УДК 556.3:551.263.036(571.56+571.65)

ГИДРОГЕОЛОГИЯ ОСАДОЧНЫХ БАССЕЙНОВ СЕВЕРО-ВОСТОКА РОССИИ И ОСОБЕННОСТИ ФОРМИРОВАНИЯ ПОДЗЕМНЫХ ВОД

В. Е. Глотов

Северо-Восточный комплексный научно-исследовательский институт ДВО РАН, г. Магадан E-mail: geoecol@neisri.magadan.ru

Впервые обобщены сведения о подземных водах осадочных бассейнов. Обоснован вывод, что гидрогеологическая специализация ОБ определена их геологическим строением, историей геологического развития. Детально охарактеризованы условия залегания и состав подземных вод ОБ, в осадочном чехле которых получили развитие или сохранились пластовые гидрогеологические структуры артезианского типа. Описание их дано по мерзлотно-гидрогеологическим областям – Циркумарктической и Циркумтихоокеанской, отличающимся современными особенностями питания и разгрузки подземных вод: непрерывностью и мощностью криолитозоны, величиной атмосферных осадков, температурой воздуха. При описании особенностей формирования подземных вод ОБ наибольшее внимание уделено процессам заполнения флюидами локальных резервуаров в постартезианской гидрогеологической структуре и роли в этих процессах приливных движений земной коры солнечно-лунной природы. Обращено внимание на гидрогеологическую значимость позднеплейстоценовых и голоценовых глобальных климатических изменений и колебаний уровня Мирового океана. Намечены дальнейшие исследования по направлениям, имеющим инвестиционную значимость.

Ключевые слова: осадочный бассейн, подземные воды, гидрогеологические структуры.

ОБЩИЕ СВЕДЕНИЯ

Взяв за основу определение В. В. Иванова (1985), мы будем считать осадочными бассейнами (ОБ) вещественно-структурные элементы стратисферы, связанные с разнообразными по тектонической природе и размерам областями прогибания, в разрезе осадочных выполнений которых имеются отложения, преобразованные в градациях прото- и мезокатагенеза.

В вертикальном разрезе глубокого ОБ, развивающегося длительное время в режиме прогрессивного литогенеза, обособляются гидрогеологические этажи (зоны), различающиеся по условиям залегания и перемещения воды, нефти, газов, генезису и химизму подземных вод и их энергетическому потенциалу, связям с углеводородными скоплениями, углями и минеральными ресурсами (рис. 1) (Иванов и др., 1986; Глотов, 1991).

В верхнем этаже осадочного чехла, в котором происходит биохимическая переработка (ПК₁-ПК₃) и термокаталитическая деструкция (МК₂, иногда МК₃) органического вещества (ОВ), обособляется пластовая водонапорная система, соответствующая структуре артезианского бассейна (АБ). Ее энергетический потенциал определяется перепадом приведенных уровней подземных вод в области питания и создания напоров и в области разгрузки подземных вод. В аэральных участках области создания напоров совпадают с участками инфильтрации метеогенных вод (атмосферных, поверхностных, грунтовых). Господствует инфильтрационный водообмен. По степени его активности выделяются зоны активного, затрудненного и весьма затрудненного водообмена.

В субмаринных бассейнах область создания напоров соответствует областям наибольших мощностей аккумулируемых осадков. За счет литостатического давления вода отжимается из этих осадков. Наибольшее количество воды дают глины, но генераторами ее могут быть захороненное ОВ, кремнистые осадочные породы (диатомиты, трепелы, опоки), часть воды захороняется в порах накапливающихся псаммитов. Формируется элизионный водообмен.

При гидрогеологическом картировании артезианский бассейн, сложенный только слаболитифицированными породами, преобразованными в градациях катагенеза до ПК₂, с коллекторами порово-пластового типа следует считать **АБ начального развития**. В случае если в осадочном чехле вследствие литогенетических процессов на уровне градаций ПК₁-ПК₂ в коллекторских слоях при уменьшении пористости проявляются воды трещинной проницаемости и образуется вгорой ярус с трещинно-порово-пластовым типом проницаемости, артезианский бассейн рационально считать

[©] Глотов В. Е., 2008

Рис. 1. Разнообразие гидрогеологических структур (и геофизических зон), формирующихся в осадочных бассейнах на прогрессивном этапе их развития: 1 – водонапорная система артезианского типа (а ярус порово-пластовых резервуаров АБ начального развития; δ – ярус трещинно-порово-пластовых резервуаров АБ устойчивого развития; в ярус трещинно-пластовых резервуаров АБ полного развития); 2 - водоносная система изолированных локальных резервуаров постартезианского типа; 3-барьерная зона; 4-квазипластовая метаморфогенная система; 5 - кристаллический комплекс фундамента; 6 - направление тектонических движений

Fig. 1. Different hydrogeological structures (and geophysical zones) forming in developing sedimentary areas: 1 – the artesian water-pressure system (a – the initial developing stage of Ab pore-bed reservoirs; δ – the stable stage of Ab fracture-pore-bed reservoirs;

ПРОГРЕССИВНОЕ НАПРАВЛЕНИЕ РАЗВИТИЯ ЛИТОГЕНЕЗА

e – the mature developing stage of AE fracture-bed reservoirs); 2 – the post-artesian water-bearing system of individual reservoirs; 3 – a barrier zone; 4 – a quasy-bed metamorphic rock system; 5 – basement crystalline rocks; 6 – tectonic movements

устойчиво развивающимся (АБ устойчивого развития). В породах, преобразованных в градациях МК₁-МК₂, сохраняются трещинно-пластовые коллекторы. АБ достигает полного развития (см. рис. 1).

При достижении породами глубины залегания около 4000 м температура их возрастает до 130°С и геостатическое давление до 800 атм, соответствуя градациям МК, и верхам МК, Пластовая водонапорная система сменяется постартезианской локальных резервуаров, являющейся вторым гидрогеологическим этажом. В результате трансформации структуры емкостного пространства, происходящей в условиях термической деструкции ОВ (МК,-АК), коллекторы теряют пластовый характер, сохраняясь на локальных площадях. Происходит массовое преобразование монтмориллонита в гидрослюды, гидролиз карбонатов. Это понижает прочность исходно глинистых пород, что приводит к образованию локальных гидродинамически изолированных резервуаров с аномально низкими пластовыми давлениями (АНПД)

Дегидратация и синтез воды, сопровождающие процессы преобразования глинистых минералов (Шварцев, 1975), приводят к опреснению подземной воды, обогащению ее SiO₂, созданию обращенной гидрогеохимической зональности. При образовании локальных резервуаров с аномально низкими пластовыми давлениями во вмещающих водонепроницаемых толщах внутрипоровое давление флюидов достигает литостатических значений. Перемещение флюидов в резервуары возможно за счет процесса файлюации – молекулярной диффузии флюидов по градиенту давлений.

Подошва второго гидрогеологического этажа соответствует границе мезокатагенеза (МК₂) и апокатагенеза (АК), на уровне которой литостатическое давление достигает 1200 атм, температура до 200°С. ОБ, в чехле которого сложились два гидрогеологических этажа, мы предлагаем называть диабассейном. В нем в наибольшей степени реализованы газо- и нефтегенерационные потенциалы. В фундаменте данного ОБ залегают осадочные породы, достигшие градаций апокатагенеза и регионального метаморфизма. Их гидрогеологическая специфика отвечает обстановке своеобразной метаморфогенной флюидной системы, характеризующейся квазипластовым трещинным и трещинно-жильным типами проницаемости, которую следует описывать в рамках гидрогеологии складчатых областей и магматогенных сооружений. Трехэтажная гидрогеологическая структура названа нами тритобассейном.

Обратим внимание на сектор осадочного чехла, развивающегося в условиях апокатагенеза, отличающегося температурами от 200–220 до 300–320°С. Таких температур недостаточно для мобилизации гидрогенетических ресурсов уплотняющихся горных пород, но литостатические давления приводят к смыканию локальных резурвуаров. Возникает зона, которую ранее С. Н. Иванов и Г. С. Иванов (2002) назвали барьерной. В этой зоне возможны только жильные резервуары, связанные с тектоническими разломами. Мы включаем барьерную зону в состав квазипластовой метаморфогенной.

При смене устойчивых тектонических прогибаний на воздымание, т. е. при проявлении регрессивного этапа развития, происходит последовательное разрушение сформировавшихся ярусов артезианских бассейнов и гидрогеологических этажей (рис. 2). Эрозии предшествуют глубокие гипергенные преобразования, сопровождаемые региональной открытой трещиноватостью, разуплотнением пород, их растворением или выщелачиванием. Все эти процессы увеличивают емкостные показатели коллекторов, поэтому с гидрогеологических позиций их можно рассматривать как редукционные. Соответственно артезианские бассейны на первых стадиях их разрушения следует считать редукционными.

В ходе длительной эрозии отдельные блоки ОБ обычно воздымаются с различными скоростями, возможно прогибание некоторых из них. В результате формируется **фрагментарный АБ**, т. е. в пределах геологически единого ОБ не менее половины его площади занято пластовыми коллектора-

РЕГРЕССИВНОЕ НАПРАВЛЕНИЕ РАЗВИТИЯ ОБ

Рис. 2. Гидрогеологические структуры, формирующиеся в ОБ на регрессивном этапе развития: 1 – пластовая водонапорная система типа артезианского бассейна; 2 – постартезианская водоносная система; 3 – барьерная зона и квазипластовая метаморфогенная система; 4 – кристаллический комплекс фундамента; 5 – направление тектонических движений

Fig. 2. Hydrogeological structures forming in degrading sedimentary areas: 1 - the artesian bed-confined water-pressure system; 2 - the post-artesian water-bearing system; 3 - a barrier zone and a quasy-bed metamorphic rock system; 4 - basement crystalline rocks; 5 - tectonic movements

ми, а на остальной развиты отложения осадочного чехла, преобразованные в градациях МК₃-МК₅.

Если же эти породы развиты на более чем половина площади ОБ или же чехол АБ разрушен полностью, то образующуюся гидрогеологическую структуру мы относим к **адартезианскому бассейну**, который наследует глубинную водонапорную систему постартезианского типа, преобразованную гипергенными процессами*.

Следовательно, гидрогеологическая спецификация осадочных бассейнов является функцией геологического строения и геологической истории. В связи с этим выделяем три складчатые области распространения ОБ с разными гидрогеологическими характеристиками: Верхояно-Чукотскую с осадочными чехлами ОБ мезозойского и кайнозойского возраста, Корякско-Камчатскую с осадочными чехлами ОБ позднемезозойского и кайнозойского возраста и Олюторско-Восточно-Камчатскую с осадочными чехлами ОБ кайнозойского возраста.

В Охотско-Чукотском вулканогенном поясе развиты впадины, с которыми связаны АБ начального развития. Они малые по площади (десятки и реже сотни км²) и по мощности отложений кайнозойского возраста (первые сотни метров).

Процессы формирования подземных вод в ОБ связаны не только с их геологическим строением и историей развития, но и с условиями питания и разгрузки подземных вод в современное и пред-

> шествующее время. Ранее мы показали, что эти условия, связанные с современным климатом, прерывистостью и мощностью криолитозоны (или толщи многолетнемерзлых пород -ТММП), на Северо-Востоке России различны в бассейнах стока Северного Ледовитого (Арктического) океана и Тихого. Выделены две мерзлотно-гидрогеологические области – Циркумарктическая (ЦАО) и Циркумтихоокеанская (ЦТО), разделенные Главным водоразделом Земли (ГВЗ). В каждой из этих областей выделяются субширотно протяженные геокриологические районы. При этом, в отличие от ЦАО, в ЦТО нет районов со сплошной ТММП. Вместе с тем в ЦАО отсутствуют районы с прерывистой и островной ТММП (рис. 3) (Глотов, 2003).

^{*}Гидрогеологические особенности более глубоких недр ОБ мы не рассматриваем.

В Циркумарктической мерзлотно-гидрогеологической области наиболее криогенно закрыты ОБ Арктического района, являющиеся двухэтажной (Чаунский и Лонго-Чукотский) и трехэтажной (Новосибирский, Лаптевско-Янский) гидрогеологическими структурами. Одноэтажными структурами АБ начального развития являются ОБ, приуроченные к наложенным впадинам (Тастахский, Североколымский), которые, видимо, полностью переморожены. Изученность подземных вод ОБ ограничивается глубиной 300 м. Обобщенные гидрогеологические сведения приведены в табл. 1. Более подробно остановимся на новых, ранее не известных специалистам гидрогеологических закономерностях и фактах.

В Новосибирском ОБ под дном Восточно-Сибирского моря на шельфе установлена связь статических уровней и минерализации подземных (поддонных вод) (табл. 2). Вблизи о. Мал. Ляховский вода в интервале глубин от дна моря 60–

122 м имеет состав M10,9
$$\frac{Cl97}{(Na + K)89 \cdot Mg10}$$
, стати-

ческий уровень – 2,5 м, в проливе Лаптева в интервале глубин 43,2–53,2 м состав воды выражен

уровень – 10,4 м. В проливе Санникова в интервале 16,1–3,5 м химический состав воды выражен

уровень совпадает с уровнем моря. Растворенный в воде газ кислородно-азотный, содержание О, от 14,7 до 18,1% об. Известно, что арктические моря современные, наступление их на сушу продолжается. Затапливаемые четвертичные отложения сильно льдистые. Вытаивание льдов приводит к образованию опресненных вод, осолонение которых связано с медленным, видимо, молекулярным диффузионным или файлюационным перемещением соленой морской воды в оттаивающие отложения. Несколько иные процессы предполагаются на возникающем шельфе более восточных районов. Так, при бурении и опробовании скважин в Чаунской губе (Чаунский ОБ) до 100 м от ее дна установлено, что статические уровни подземных вод нормальные, соответствуют уровню моря, но на глубине 91 м вода имеет состав

временным составом морской воды, за исключением небольших различий. На глубине 20 м –

$$M21 \frac{Cl92}{(Na+K)67 \cdot Mg30}$$
. Складывается впечатление,

что морской позднеплейстоцен-голоценовой трансгрессии предшествовало внедрение в сушу соленых инфильтрационных морских вод. Латеральное их перемещение по пластам возможно, если эти пласты свободны от воды и льда, или при наличии пластовых давлений меньше, чем в зоне контакта суши и моря. Такое явление мы наблюдаем в зимнее время в подрусловых таликах рек бассейна стока Восточно-Сибирского моря: Чаун, Рывеем, возможно, и других. Сезонное осолонение происходит после сработки ресурсов пресных вод подрусловых таликов после наступления холодного периода года. Дальность сезонного внедрения морских вод в р. Чаун превышает 11 км от устья.

Следствием инфильтрации морских вод в сушу при последующем вымерзании в морозных коллекторах являются замкнутые линзы криопэгов на побережьях Чукотского моря. Например, в подземной части Лонго-Чукотского ОБ – Ванкаремской низине А. А. Архангелов и Л. А. Жихарева в 1974 г. описали линзы воды на глубине до 90 м с температурой до -9°С, имеющей состав

$$M130 \frac{Cl65 \cdot SO_4 35}{(Na+K)84 \cdot Mg14}$$

C104

ИЛИ

M97,6
$$\frac{C194}{(Na + K)84 \cdot Mg14}$$
 с температурой около -6°C.

Приведенные статические уровни воды в таких линзах на 33,5 м ниже современного уровня моря.

Как известно, подмерзлотные солоноватые воды в этом районе до сих пор считаются показателем трансгрессии моря в раннем или даже в среднем плейстоцене. Фактически они могли образоваться за счет современной инфильтрации морских вод в недра, предварительно дренированные в позднеплейстоценовую криоаридную эпоху.

В Анюйском мерзлотно-гидрогеологическом районе наиболее известны протоорогенные ОБ: Индигиро-Зырянский, Нутесынский, Камешковский. В гидрогеологическом отношении последние два ОБ являются адартезианскими бассейнами, Индигиро-Зырянский – фрагментарным АБ. Для района характерно повсеместное распространение ТММП, мощность которой превышает глубину распространения гипергенной трещиноватости. Очаги питания и разгрузки подземных вод в пределах бассейнов не выявлены. Это отразилось на своеобразии гидрогеологических обстановок, наиболее изученных в Индигиро-Зырянском АБ до глубины около 500 м.

Это крупнейший на суше нашего региона ОБ, его площадь около 70 тыс. км², осадочный чехол сложен терригенными, угленосными образованиями от раннеюрского до четвертичного возраста мощностью до 15 км.

Рис. 3. Мерзлотно-гидрогеологические районы Северо-Востока России: 1 – границы областей (Главный Мировой водораздел) Циркумарктической (А) и Циркумтихоокеанской (Т); 2 – границы районов, в том числе A-1 – Арктического; A-2 – Анюйского; A-3 – Верхне-Колымского; T-1 – Анадырского; T-2 – Охотско-Корякского; T-3 – Северо-Охотского; T-4 – Беринговоморского; 3 – осадочные бассейны: 1 – Восточно-Сибирский, 2 – Чаунский, 3 – Лонго-Чукотский, 4 – Индигиро-Зырянский, 5 – Нутесынский, 6 – Момский, 7 – Момантайский, 8 – Аркагалинский, 9 – Сеймчано-Буюндинский, 10 – Омсукчанский, 11 – Уляганский, 12 – Хуличанский, 13 – Пенжинский, 14 – Парапольский, 15 – Анадырский, 16 – Берингийский (Нортон), 17 – Хатырский, 18 – Пусторецкий, 19 – Олюторский, 20 – Ильпинский, 21 – Ямско-Тауйский, 22 – Североохотоморский; 4 – границы ОБ, в том числе на море (*a*) и суше (б)

Fig. 3. **Permafrost hydrogeological areas in northeastern Russia:** 1 – the region limits (the continental divide): A – circum-Arctic, T – circum-Pacific; 2 – the area limits: A-1 – Arctic; A-2 – the Anuyi R.; A-3 – the Upper Kolyma R.; T-1 – the Anadyr R.; T-2 – Okhotian-Koryak; T-3 – the North Okhotian; T-4 – the Bering Sea; 3 – sedimentary areas: 1 – east Siberian, 2 – Chaunsky, 3 – Longo-Chukchi, 4 – the Indighirka-Zyryanka R., 5 – Nutesyn, 6 – Momsky, 7 – Momantai, 8 – the Arkagala R., 9 – the Seimchan-Buyunda R., 10 – the Omsukchan R., 11 – Ulyagansky, 12 – Khulichansky, 13 – the Penzhina R., 14 – Parapolsky, 15 – the Anadyr R., 16 – Beringiysky (Norton), 17 – the Khatyrka R., 18 – Pustoretsky, 19 – Olyutorsky, 20 – Ilpinsky, 21 – the Yama-Taui R., 22 – the northern Sea of Okhotsk; 4 – the sedimentary area limits: a – on sea, δ – on land

По имеющимся материалам, зона активного водообмена в бассейне ограничена надмерзлотными подрусловыми таликами. Под руслами рек, пересекающих ОБ, подмерзлотные воды зоны затрудненного водообмена напорные, но отметки уровня на 80–100 м ниже отметок дневной поверхности. На междуречьях уровни подмерзлотных вод свободные, статические отметки ниже отметок у речных русел (рис. 4). Химический состав воды вблизи речных

русел выражается формулой $M0,26 \frac{HCO_3 76 \cdot Cl13}{(Na + K)84}$,

на междуречьях $M6,9 \frac{C193}{(Na+K)97}$. Воды слабоще-

лочные (pH до 8,1), что характерно для каменноугольных месторождений. Таким образом, имеются подрусловые подмерзлотные потоки воды, питаемые за счет перетока воды из горного обрамления. От подрусловых потоков вода распространяется к междуречьям. Процесс этот замедлен малыми объемами перетоков воды и низкими емкостными свойствами коллекторских толщ, на что указывают малые удельные дебиты скважин (сотые и тысячные доли л/с·м).

Описанная латеральная гидрогеохимическая зональность (увеличение минерализации подмерзлотных вод от русла реки к междуречьям) и гидродинамическая специфика могла быть вызвана

Таблица 1. Характерные черты осадочных бассейнов Северо-Востока России

Table 1. Characteristics features of sedimentary areas in the North-East of Russia

№ п/п	Осадочный бассейн	Водоносные (флюидоносные) комплексы, осадочный чехол, возраст, мощность, м	Катагенетическая характеристика пород комплекса	Глубина (интервал) вскрытия резервуаров, м; водопроявления	Напорные уровни (м) или пластовые давления (атм),	Репрезентативные сведения о составе воды
1	2	3	4	5	6	7
		A Hun	кумарктическая	мерзпотно-гилро	сеологическая обла	ЮТЬ
		Ва	жумаркти пеская жив Колтинаций и	мерзлотно тидро	0010111 100000 0000	
		 Vгленосный Карс-а: до	лне-колымскии л	перзлотно-гиороге	Восхоляние	M < 0.2
1	Момский	3000 м	MK ₃₋₅ ; AK ₁	Источники	наледи	$VB\Gamma < 1\%$ of.
2	Уляганский	Угленосный, J ₃ -K ₁ : до 2500 м	MK2.3: AK1	230 м	>230 м	M0.42 <u>Cl66HCO₃33</u>
						(Na + K)90Ca10
3	Омсукчанский	Угленосный, K ₁ a-K ₁ al; до 2 км; вулканогенный, K ₂ ; до 1500 м	MK ₂ -MK ₅ ; AK ₁₋₃	До 300 м	250—300 м	M1,5 $\frac{\text{HCO}_3 89}{(\text{Na} + \text{K})92}$ pH > 7; M0,16 $\frac{\text{HCO}_3 86}{\text{Mg63 Ca31}}$ pH 7
4	Аркагалинский	Угленосный, К ₂ ; до 500 м	МК ₂	От 150 до 300 м	30–300 м	M7,9 $\frac{SO_4493}{Na65Ca21}$; M0,3 $\frac{HCO_351SO_493}{(Na + K)91}$
5	Сеймчано-Буюн- динский	Континентальный угленос- ный, Kz; до 700 м	ПК ₂₋₃	95–450 м	95—400 м	$M2,6 \frac{HCO_{3}94}{Na75} \text{ pH 7,5 ;} \\ M0,2 \frac{HCO_{3}94}{(Na + K)49 \text{ Ca31Mg17}} \text{ pH 7}$
6	Момантайский	Верхнеледниковый, N ₂ -Q; до 700 м	< ПК ₃	103–172 м	100–120 м	M0,7 $\frac{\text{HCO}_{3}92}{\text{Ca57Mg21}}$; M0,15 $\frac{\text{HCO}_{3}81\text{SO}_{4}13}{\text{Ca71Mg17}}$
			Анюйский мерзл	отно-гидрогеолог	ический район	× ×
		Бастахский, J ₃ ; до 9500 м	MK_4 - AK_2	Нет св.	Нет св.	
7	Индигиро-Зырян- ский (слабо изучен)	Угленосный, K ₁ nc-al; до 7800 м	MК ₁ -МК ₃	До 450 м	87–240 м	M6,9 $\frac{C193}{(Na+K)97}$; M4,4 $\frac{(HCO_3 + CO_3)99}{(Na+K)98}$; M0,3 $\frac{HCO_376C113}{}$
		Терригенный, Кz; до 1000 м	ПК-МК ₃	До 300 м	Нет св.	(Na + K)84
			Арктический мер	злотно-гидрогеол	огический район	
8	Лаптевско-Янский (слабо изучен)	Терригенный угленосный, Mz-Kz; мощность > 1300 м	ПК-МК3	Скв. ~500 м (бух. Тикси)	Стат. ур. 70 м ниже уровня моря	М = 2 г/л; Cl; Na-Ca
9	Новосибирский	Осадочный чехол от D_1 до N_1 , мощность > 10 000 м	От ПК ₃ до АК ₁	Скв. глубиной до 120 м от дна моря	Стат. ур. от 0 до -10,4 м	M19,6 <u>C190 SO₄ 9</u> (Na + K)77 Mg18; M1,1 <u>C169</u> (Na + K)52 Mg31
10	Чаунский	Осадочный чехол Mz-Kz, мощность до 3500 м	ПК3-?	Скв. глубиной 507 м	Р _{пл.} = норм.	M1,1 $\frac{Cl69}{(Na + K)52 Mg31}$; M3,3 $\frac{Cl91}{(Na + K)41 Ca30}$

	Окончание табл. 1									
1	2	3	4	5	6	7				
11	Лонго-Чукотский	Терригенно-континенталь- ные, Кz; до 1500 м. Тер- ригенные морские, Мz; мощность > 2500 м	ПК3-?	До 350 м	Стат. ур. от +5 м абс. до -33,5 м абс.	M130 $\frac{\text{Cl66 SO}_4 35}{(\text{Na} + \text{K})84 \text{ Mg14}}$; M0,9 $\frac{\text{HCO}_3 57 \text{ Cl13}}{(\text{Na} + \text{K})98}$; B % of.: N ₂ + p. r. = 81,2; CO ₂ = 4,1; O ₂ = 14,7				
		Б. Цирк	сумтихоокеанска	я мерзлотно-гид	рогеологическая о	бласть				
Беринговский мерзлотно-гидрогеологический район										
1	Ильпинский и Олюторский	Терригенный, терригенно- туфогенный, N ₁ -Q; до 3000 м	ПК2-ПК3; МК1-МК3	Источники	Восходящие	$M14 \frac{\text{C159 HCO}_3 39}{(\text{Na} + \text{K})92} \text{ pH 8 ; B \% of.: CO}_2 = 86,3, \text{N}_2 + \text{p. r.} = 0.68; \text{ He} = 0.011; \text{ Ar} = 0.205; \text{ M0.3} \frac{\text{HCO}_3 79 \text{ SO}_4 12}{(\text{Ma} + \text{K})^2}$				
						(Na + K)93				
		Терригенный флишевый, K ₂ -Pg; до 3000 м	MK ₂ -MK ₅	Источники, скв. до 600 м	60 атм	M1,2 <u>HCO₃ 77 Cl17</u> уинтервал 100–240 м; H ₂ S до 30 мг/л				
2	Хатырский	Глинистый, Pg ₂ -Pg ₃ ; до 2000 м	MK ₁ -MK ₃	Источники, скв. до 3000 м	Восходящие, Р _{пл.} от 26 до 6 атм	M0,54 $\frac{\text{HCO}_3 88}{(\text{Na} + \text{K})60 \text{ NH}_4 21}$; газ УВГ до 8 тыс. м ³ /сут, H ₂ S до 50 мг/л				
		Песчано-глинистый, Pg ₃ - N ₁ ¹ ; до 8000 м	MK1-MK3	Скв. до 3200 м; источники	Р _{пл.} = до 320 атм	М19,4 - 7,7 <u>С194 - 68 HCO₃ 26</u> , в мг/л: J = 57,5; Br = 87,4; B = 20; нефть; УВГ; H ₂ S до 30 мг/л				
		Терригенный, N ² -Q; до 2500 м	ПК ₁ -МК ₂	Скв. от 585 до 1561 м; источники	Р _{пл.} = норм.	M20,3 - 1,7 C199 - 41 Na59 - 34 Ca40 - 21				
		Нижний комплекс К ₂ ; до 2000 м	МК ₃ -МК ₄	Скв. до 500 м	Р _{пл.} = норм.	M0,3 $\frac{(\text{HCO}_3 + \text{CO}_3)78}{(\text{Na} + \text{K})88}$ pH > 8				
3	Наваринский	Средний комплекс Pg ₁ -Pg ₂ ; до 300 м	МК ₂ -МК ₃	Скв. до 500 м	Р _{пл.} = норм.	$M0,1\frac{HCO_{3}51Cl22}{(Na + K)99}$				
		Верхний комплекс Pg ₃ ; до 600 м	МК ₂ -МК ₃	Скв. до 500 м	Р _{пл.} = норм.	$M1,8\frac{\text{CI58 HCO}_3 40}{(\text{Na} + \text{K})99}$				

В. Е. Глотов

18

йон	$M0,1 \frac{HCO_3 81SO_4 13}{(Na + K)91} pH8; M57 \frac{C194}{Na65 Ca19 Mg16}$		$M < 1 \ {\rm r/n}; \ HCO_3 \ Na; HCO_3 \ Ca-Na; \ H_2S; \ CH_4 > 30\% \ {\rm o6}.$	$M0, 6 \frac{HCO_3 25 SO_4 13}{(Na + K)91} pH7, 2; M7, 1 \frac{C199}{(Na + K)70 Ca22}$		M8 <u>Cl63 HCO₃ 25</u> ; в мг/л: J = 0,6; Br = 19,4; (Na + K)86 нафт. кисл. = 710; в % об.: УВГ = 78; He = 0,014	$M19, 6\frac{C190 SO_49}{(Na + K)77 Mg18}$; B MI/JI: J = 16,6; Br-21; VBF	$M1, I = \frac{C172 HCO_3 27}{(Na + K)97}; M30, 5 \frac{C199}{(Na + K)73 Ca23}; B MT/II:$ J = 19,3; Br = 29; B = 10,5
геологический ра	Р _{пл.} = норм.	гический район	Восходящие	Р _{пл.} = норм.	гический район	$P_{nn.} \leq \text{Hopm}.$	Р _{шт.} ≤ норм., Р _{шт.} ≥ норм.	Р _{ии.} ≤ норм. Р _{ии.} ≥ норм.
<u>й мерзлотно-гидро</u>	Скважины до 1400 м	эпоягодоиз-онтопе	Источники	Источники, скв. до 300 м	окоэгодопг-оншок	Скв. до 3000 м	Скв. до 3000 м	Скв. до 2200 м
ро-Охотоморский	IIK ₃ -MK ₂ ; MK ₃ -AK	Пенжинский мер	IIK ₃ -MK ₃	MK ₁ -MK ₄	Анадырский мерэ	MK3-MK5	MK ₁ -MK ₂	IIK-MK ₂
Cese	Осадочный чехол Kz; мощ- ность до 6000 м		Осадочный чехол терри- генный К2, К2; до 9000 м	Осадочный чехол К ₁₋₂ , Кz; мощность > 6000 м		Нижний терригенный К ₁₋₂ - Рg; до 3000 м	Средний алевролит-аргил- литовый, Pg2-Pg3; до 5500 м	Верхний терригенный, N-Q; до 7500 м
	Ямско-Тауйский		Пусторецкий	Пенжинский			Анадырский	
	4		5	6			7	

тем, что в позднеплейстоценовый криоаридный период недра Индигиро-Зырянского АБ осушались до уровня ниже современного не менее чем на 100 м. В настоящее время идут процессы восполнения ресурсов подмерзлотных вод. Убедительным доказательством подобного осушения недр являются горельники – выгоревшие пласты угля и обожженные вмещающие породы. Они распространены до современной глубины около 100 м. Связь их с осушением недр заметили Ю. Н. Пензин и др. в 1986 г. при разведке каменноугольных месторождений.

В Верхне-Колымском мерзлотно-гидрогеологическом районе гидрогеологическая изученность наибольшая, что связано с его насыщенностью месторождениями россыпного и рудного золота, олова, углей, нерудных полезных ископаемых и т. д.

ОБ разнообразны по происхождению и положению в рельефе, соответственно, и по их гидрогеологическим спецификам. Здесь имеются АБ начального развития (Момантайский, Верхне-Берелехский и т. д.), АБ редуцированный – Сеймчано-Буюндинский, фрагментарные – Аркагалинский, адартезианские – Омсукчанский, Момский, Хуличанский и Уляганский. Все эти ОБ – протоорогенные впадины, осадочный чехол которых представлен угленосными верхнеюрскими и/или меловыми образованиями мощностью до 4500 м. Они расположены в зонах глубинных разломов, неотектонически активны. Остальные АБ связаны с дейтоорогенными впадинами, тяготеющими к активным разломам; осадочный чехол кайнозойский, слаболитифицирован, сложен галечниками, песками, глинами речного, озерного, ледникового происхождения. ТММП слабопрерывистая. Под руслами рек, пересекающих осевую зону впадин или совпадающих с ней, есть как водопоглощающие, так и водовыводящие талики. Поэтому подрусловые подмерзлотные зоны наиболее водообильны, носят все признаки зоны активного водообмена. Подмерзлотные воды пресные. В направлении к междуречьям и к горным обрамлениям ТММП приобретает сплошной характер, появляются криогеннозакрытые мульды с весьма затрудненным водообменом. Такие мульды установлены в Аркагалинском АБ (рис. 5), в Сеймчано-Буюндинском. Вода в них солоноватая сульфатная или гидрокарбонатная (табл. 2) с кремнеземом до 190 мг/л. В этих же бассейнах возможны локальные емкости с аномально низкими пластовыми давлениями. В приводораздельных АБ начального развития в льдистой ТММП встречены сушенцы.

В Циркумтихоокеанской мерзлотно-гидрогеологической области ОБ расположены в четырех мерзлотно-гидрогеологических районах: Беринговоморском, Североохотоморском, Пенжинском и Анадырском.

Рис. 4. Мерзлотно-гидрогеологический разрез участка «Харанга» Зырянского бассейна (по Т. Н. Елисафенко, 1988): 1 – угольные пласты; 2 – выгоревший в плейстоцене пласт; 3 – выгоревший в неогене пласт; 4 – переслаивание песчаников и алевролитов; 5 – тектонические нарушения; 6 – многолетнемерзлые породы; 7 – подошва многолетнемерзлых пород (бергштрихи обращены в сторону мерзлоты); 8 – изотермы; 9 – уровень подземных вод; 10 – геотермические скважины (цифра рядом – температура пород, °С); 11 – разведочные скважины

Fig. 4. The Kharanga section (frozen rocks and hydrogeological characters) in Zyryanka sedimentary area (from T. H. Елисафенко, 1988): 1 – coal beds; 2 – a coal bed burnt out in Pleistocene; 3 – a coal bed burnt out in Neogene; 4 – intercalating sandstones and siltstones; 5 – tectonic disturbances; 6 – frozen rocks; 7 – the bottom of frozen rocks (hatching lines are directed toward permafrost layers); 8 – isotherm lines; 9 – the ground waters level; 10 – geothermal wells and the rock temperatures (°C); 11 – exploration wells

Наиболее северный из них – Анадырский включает одноименный ОБ, впадины Марковскую, Усть-Бельскую, северную часть Пенжинского ОБ. По характеру распространения и мощности ТММП этот район можно сопоставить с Верхне-Колымским, но с большей степенью прерывистости. Например, сквозные водопоглощающие талики в Анадырском ОБ могут развиваться и под сезонно промерзающими ледниковыми и даже термокарстовыми озерами, в местах накопления снега более 3-4 м, а также в пределах конусов выноса. Такого разнообразия сквозных таликов в Верхне-Колымском районе нет. Это связано с большим количеством выпадающих осадков и относительно повышенными среднегодовыми температурами воздуха, благоприятствующими тому, что в ОБ на равных глубинах от дневной поверхности (до 500 м) в подмерзлотных горизонтах активный водообмен, способствующий формированию пресных вод, широко развит вдоль горных обрамлений, а не только под руслами рек. Все это указывает на развитие по окраинам АБ очагов современного питания подмерзлотных вод метеогенными. Однако и здесь в отдельных слабопроницаемых пластах и линзах возможно залегание линз солоноватых вод. Например, на западном склоне Марковской впадины при разведке Горельниковского буроугольного месторождения в толще кайнозойских угленосных отложений на абсолютных отметках около 40 м при глубине 110–125 м встре-

чены воды, состава М7,1 <u>С199</u> (Na + K)70 · Ca22 · В окружающих пластах вода пресная состава

$$M0,6\frac{HCO_383 \cdot SO_413}{(Na+K)91}$$

По мере приближения к Анадырскому заливу минерализация подмерзлотных вод возрастает. Образуется пояс солоноватых вод, хорошо изученный в Анадырском АБ, переходящий в Казачкинской впадине в пояс соленых вод и рассолов (рис. 6). Рассолы с минерализацией до 96 г/л образуют линзы с аномально низкими приведенными статическими уровнями (до 12 м ниже современного уровня моря).

Разрезы осадочного чехла глубиной до 3500 м в гидрогеологическом отношении изучены при

Район, возраст и состав водовмещающих пород	Тип емкости, водоисточник	Гидродинамические параметры водонос- ных пластов, зон	Физические и химические характеристики воды	Растворенные газы, % об.
о. Котельный, долина р. Решет- никова, мета- морфические и магматические породы Рz	Трещинно- жильные, естественные выходы	_	M107 — 132 C190 – 95 · SO ₄ 5 – 9 Na76 – 77 · Mg18 – 19 t = -5; 7–8; 2°C; йод = 0,8 мг/л; бром = 201,6 мг/л	Не изучены
Побережье о. Мал. Ляхов- ский, аргил- литы I ₃ -К ₁	Трещинные, скважина на глубине 94 м	Мощность 6,8 м; ст. ур8,9 м; Q = 0,002 л/с; S _{дин.} = 34,1 м; Пр. = 1,65 мД	$M3,6 \frac{C192 \cdot HCO_3 7}{(Na + K)47 \cdot Mg27 \cdot Ca26};$ $t = -8^{\circ}C$	$CO_{2} = 2,5;$ $O_{2} = 15,4;$ $CH_{4} = 0,037;$ $C_{2}H_{6} = 0,003;$ $C_{3}H_{8} = 0,002;$ $H_{2} = 0,003;$ $N_{2}i = 84,3;$ He + Ne = 0,001
Побережье о. Б. Ляхов- ский, пески Р ₃ - N _{1,} водоупор – глины	Порово-плас- товые, сква- жины на глу- бине122 и 60 м	Мощность от 10– 40 см до 8 м; ст. ур22,5 м; Q = 0,017 л/с; S _{дин.} = 24,5 м; Пр. = 326 мД	$M10.9 \frac{C197}{(Na + K)84 \cdot Mg10};$ $t = -8^{\circ}C$	$N_2 = 95,7;$ CO ₂ = 4,1; CH ₄ = 0,18; TУ не обн.
Пролив Лап- тева, Р ₃ -N ₁ , гравелитистые пески, водо- упор – супеси и суглинки	Порово-плас- товые, сква- жины на глу- бине -43,2; -48,3; -46,0; -53,2 м ниже уровня моря	Мощность 5,0– 7,2 м; ст. ур10,4 м; Q = 0,5 л/с; S _{дин} = 0,3 м; Пр. = 75 мД	M1,1 $\frac{C169}{(Na + K)52 \cdot Mg31 \cdot Ca17}$; t = 0,1°C; pH = 8	$N_{2} = 78,3;O_{2} = 18,1;CO_{2} = 0,4;H_{2} = 0,5;CH_{4}+TY = 2,7$
Пролив Санни- кова, пылевые пески О ₁ -О ₃ , водоупор – су- песи и суглин- ки	Порово-плас- товые, сква- жины на глу- бине 16,1– 53,5 м от дна моря	Мощность 24–25 м; ст. ур0,0 м; Q = 0,0039 л/с; S _{дин.} = 1,87 м; Пр. = 17 мД	$\begin{split} M19,& 6 \frac{C190 \cdot SO_4}{Na77 \cdot Mg18}; \\ t &= -0,8^{\circ}C; \ Br &= 34,63 \ \text{Mr/}\pi; \\ HBO_2 &= 12 \ \text{Mr/}\pi; \\ NH_4 &= 3,6 \ \text{Mr/}\pi; \ Cl/Br &= 312; \\ \Gamma_{\varphi} &= 15 \ \text{cm}^3/\pi \end{split}$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Пролив Лап- тева, пылевые пески О ₁ -О ₃	Порово-плас- товые, сква- жина на глу- бине 16,1– 53,5 м от дна моря	Мощность 10,6–20,5 м; ст. ур0,0 м; Q = 0,017 л/с; S _{дин.} = 2,2 м; Пр. = 132 мД		

Таблица 2. Характеристика подземных вод Новосибирского мегабассейна (Неизвестнов и др., 1976) *Table 2.* Ground waters in the Novosibirsk Megabasin (Неизвестнов и др., 1976)

Примечание. Знак «-» после ст. ур. (статический уровень) означает, что приведенные уровни подземных вод ниже современного уровня моря.

поисках нефти и газа в Анадырском ОБ, являющемся двухэтажной гидрогеологической структурой на регрессивной стадии развития в пределах суши. По указанной причине данный ОБ выделяется нами как редуцированный артезианский.

Геологическое строение ОБ приведено в работах Д. И. и Д. Д. Агапитовых, Ю. К. Бурлина, В. В. Донцова, В. В. Иванова, Е. Н. Костылева и многих других исследователей. По их данным, осадочный чехол сложен породами от позднего мела до четвертичного возраста как морского, так и континентального генезиса. Общая мощность чехла до 10 000–11 000 м. Катагенетическая преобразованность осадочных отложений от начала прото- до поздних стадий мезокатагенеза (Иванов, 1985). В осадочном чехле выделены комплексы: нижний – терригенные и туфогенно-терригенные породы мелового и палеоцен-эоценового возраста; средний – отложения позднеэоценового и олигоценового возраста; верхний – породы неогена и квартера.

Водоносность образований нижнего комплекса в горном обрамлении определяется интенсивностью тектонической трещиноватости. Трещинножильные воды пресные или слабосолоноватые. Так, вода на самоизливе из интервала 1043–1082 м в предгорьях хр. Рарыткин (Профильная площадь)

ратура +55°С. Содержание CH₄ = 65,5% об., N₂ = 26,5% об.

Во внутренних участках отложения этого возраста (Западно-Озерная площадь) характеризуются пластово-порово-трещинной флюидопроницаемостью. В интервале 2253–2270 м пластовое давление 117,3 атм (дефицит 108 атм), в интервале 2987–3017 м – 175,4 атм (дефицит 182 атм). Химический состав вод выражается формулой

M9,8 <u>Cl91</u> (Na+K)95. В воде присутствуют йод –

0,6 мг/дм³, бром – 19,4 мг/дм³. Растворенный газ углеводородный (УВГ), жирный, содержание He = 0,014% об., He/Ar = 0,065.

Средний гидрогеологический комплекс сложен аргиллитами с прослоями и линзами песчаников

Рис. 5. Мерзлотно-гидрогеологическая схема Аркагалинского осадочного бассейна (Глотов, Глотова, 1999): 1-осадочные угленосные отложения позднемелового возраста (осадочный чехол бассейна); 2 – отложения триасового и юрского возраста (горноскладчатое обрамление бассейна); 3 – участки бассейна, в пределах которых мощность многолетнемерзлых пород превышает мощность осадочного чехла; 4 – линии тектонических разломов; 5 - состав подмерзлотных вод, в том числе гидрокарбонатные с общей минерализацией 1-3 г/дм³(а), гидрокарбонатно-сульфатные с общей минерализацией 1–3 г/дм³(б), сульфатные с общей минерализацией до 7,5 г/дм³(в); 6 – направление движения подмерзлотных вод; 7, 8-талики сквозные водопоглощающие и водовыводящие

Fig. 5. Schematic permafrost and hydrogeologic map of Arkagala sedimentary area (Глотов, Глотова, 1999): 1 – coaliferous sediments of late Cretaceous ages (the sedimentary cover); 2 - Triassic and Jurassic rocks (the area-rimming folding); 3 – the areas where the thickness of frozen rocks is greater than the thickness of the sedimentary cover; 4 - tectonic faults; 5 - the composition of ground waters beneath permafrost: a – hydrocarbonate water with mineralization of 1–3 g/dm³, δ – hydrocarbonate-sulfate water with mineralization of 1–3 g/dm³, θ – sulfate water with mineralization up to 7.5 g/dm3; 6ground water movements beneath permafrost; 7, 8 – water-absorbing and water-deferent continuous taliks, respectively

и алевролитов мощностью до 2500 м. Здесь встречены изолированные локально-трещинные резервуары как с нормальным гидростатическим, так и с аномально низким пластовым давлением*, состоящие из алевролитов и песчаников с открытой пористостью до 10–11%, с поровой проницаемостью десятки и сотые доли миллидарси.

Вода из резервуара с АНПД имеет состав

газ метановый, сухой до полужирного.

Наличие локальных, литологически и тектонически изолированных емкостей – характерная черта терригенных и глинистых отложений, достигших средних и больших градаций мезокатагенеза. Глубокое опреснение подземных вод, обогащенных газами метаморфической и восстановительной обстановки, указывает на процессы генерации метаморфогенных вод.

^{*}Аномально низкое пластовое давление меньше условного нормального гидростатического, равного давлению столба воды с плотностью 1 г/см³ и высотой, равной глубине залегания изучаемого горизонта подземных вод от дневной поверхности.

Рис. 6. Гидрохимические профили через Анадырский ОБ: 1 – эффузивная толща палеоцен-эоцена; 2 – границы водоносных комплексов и возраст пород; 3 – линии разломов; 4 – нижняя граница криолитозоны (бергштрихи обращены в сторону мерзлых пород); 5 – границы гидрохимических зон; 6–10 – гидрохимические зоны, в том числе 6 – пресных вод (минерализация до 1 г/дм³), 7 – слабосолоноватых (1–3 г/дм³), 8 – солоноватых вод (3–10 г/дм³), 9 – слабосоленых (10–20 г/дм³), 10 – соленых (20–35 г/дм³); 11–13 – генетические типы подземных вод, в том числе гидрокарбонатные натриевые (11), хлоркальциевые (12), хлоркальциевые с магнием (13)

Fig. 6. **Hydrochemical sections in Anadyr sedimentary area:** 1 – effusive rocks of Paleocene-Eocene ages; 2 – aquiferous structure limits and rock ages; 3 – faulting; 4 – the bottom of frozen rocks (hatching lines are directed toward frozen rocks); 5 – hydrochemical zone limits; 6–10 – hydrochemical zones: 6 – fresh water (mineralization about 1g/dm³), 7 – low-brackish water (1–3 g/dm³), 8 – brackish water (3–10 g/dm³), 9 – low-salty water (10–20 g/dm³), 10 – salty water (20–35 g/dm³); 11–13 – genetic types of ground waters: 11 – hydrocarbonate-sodium, 12 – chloride-calcium, 13 – magnesium-bearing chloride-calcium water type

Средний и верхний гидрогеологические комплексы имеют общую мощность до 2500 м, возможно, более. Вертикальная гидрогеохимическая зональность в предгорьях прямая. По разрезу происходит рост минерализации с глубиной. На морском побережье эта зональность обращенная, т. е. с глубиной минерализация воды уменьшается. Следовательно, воды этих комплексов питаются в предгорьях метеогенными, которые вытесняют солоноватые и соленые. В прибрежной зоне возможен противоположный процесс – соленые талассогенные воды вытесняют пресные (опресненные).

Таким образом, наиболее северный в ЦТО и хорошо изученный Анадырский ОБ отличается очень сложной гидродинамической и гидрогеохимической зональностями, обусловленными проявлением взаимоналоженных процессов инфильтрации метеогенных пресных и талассогенных соленых вод, генерацией воды в недрах и отжатием седиментогенной.

Геотермическое поле Анадырского ОБ характеризуется тем, что до глубины около 1000 м температура пород несколько ниже, чем в аналогичных ОБ за пределами криолитозоны. Глубже степень его прогретости возрастает. На глубине 2500 м температура пород меняется от 62 до 100°С.

В Беринговоморском районе новые гидрогеологические материалы получены при нефтепоисковых работах в Хатырском ОБ парагеосинклинального типа, в гидрогеологическом отношении являющемся трехэтажной гидрогеологической структурой, выделяемой нами как фрагментарный АБ.

Для него характерно чередование поперечных по отношению к простиранию поднятий и относительных погружений. Первые представлены низкогорными массивами высотой до 500 м, вторые – низменностями с отметками 5–70 м.

Осадочный чехол сложен терригенными породами комплексов позднемелового – среднезоценового и позднезоцен-четвертичного возраста общей мощностью до 15 тыс. м (Бурлин, Донцов, 1973). Катагенетическое преобразование их от градаций протокатагенеза до позднего мезокатагенеза.

При бурении скважин на поднятии в толще существенно аргиллитовой ионайской свиты (средний эоцен) были выявлены локальные литологически изолированные объекты с АНПД. Один из таких объектов вскрыт скв. № 32 в интервале 2470–2476 м. Объект газовый, дебит притока 1000 м³/сут, пластовое установившееся давление 26 атм, а в интервале 2302–2369 м – только 6 атм. Вместе с тем из скв. № 30 из интервала трещиноватых аргиллитов ионайской свиты в интервале 1861–1899 м получен приток газа дебитом 25– 30 тыс. м³/сут при нормальном пластовом давлении (180 атм). Состав газа азотно-метановый.

Подземные воды в погруженных участках изучены по скв. № 35, пробуренной на морской косе. Наиболее глубокий интервал опробования 3025–3078 м. Вблизи дневной поверхности до глубины 100 м подземные воды на морском берегу соленые, близкие по составу к морским, при удалении в сушу на 15,2 км – пресные. На глубине в несколько сотен метров в неогеновых отложениях вода имеет минерализацию 20,3 г/дм³ и хлоридный кальциево-натриевый состав. При увеличении глубины залегания минерализация понижается в интервале 3025–3078 м, составляя 7,7 г/дм³. Состав ее выражается формулой

M7,7
$$\frac{\text{Cl86 HCO}_3 25}{(\text{Na} + \text{K})97}$$

В водах есть йод – до 57,5 мг/дм³ и бром – до 87,4 мг/дм³. Эти факты мы увязываем с процессами синтеза и отжатия воды при катагенезе (Глотов, Иванов, 1982).

Геотермическое поле отличается достаточно низкими значениями градиента температур (от 1,7 до 2,3°С на 100 м). В зоне надвигов геотермичес-кий градиент возрастает до 3,62°С на каждые 100 м.

Таким образом, гидрогеохимические, гидродинамические и геотермические зональности Хатырского ОБ в значительной степени определяются его тектоническими особенностями.

В Североохотоморском мерзлотно-гидрогеологическом районе наиболее изучены гидрогеологические условия рифтогенных впадин Ямско-Тауйского ОБ.

Ямско-Тауйский ОБ представлен цепью впадин, протягивающейся вдоль северного побережья Охотского моря от устья р. Урак на западе и до устья р. Гижига на востоке. Общая наземная площадь ОБ около 25 тыс. км², из которой 70% закрыто водами Тауйской губы и зал. Шелихова Охотского моря.

Осадочный чехол бассейна, преобразованный в градациях катагенеза прото- и начала мезокатагенеза (Иванов и др., 1988), сложен породами палеогена, неогена и четвертичного периода мощностью 3400–3600 м континентального генезиса. По геофизическим признакам здесь есть впадины с мощностью осадочного чехла до 5500–6400 м. В гидрогеологическом ОБ является двухэтажной структурой, относящейся к фрагментарному АБ. Толща ММП прерывистая. На отдельных участках, сложенных преимущественно кремнистоглинистыми осадками, мощность ее достигает 370 м при температуре выше -1,5°С.

Подземные воды вскрыты до глубины 1200 м. Во впадинах, отделенных от моря структурным порогом (Кавинская), прослеживается обратная гидрогеохимическая зональность (Глотов, Иванов, 1982). Она заключается в опреснении вод с глубиной от 2,1 г/дм³ в интервале 765–815 м до 0,7 г/дм³ в интервале 942–989 м. Воды карбонат-гидрокарбонатные натриевые.

Во впадинах, открытых в море, в толщах с пресными водами встречены локальные скопления солоноватых и соленых (до слабых рассолов) вод. Последние вскрыты в миоценовых континентальных отложениях на берегу Ольской лагуны. Формула их

В нижнем течении р. Ола, примерно в 15 м от морского побережья, в аналогичных отложениях из интервала 240–320 м получена вода, име-

вышележащем интервале вода, по данным Н. В. Верхотурова и В. В. Тюрина, имеет состав

2004). Следовательно, в сопряженных интервалах степень промытости слоев достаточно быстро меняется. Подчеркнем, что все отложения образовались в континентальных условиях при гумидном климате.

Даже краткое изложение материалов по подземным водам ОБ региона показывает их разнообразие по химическому составу и минерализации, что само по себе свидетельствует о многообразии процессов их формирования. В обобщенном виде генетическое разнообразие подземных вод показано в табл. 3.

Разнообразие подземных вод в генетическом отношении предполагает и сложность процессов их формирования. Более детально остановимся на двух из них, выявление которых стало возможным только благодаря высокоширотному положению нашего региона, существованию в нем Главного водораздела Земли, протяженности в меридиональном направлении и хорошо сохранившимся «следам» позднеплейстоценового криоаридного периода. В числе специфических процессов выделим формирование скоплений флюидов, прежде всего воды в локальных гидродинамически изолированных резервуарах в постартезианской водоносной системе и процесс регионального дренирования недр региона, в том числе ОБ, с последующим притоком воды из областей разгрузки к возможным областям питания.

Отметим, что резервуары с АНПД в гидрогеологии были известны в середине 50-х гг. XX в. и описаны геологом-нефтяником А. Леворсеном (1970), геокриологом А. И. Ефимовым в 1954 г. Наличие пластов с АНПД объясняли существованием в прежние времена (или в настоящем) очагов разгрузки подземных вод с абсолютными отметками ниже вскрытого пласта. Полный перечень причин аномально низких пластовых давлений приведен Г. Д. Гинсбургом, А. Е. Гуревичем и А. Д. Резником (1971). Наибольшее число их связано со становлением и развитием криолитозоны и глубоким охлаждением недр. Полагалось, например, что все проявления АНПД в Якутском АБ вызваны глубоким дренированием бассейна в позднем плейстоцене и запоздавшей реакцией недр на это понижение уровней подземных вод при голоценовом потеплении и подъеме уровня моря. Следовательно, наша задача облегчалась тем, что мы могли взять существующие классификации причин АНПД и выбрать из них те, которые подходят к нашему случаю.

Если обобщить данные о пластовых давлениях и химизме флюидов в локальных емкостях, полученные в ОБ Северо-Востока России в пределах ЦТО и прилегающих районов Камчатки, то можно заметить некоторые особенности (табл. 4). В том числе:

воды в локальных резервуарах, вне зависимости от глубины залегания и пластовых давлений, солоноватые хлоридные или гидрокарбонатнохлоридные с минерализацией от 5 до 12 г/л. В составе газов преобладает метан, обязательно присутствие его тяжелых гомологов. Среди микрокомпонентов воды имеются в повышенных количествах бром, бор, йод, нафтеновые кислоты;

разнообразие величин пластовых давлений от АНПД до АВПД. При этом замечено, что чем южнее расположена опробуемая скважина, тем больше вероятность вскрытия АВПД. При этом коэффициент аномальности АВПД (отношение замеренного пластового давления к условному гидростатическому) растет от северных широт к южным.

Однообразие составов воды и газов указывает, что источник их один и тот же, т. е. катагенетически изменяющиеся песчано-глинистые породы, накопленные в опресненных морских бассейнах. При условии гидравлической изоляции вновь образуемых локальных резервуаров различия в пластовых давлениях можно объяснить разным временем и интенсивностью поступления флюидов. Следовательно, подземные воды в локальных резервуарах постартезианской водоносной системы являются преимущественно метаморфогенными. Миграция их, как и газов, и нефти, в емкости из окружающих толщ возможна только в режиме файлюации (Арье, 1992), при этом предпочтительными путями файлюации являются межзерновые микро- и нанотрещины, окаймляющие локальные очаги макротрещиноватости. Известно, однако, что подобная межзерновая трещиноватость реагирует на полусуточные приливные движения земной коры солнечно-лунной природы (Мельхиор, 1968). Действительно, мы многократно отмечали пульсации скоростей восстановления уровней или дебита самоизлива глубоких скважин (Глотов, Ващилов, 2000), скорости диффузии газов через толщу многолетнемерзлых пород (Глотов, Щербань, 1987), коррелируемые с приливами земной коры.

Отсюда можно сделать вывод о том, что приток флюидов в локальные емкости контролируется космическим фактором – приливными движениями солнечно-лунной природы полусуточной периодичности, увеличивая интенсивность притока флюидов во время приливов, когда увеличивается объем пустотного пространства в породах. Поскольку амплитуда полусуточных приливов возрастает от полюса Земли к ее экватору, то объяснимы скорость заполнения локальных резервуаров и увеличение в них пластовых давлений в меридиональном направлении с севера на юг. Подтверждением этого факта является прямая связь максимальных значений аномально высоких пластовых давлений с географической широтой опробуемых объектов (табл. 5).

Выявленные закономерности формирования флюидных скоплений в постартезианской водоносной системе, с нашей точки зрения, имеет очень важное практическое значение. В том числе:

локальные резервуары постартезианской системы – наиболее надежные хранилища особо опасных жидких веществ;

они являются промежуточными накопителями нефти и газа, которые в последующем при вскрытии тектоническими разломами могут быть аккумулированы в крупные скопления в пластовой водонапорной системе – артезианском бассейне;

локальные резервуары при тектоническом вскрытии нижележащей метаморфогенной флюидной системы могут быть местом отложения рудных минералов;

локальный резервуар, вскрытый одной скважиной, является идеальным дилатометром для контроля многолетних изменений напряжений в земной коре.

Все сказанное дает основание для дальнейшего изучения выделенной нами постартезианской системы.

Следующий специфический процесс формирования подземных вод в нашем регионе связан с изменениями климата и уровня Мирового океана в позднем плейстоцене.

Таблица 3. Генетическая классификация подземных вод северо-восточной Евразии

Table 3. A genetic classification of ground waters in northeastern Eurasia

Классы по взаимоот- ношению с породой	Типы по отноше- нию к недрам Земли	Виды по гидрогене- рирующим процессам	Разновидности по источникам питания	Характерные примеры химического состава воды и газов (газы – в % объема)	Дополнительные сведения
ble	генные	орфоген- ње	Воды осадочных бассейнов (катагенетические) при гра- дации выше средних ступе- ней мезокатагенеза (МК ₃ - МК ₅)	$CH_4 - 95; C_2H_6 - 3; C_3H_8 - 1; J-58 мг/л, Br - 87 мг/л M8,6 Cl68HCO_3 25 pH6,4 (Na + K)97 p$	Хатырский ОБ. Эоцен-олигоценовые отложения. Интервал 3078–3031. Скв. Р-35. Разбавление седи- ментогенных морских вод метаморфогенными
труктурн	Эндо	Метам	Воды геосинклинальных формаций (метаморфические), региональный метаморфизм	$CO_{2} - 97; CH_{4} - 1,1; t = 21^{6}C$ $M7,9 \frac{C176HCO_{3}22}{(Na + K)51Ca45} pH 6,6$	Восточная Чукотка. Песчано-сланцевые породы раннеюрско-мелового возраста. Термальный источ- ник Безымянный. Метаморфогенные воды разбав- лены морскими
Интерос		Седимен- тогенные	Воды морских бассейнов се- диментации	СH ₄ – 96; N ₂ – 3,7; J – 16,8 мг/л; Br – 19 мг/л; Cl/Br = 186; M7,2 <u>Cl93</u> (Na + K)98 pH 7,7	Анадырский ОБ. Скв. Р-14. Интервал 1286– 1270 м. Нижний миоцен, песчано-алевритовые от- ложения. Воды опресненных морских бассейнов
	(nor P		Воды бассейнов седимента- ции на суше	M2 $\frac{\text{CO}_3 61 \text{HCO}_3 25 \text{C113}}{(\text{Na} + \text{K})98}$ pH 6,2	Кавинско-Тауйская впадина на побережье Охот- ского моря. Скв. К-2, интервал 765–815 м. Неоген- палеогеновые алевролиты со слоями песчаников и аргиллитов
Экстероструктурные	Экзогенные	Метеогенные	Воды поверхностных водо- токов и водоемов	M0,08 HCO ₃ 62Cl38 (Na + K)60Mg19Ca11 pH 6,8	Чукотское нагорье, северный склон, верховье р. Кульней. Источник в днище долины. Аллюви- альные отложения. Проба от 04.09.1979 г.
			Атмосферные осадки	M0,02 HCO ₃ 90Cl10 Ca61(Na + K)24Mg15 pH 6,7	Южный склон Охотско-Колымского водораздела. Источник вблизи водораздела pp. Хаканджа и Охо- та. Эффузивы К ₁₋₂ . Проба от 23.08.1969 г.
			Воды конденсации	M0,05 HCO ₃ 78SO ₄ 19 (Na + K)60Mg24Ca16 pH 6,4	Верховье р. Колыма. Роговики на контакте с ин- трузией гранитов. Высочки на перегибе склона у водораздела. Проба от 19.08.2001 г.
		Талассо-	Воды современных морских бассейнов	M35 <u>Cl92</u> pH 6,9 (Na + K)73Mg22	Пойма р. Кухтуй в 1,5 км от берега Охотского мо- ря. Скважина глубиной 50 м. Отложения неоген- четвертичные. Площадь заливается морскими вода- ми при нагонах и высоких приливах
		генные	Воды древних морских трансгрессий	M38 <u>Cl99</u> Ca56Mg36 pH 6,4	Певекский полуостров. Скважина в 0,25 км от бе- рега Чаунской губы Восточно-Сибирского моря. Гранитный массив К ₂ . Глубина 120 м ниже уровня моря
		цио-	Воды многолетних льдов, трещинно-жильных и льда- цемента	$M1,1\frac{C169}{(Ca+K)52Mg31}$	Воды в донных отложениях Восточно-Сибир- ского моря в интервале 43,2–53,2 м ниже дна моря
		Гляці генн	Воды сезонно образую- щихся льдов	$M0,2 \frac{HCO_3 63 Cl37}{(Na + K)82}$	Воды СТС в днищах речных долин повсеместно

В. Е. Глотов

26

Таблица 4. Параметры резервуаров постартезианской гидродинамической системы в осадочных чехлах ОБ Северо-Востока России и прилегающих территорий (по материалам Чукотской и Камчатской НГРЭ Сахалинского ПГО)

Table 4. The dimensional characters of reservoirs of the post-artesian hydrodynamic system hosted in sedimentary covers in the North-East of Russia and contiguous territories, according to geological study results (the materials of the Chukotskaya and Kamchatskaya geologic exploration teams of Sakhalinskaya Company)

