ПОВЕДЕНИЕ ПЛАТИНЫ В ГИДРОТЕРМАЛЬНЫХ УСЛОВИЯХ ПО РЕЗУЛЬТАТАМ ЭКСПЕРИМЕНТОВ (300–500°С, 1 КБАР)

© 2007 г. Л. П. Плюснина, Г. Г. Лихойдов, Ж. А. Щека

Дальневосточный геологический институт ДВО РАН, Владивосток 690022 Владивосток, пр-т 100-летия Владