 3, б). По результатам инверсии кривой ВЭЗ №7, первый слой мощностью 0,79 м имеет УЭС 102 Ом м, что соответствует сезонноталому слою. Затем следует слой мёрзлых пород мощностью 5,75 м и УЭС 466 Ом м. Ниже выделяется слой (8,69 м) с низким УЭС 2,36 Ом м. Этот слой соответствует талым засолённым суглинкам. С глубины 15,2 м он подстилается породами с сопротивлением 150 Ом*м, что интерпретируется как пластичномёрзлые засолённые суглинки. Таким образом, глубина подозёрного талика по данным ВЭЗ 7 составляла 15,2 м, а на момент зондирований он промёрз сверху до глубины 5,75 м. Необходимо отметить, что невязка при подборе экспериментальной кривой составила 36,2%. Это связано с тем, что кривая ВЭЗ сильно искажена неслоистым и высококонтрастным строением разреза. На малых разносах на кривой ВЭЗ выделяется слой очень высокого УЭС. Правая восходящая ветвь кривой на больших разносах возрастает под углом более 45°, чего не может быть при горизонтальнослоистом строении разреза. В связи с этим, подобранная одномерная модель разреза скорее всего не отражает реального геоэлектрического строения.

Рис. 3. Результаты переинтерпретации архивных кривых ВЭЗ, полученных за пределами (а) и внутри (б) хасырея: 1 – экспериментальные кривые; 2 – теоретические кривые

Современные исследования дают следующие представления о структуре подозёрного талика. На геоэлектрическом разрезе по профилю 1 (рис. 4, a) область низкого УЭС менее 50 Ом·м, интерпретируемая как талик, выделяется в интервале профиля 650-1050 м, постепенно расширяясь на глубине. УЭС многолетнемёрзлых пород составляет 200-1000 Ом·м, а в некоторых случаях превышает 10000 Ом·м. Вероятно такими высокими УЭС отмечаются пластовые льды, которые широко распространены в районе стационара и вскрыты некоторыми скважинами в пределах исследуемого хасырея. Хорошо заметно, что в центральной части хасырея глубина промерзания составляет 25-30 м. В краевых частях внутреннего палеоозера (II) мощность мерзлоты увеличивается до 75-90 м за счёт бокового промерзания талика. В интервале профиля 850-1050 м на глубине около 150 м выделяется область повышенного УЭС, которая может быть связана с промерзанием талика снизу. На глубине около 100 м ширина талой зоны соответствует размерам озера, которое было спущено около 30 лет назад.

На разрезе сопротивлений по профилю 2 промерзающий подозёрный талик установлен на глубине 20-25 м в интервале профиля 400-800 м. На глубине 100-125 м размеры талика гораздо больше – около 600 м, а его юго-восточная граница не установлена, так как профиль не вышел за границы палеооозера *I* (см. рис. 2).

Рис. 4. Геоэлектрические разрезы по профилю 1 (а) и 2 (б) по данным электротомографии:

1 – предполагаемая граница ММП; 2 – размеры палеоозёр

В результате исследований установлено, что глубина промерзания в переделах спущенного озера за период с 1996 г по 2018 составила 17-22 м, а приблизительная скорость промерзания составила 1 м/год.

УЭС талых и охлаждённых пород составляет 5-15 Ом·м. Промерзающие породы в контурах молодого палеоозера имеют УЭС в первые сотни Ом·м. В границах более древнего хасырея, где температура ММП ниже чем в центральной части палеоозера, УЭС промёрзших пород достигает нескольких тысяч Ом·м.

Метод электротомографии позволяет изучать структуру, а при многолетних наблюдениях и динамику изменения подозёрных таликовых зон.

Работа выполнена при поддержке НП «Российский Центр освоения Арктики», ГКУ ЯНАО «Научного центра изучения Арктики» и проекта ФНИ № 0331-2019-0007 «Геоэлектрика в исследованиях геологической среды: технологии, полевой эксперимент и численные модели».

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Кирпотин С.Н. Западная Сибирь - уникальный болотный регион и ее роль в регулировании глобального климата // Актуальные проблемы экологии и природопользования Сибири в глобальном контексте: сборник статей / под. ред. С.Н. Кирпотина. - Томск: Изд-во НТЛ. – 2006. – С. 22-42.

2. Cryovolcanism on the Earth: Origin of a Spectacular Crater in the Yamal Peninsula (Russia) / S.N. Buldovicz, V.Z. Khilimonyuk, A.Y. Bychkov, E.N. Ospennikov, S.A. Vorobyev, A.Y. Gunar, E.I. Gorshkov, E.M. Chuvilin, M.Y. Cherbunina, P.I. Kotov, N.V. Lubnina, R.G. Motenko, R.M. Amanzhurov // Scientific Reports, - 2018. - Vol.8. - Article number: 13534.

3. Paleolimnology of thermokarst lakes: a window into permafrost landscape evolution / F. Bouchard, L.A. MacDonald, K.W. Turner, B.K. Biskaborn, J.R. Thienpont, A.S. Medeiros // Arctic Science. – Vol.3. – 2017 – P. 91-117.

4. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes / K.W. Anthony, T.S. von Deimling, I. Nitze, S. Frolking, A. Emond, R. Daanen, P. Anthony, P. Lindgren, B. Jones, G. Grosse // Nature Communications. – 2018. – 9(1). – 3262.

5. Прейс Ю.И., Симонова Г.В., Слагода Е.А. Детальная стратиграфия и динамика хасырея Центрального Ямала в верхнем голоцене // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2016. – Т. 327. – № 10. – С. 35–49.

6. Ground temperatures studies of permafrost growth at a drained lake site Mackenzie Delta / M.M. Burgess, A. Judge, A. Taylor, V. Allen // Proceedings of the Fourth Canadian Permafrost Conference. – 1982. – Calgary. – Nat. Res. Council of Canada. – P. 3-11.

7. Днепровская В.П., Брыксина Н.А., Полищук Ю.М. Изучение изменений термокарста в зоне прерывистого распространения вечной мерзлоты Западной Сибири на основе космических снимков // Исследование земли из космоса. – 2009. – №4. – С. 88–96.

8. Long-term changes in the ground thermal regime of an artificially drained thaw-lake basin in the Russian European north / D.A. Kaverin, E.B. Melnichuk, N.I. Shiklomanov, N.B. Kakunov, A.V. Pastukhov, A.N. Shiklomanov // Permafrost and Periglac Process. – 2018. –Vol. 29. – P. 49–59.

9. Transient Electromagnetic Surveys for the Determination of Talik Depth and Geometry Beneath Thermokarst Lakes / A.L. Creighton, A.D. Parsekian, M. Angelopoulos, B.M. Jones, A. Bondurant, M. Engram, J. Lenz, P.P. Overduin, G. Grosse, E. Babcock, C.D. Arp // Journal of geophysical research-solid earth. – 2018. – Vol.123. – № 11. – P. 9310-9323.

© А. Н. Шеин, В. В. Оленченко, Я. К. Камнев, А. И. Синицкий, 2019