			Pes				
Осадочный бассейн; площадь; скважина; дата опробования	Интервал опробования, м. Возраст и состав флюидо- носных объектов	Вид пласто- вого флюида	Пластовое давление (атм) после испытания	Пластовая темпера- тура, °С	Производит. объекта	Коэффици- ент аномаль- ности	Химический состав флюидов, специфиче- ские компоненты (ионы – мг/дм ³ , газ – % об.)
1	2	3	4	5	6	7	8
Анадырский ОБ; Собольковская; № 6; VI.1972	2943–3202. Рg; алевро- литы, аргиллиты тре- щиноватые, зеркала скольжения	Вода с рас- творенным газом	298,3	118,7	<u>6,3</u> 134,6	1,01	M5,3 $\frac{\text{Cl84SO}_410}{(\text{Na} + \text{K})96}$, J –1,45, Br – 10,5, CH ₄ – 89,4, C ₂ H ₆ –2,03, TV – 2,18, He – 0,06, He/Ar – 0,075
Там же; Повороная; № 26; VI.1977	933–945. Pg ₃ mn; аргил- литы, алевролиты, пес- чаники	Вода с газом	0,5 – на- чальное; 90,3 – ко- нечное по- сле испыта- ния	32	$\frac{3,24}{40}$	1,1 – на- чальное; 0,96 – ко- нечное	M5,8 <u>Cl94</u> (Na + K)96 , SiO ₂ (раств.) – 36, pH – 8, CH ₄ – 94,6, C ₂ H ₆ – 2,09, TУ – 0,86
Там же; № 25; V–VI. 1976	1652–1632,4, 1618,6– 1602. Рд ₃ mn; алевро- литы, аргиллиты, пес- чаники	Вода с газом	130	53	<u>1,5</u> 60	0,81	$M8,2\frac{Cl97}{(Na + K)91}, SiO_2 (раств.) - 20, pH - 8,7, CH_4 + C_2H_6 - 77,4, TУ - 2,5$
Там же; Профиль- ная; № 8; II.1978	455–460, 464–471. К ₂ - Рg; перемятые углисто- аргиллитовые породы с прослоями песчаников	Вода с газом	13,2	11,5 на глубине 450 м	<u>9.6</u> 39	0,3	$M8 \frac{CO_{3}72Cl27}{(Na + K)65Ca23}; pH - 8,7, H_{2} - 3,04, CO - 6,85, CH_{4} - 77,14, N_{2} - 12, CO_{2} - 0,19$
Хатырский ОБ; Эль- гинская; № 31; VIII. 1977	2476–2470, 2522–2514. Pg ₃ in; аргиллиты, алев- ролиты трещиноватые	Газ	26	58 на глубине 2514 м	<u>1000</u> на устье	0,11	CH ₄ – 95,72, C ₂ H ₆ – 2,51, TY – 0,78
Там же; Майно-Пыль- гинская; № 35; IV–V. 1979	3078–3066, 3045–3036, 3031–3025. Рд ₃ in; алев- ролиты, песчаники	Вода	308,2 на глубине 3043 м	73 на глубине 3043 м	<u>15,1</u> перелив на устье	1,01	M8,6 $\frac{\text{Cl68HCO}_325}{(\text{Na} + \text{K})97}$, pH – 6,4

Окончание табл. 4

1	2	3	4	5	6	7	8
Восточно-Камчат- ский ОБ; Богачев- ская; № Р-2; 1950– 1954; (Геол. строение, 1961)	1419–1370. Рg ₃ -N ₁ ; аргиллиты, алевроли- ты карбонатизирован- ные, песчаники трещи- новатые	Вода, газ	63 (ст. уровень на глуб. 647 м)	Нет св.	60 – газ, 0,3 – вода, давл. – 102 атм	0,46	Нет св. Собрано 1,5 т нефти за 28 сут испытаний
Там же; Богачев- ская; № Р-6; Х.1956	2367–2381. Pg- N ₁ ¹ ; песчаники и аргиллиты, базальты трещиноватые	Вода, нефть	Перелив через устье	Нет св.	13 при переливе на устье	> 1	M11,4 C196 Ca52(Na + K)46
Западно-Камчат- ский; Половинная; № 1; Ш–V.1981	2627–2607. Р ₃ gk; пес- чаник трещиноватый с углистым детритом	Вода	70,1 – на глубине 1906 м	Нет св.	Нет св.	0,27	M8,6 $\frac{Cl91}{(Na + K)96}$, J – 0,4, Br – нет
Там же; Тхуклук- ская; № 3; 1974	2104–2094, 2046–2035. Pg ₃ ; песчаники, алев- ролиты, аргиллиты трещиноватые	Газ	3 – на устье	Нет св.	<u>3000</u> Нет св.	0,01	$CH_4 - 96,6, C_2H_6 - 2,06, C_3H_8 - 0,79, C_4H_{10} - 0,42, C_5H_{12} - 0,07.$ На притоке стояли 40 сут. Дебит газа постоянный
Там же; Схикий- ская; № 3; VI–VIII. 1977	1054–1182. N ¹ kl; туфоалевролиты и ту- фопесчаники, мергель	Вода	80 (ст. уровень на глубине 318 м)	56,2	<u>4.1</u> 79,8	0,72	M9,5 $\frac{\text{Cl82HCO}_{3}18}{(\text{Na} + \text{K})98}$, J – 12,7, Br – 13,3, HBO ₂ – 90
Там же; Половин- ная; № 1; III–V.1981	3480–3506**. Рg; по- лимиктовые песчани- ки, алевролиты	Газ	450	Нет св.	<u>5000</u> 213	1,29	CH ₄ – 88,5, C ₂ H ₆ – 1,8, TY – 3,3
Там же; Долинов- ская; № 1; XII.1977	1151–1733*. Рg ₂₋₃ ; алев- ролиты, аргиллиты кремнистые	Вода, газ	241	41 на глубине 1620 м	Нет св.	1,42	$M36,1 \frac{C199}{(Na + K)55Ca43}, J - 24,4,Br - 62,74, HBO2 - 56$
Там же; Усть-Облу- ковинская; № 1	2464–2477, 2061–2108. Pg ₃ ; туфоалевролиты, туфопесчаники трещи- новатые (открытый ствол после бурения)	Вода	Перелив	73 на устье	10 при переливе	> 1	M7 <u>Cl92</u> , pH – 8, J – 18,5, (Na + K)70Ca30 Br – 66, HBO ₂ – 212

Примечание. Одна звездочка – испытан в процессе бурения, две – после бурения; в графе 6 над чертой – м³/сут, под чертой – депрессия, атм.

В. Е. Глотов

28

Гидрогеологический анализ истории геологического развития северо-восточной Азии, воссозданной по работам специалистов в области четвертичной геологии – Д. Хопкинса, Ю. К. Васильчука, П. М. Андерсен, А. В. Ложкина (Позднечетвертичные..., 2002), Н. Н. Романовского (1983), О. Н. Толстихина и др. (1970), С. М. Фотиева (1978) и др., показывает, что в этот период произошли коренные изменения в гидрогеологии Северо-Востока России.

Примерно 100 тыс. лет назад началась регрессия моря, сопровождаемая похолоданием и континентализацией климата. Около 28 тыс. лет назад установился чрезвычайно сухой и холодный период – сартанское оледенение, сопровождаемое понижением уровня моря ниже современного на 135–150 м. Реки до 5–6-го порядков (например, р. Майн на Чукотке) пересыхали (Котов, Рябчун, 1986). Возможно, в зимнее время пересыхали и перемерзали все главные реки региона.

Начался период региональной сработки естественных ресурсов подземных вод в ранее сформировавшихся зонах активного и затрудненного водообмена (Глотов, 1979; Глотов, Глотова, 2000).

В горных районах понижение уровней подземных вод опережает скорость увеличения мощности ММП. Благодаря этому процессу образовались горизонты «сушенцов» в Момантайском и Верхне-Берелехском ОБ, дневная поверхность которых имеет отметки больше 900 м. Можно полагать, что при глубине палеопромерзания в

placed at different latitudes

приморских ОБ до 500–600 м уровни подмерзлотных вод также понижались до этих глубин, что могло происходить при криогенном отжатии вод в морские акватории (Анадырский, Ямско-Тауйский и другие ОБ).

Около 14 тыс. лет начался подъем уровня моря, а через 1,5 тыс. лет отмечено потепление климата. С началом подъема уровня Мирового океана на Северо-Востоке России морские воды накатывались на мерзлые породы и проникали в недра ОБ значительно раньше, чем сформировались сквозные талики на суше. Моря стали областями питания и создания напора подземных вод для открытых в море ОБ. В свою очередь последующее оттаивание льдистых отложений под дном моря приводило к становлению горизонтов пресных и опресненных вод за счет таяния скоплений льда (Новосибирский ОБ).

В Анадырском ОБ внедрение талассогенных вод в предголоценовое время сказалось на формировании обращенной гидрогеохимической зональности и линз рассолов. Из-за низких фильтрационных свойств это внедрение продолжается в Казачкинской впадине Анадырского ОБ до сих пор. Восстановление ресурсов подмерзлотных вод не завершено и в Индигиро-Зырянском, Аркагалинском и, возможно, в ОБ Арктического района. Дальность внедрения талассогенных вод достигала по прямой 40–45 км от морского берега, а при наличии эстуариев значительно больше (Марковская впадина).

Таблица 5. Сведения о предельных аномально высоких пластовых давлениях (АВПД) в отложениях кайнозойского возраста ОБ разных географических широт в пределах ЦТО Table 5. The evidences of high anomalous bed pressure values in Cenozoic rocks of sedimentary areas

Осадочный бассейн, место измерения АВПД (площадь, месторождение)	Возраст и состав по- род, слагающих ре- зервуар с АВПД	АВПД, атм; глубина залегания кровли резервуара с АВПД	Коэффи- циент аномаль- ности	Другие сведения (вид флюида, ис- точник информа- ции и др.)									
От 30 до 40° с. ш.													
Индо-Гималайский ОБ (Пакистан), м-ние Кхаур	Песчаники, аргил- литы; Р+N	$\frac{1247}{1752}$	7,1	Газ; С. Е. Кеер, H. S. Ward, 1975									
	От 40 до	о 50° с. ш.											
Южно-Сахалинский ОБ, пролив зал. Анива	Туфопесчаники, ту- фоалевролиты; N ₁	$\frac{382}{2100}$	1,82	Вода; Г. Л. Берсон и др., 1987									
От 50 до 60° с. ш.													
Северо-Сахалинский ОБ, Паромайская площадь	Песчаники, алевро- литы, аргиллиты; N ₁	$\frac{201}{1350}$	1,5	Нефть, вода; В. А. Завадский и др., 1987									
Западно-Камчатский ОБ, Долиновская площадь	$\frac{370,1}{2600}$	1,42	Вода										
От 60 до 70° с. ш.													
Анадырский ОБ, Поворот- ная площадь, скв. 26	Аргиллиты, алевро- литы, песчаники; Р ₃	$\frac{105}{940}$	1,12	Вода, газ									
От	т 70 до 90° с. ш. – сведе	ений об АВПД не выя	явлено	От 70 до 90° с. ш. – сведений об АВПД не выявлено									

По результатам изучения изложенного массива данных можно заключить следующее:

процессы формирования подземных вод осадочных бассейнов северо-восточной России существенно отличаются от процессов во внемерзлотных регионах проявлением в позднем плейстоцене многолетнего (десятки тыс. лет) промежутка времени, когда отсутствовало поступление метеогенных вод в земные недра, происходила региональная сработка их естественных ресурсов из-за длительной криоаридизации климата и понижения уровня Мирового океана до 135–150 м, глубокого сплошного промерзания осадочных чехлов, возникновения криогенных напоров;

при повышении уровня Мирового океана и оптимизации климата в первой половине голоцена в течение нескольких тысяч лет существовали условия, благоприятные для внедрения талассогенных вод в недра ОБ на расстояния в десятки километров от современных побережий. В этот промежуток времени разгрузки подмерзлотных вод в поверхностные водотоки и водоемы не было.

Таким образом, подводя итоги изучения материалов по гидрогеологии осадочных бассейнов Северо-Востока России, можно отметить, что выявился комплекс новых, ранее не известных фактов и закономерностей формирования подземных вод. Среди них следующие:

гидрогеологическая специализация осадочного бассейна определяется его геологическим строением и историей геологического развития;

сложность геологического строения региона и длительность геологической истории определили многообразие гидрогеологических структур, развившихся на базе ОБ. При прогрессивном развитии глубокого бассейна в вертикальном разрезе осадочного чехла обособляются водо(флюидные)носные структуры, различающиеся источниками воды и ее потенциальной энергии, характером гидрогеохимических процессов. В наиболее верхних слоях осадочного чехла формируется артезианская пластовая (или водонапорная) система. Глубже она сменяется постартезианской, а в наиболее глубоких слоях в зоне регионального метаморфизма - метаморфогенной флюидной системой. Переход к регрессивному этапу развития вызывает последовательное образование артезианских бассейнов редуцированных, фрагментарных, затем адартезианских, сменяемых адмассивами и гидрогеологическими массивами;

все формируемые гидрогеологические структуры развиты на Северо-Востоке России в Циркумарктической и Циркумтихоокеанской областях, отличающихся климатическими условиями, степенью прерывистости и мощностью ТММП, т. е. основными факторами воссоздания ресурсов пресных подземных вод. В ЦТО это воссоздание происходит более активно, чем в ЦАО;

найдены доказательства существования в позднем плейстоцене периода регионального дренирования недр региона, продолжающегося не менее нескольких десятков тысяч лет и вызвавшего понижение пластовых давлений в артезианских бассейнах не менее чем на 60 атм. После начала оптимизации климата и подъема уровня Мирового океана сложились условия преобладающего питания подземных вод, в том числе талассогенными, и воссоздания ресурсов пресных подземных вод, восстановления зоны активного водообмена в подмерзлотных горизонтах;

выявлена значимая роль космического фактора в формировании скоплений воды, газа, возможно, и нефти в локальных резервуарах постартезианской водоносной системы.

Перечисленные и ряд иных новых закономерностей могут быть использованы в практических целях, поэтому необходимо продолжение теоретических исследований, в том числе по направлениям:

разработка способов искусственного управления ресурсами пресных подземных вод;

изучение квазипластовой метаморфогенной гидрогеологической системы как генератора углеводородов, металлоносных водных растворов, носителя информации о геотектонических процессах и т. д.;

изучение постартезианской структуры и возникших на ее основе адартезианских бассейнов как системы локальных резервуаров – сборщиков углеводородов во флюидонепроницаемой толще, возможных скоплений рудных минералов;

изучение гидрогеологической роли геокриологических процессов становления и развития ТММП в условиях, измененных человеком;

разработка новых экономически и экологически эффективных способов оценки перспектив нефтегазоносности локальных площадей на шельфе дальневосточных морей на основе изучения водо-, газообменных процессов в системе «недра ОБ – толща морских вод»;

теоретическое обоснование новых способов освоения энергетических ресурсов недр, в том числе с использованием ресурсов холода зимней атмосферы, техногенная активизация процессов создания месторождений углеводородов, аккумуляция и хранение различных веществ в недрах и др.

ЛИТЕРАТУРА

Арье А. Г. Роль межфазовых взаимодействий в процессе вторичной миграции нефти и газа // Геология нефти и газа. – 1992. – № 2. – С. 35–39.

Бурлин Ю. К., Донцов В. В. Геолого-геохимические критерии оценки перспектив нефтегазоносности Хатырского бассейна // Проблемы нефтегазоносности Северо-Востока СССР. – Магадан, 1973. – С. 61–69. – (Тр. СВКНИИ ДВНЦ АН СССР ; вып. 49).

Гинсбург Г. Д., Гуревич А. Е., Резник А. Д. О причинах низких пластовых давлений на севере Сибири // Сов. геология. – 1971. – № 9. – С. 45–58.

Глотов В. Е. Влияние позднекайнозойских морских трансгрессий и регрессий на формирование подземных вод западного побережья Берингова моря : тез. докл. ІХ совещ. по подземным водам Сибири и Дальнего Востока / Всесоюз. совещ. по подземным водам СССР. Иркутск – П.-Камчатский. – Иркутск : Обл. типография, 1979. – С. 123–124.

Глотов В. Е. Гидрогеологические черты осадочных бассейнов Северо-Востока СССР // Геология зоны перехода континент – океан на Северо-Востоке Азии. – Магадан : СВКНИИ ДВО АН СССР, 1991. – С. 73–86.

Глотов В. Е. Мерзлотно-гидрогеологические области Северо-Востока Евразии : материалы Всерос. совещ. по подземным водам Востока России. – Иркутск : Изд-во ИрГУ, 2003. – С. 102–104.

Глотов В. Е., Ващилов Ю. Я. Периодические объемные расширения земной коры как гидрогеологический фактор в криолитозоне // Фундаментальные проблемы воды и водных ресурсов на рубеже третьего тысячелетия : материалы междунар. конф. – Томск : НТЛ, 2000. – С. 588–590.

Глотов В. Е., Глотова Л. П. Мерзлотно-гидрогеологические условия разработки подмерзлотных запасов угля Аркагалинского каменноугольного бассейна // Колыма. – 1999. – № 4. – С. 41–45.

Глотов В. Е., Глотова Л. П. К проблеме формирования и геоэкологической значимости хлоркальциевых вод северного побережья Охотского моря // Колыма. – 2000. – № 3. – С. 22–25.

Глотов В. Е., Глотова Л. П. Ресурсы пресных природных вод Магаданской области : библиогр. справочник. – Магадан : Кордис, 2004. – 181 с.

Глотов В. Е., Иванов В. В. Характер гидрогеохимической зональности в разнотипных осадочных бассейнах Северо-Востока СССР // Геология нефти и газа. – 1982. – № 4. – С. 35–39.

Глотов В. Е., Щербань О. В. Нестационарность газогеохимических полей в сезонно-талом слое осадочных бассейнов Северо-Востока СССР // Наземные геохимические исследования при поисках месторождений нефти и газа. – М. : ВНИИГеоинформсистем, 1987. – С. 84–90.

Поступила в редакцию 04.06.2007 г.

Елисафенко Т. Н. Закономерности криогенного преобразования толщ пород и подземных вод угольных бассейнов Дальнего Востока : автореф. дис. ... канд. геол.-минер. наук. – М., 1988. – 29 с.

Иванов В. В. Осадочные бассейны Северо-Восточной Азии. – М. : Наука, 1985. – 208 с.

Иванов С. Н., Иванов К. С. Барьерная зона в земной коре и ее значение для тектоники и металлогении // Геология, геохимия и геофизика на рубеже ХХ и ХХІ веков : материалы Всерос. конф., посвящ. 10-летию РФФИ. Москва, 8–10 окт. 2002 г. Т. 1. Тектоника, стратиграфия, литология. – М. : Связь-Принт, 2002. – С. 43–44.

Иванов В. В., Глотов В. Е., Щербань О. В. Общая модель формирования флюидных систем глубоких осадочных бассейнов // Условия нефтегазообразования на больших глубинах. – М., 1986. – С. 41–45.

Котов А. Н., Рябчун В. К. Криогенный комплекс позднеплейстоценовых отложений долины р. Майн : в 2-х ч. Ч. 1. Ледовый обрыв. Ч. 2. Усть-Алганское обнажение и Мамонтов обрыв : препринт. – Магадан : СВКНИИ ДВНЦ АН СССР, 1986. – 106 с.

Леворсен А. Геология нефти и газа / под ред. Н. В. Вассоевича и М. К. Калинко. – М. : Мир, 1970. – 640 с.

Мельхиор П. Земные приливы / пер. с англ.; под ред. Н. Н. Парийского. – М. : Мир, 1968. – 482 с.

Неизвестнов Я. В., Воинов О. Н., Постнов И. С. Солевой и газовый состав пластовых вод Новосибирских островов и окружающих территорий // Геология шельфа восточносибирских морей. – Л. : НИИГА, 1976. – С. 78–89.

Позднечетвертичные растительность и климаты Сибири и Российского Дальнего Востока (палинологическая и радиоуглеродная база данных) / ред. П. М. Андерсон, А. В. Ложкин. – Магадан : СВНЦ ДВО РАН, 2002. – 369 с.

Романовский Н. Н. Подземные воды криолитозоны. – М. : МГУ, 1983. – 232 с.

Толстихин О. Н., Кононова Р. С., Анисимова Н. П., Басков Е. А. Основные закономерности формирования подземных вод // Гидрогеология СССР. Т. 20. Якутская АССР. Гл. 4. – М. : Изд-во АН СССР, 1970. – С. 213–251.

Фотиев С. М. Гидрогеотермические особенности криогенной области СССР. – М. : Наука, 1978. – 236 с.

Шварцев С. Л. Разложение и синтез воды в процессе литогенеза // Геология и геофизика. – 1975. – № 5. – С. 60–69.

HYDROGEOLOGICAL CHARACTERISTICS OF SEDIMENTARY AREAS AND GROUND WATERS FORMATION IN THE NORTH-EAST OF RUSSIA

V. E. Glotov

All data available about ground waters in sedimentary areas are for the first time generalized in this paper. Peculiar hydrogeological features of sedimentary areas are assumed to have been due to the geological structures and geological development of such areas. The occurrence patterns and composition of ground waters are described in detail for those sedimentary areas, where the artesian-type hydrogeological structures are hosted in a sedimentary cover. The circum-Arctic and circum-Pacific permafrost-hydrogeological areas differ by their ground waters recharge and discharge patterns affected by the continuity and thickness of frozen rocks, precipitation and air temperatures. The processes of fluids infilling individual post-artesian hydrogeological reservoirs and the influencing effects of the Earth's crust ebbs of the solar-and-lunar character are of the greatest research interest. The world-wide climate and sea level changes in late Pleisocene and Holocene time intervals are recognized to have been of a hydrogeological significance. The investment-worthy scientific researches to be further conducted are designed.

Key words: sedimentary area, ground waters, hydrogeological structures.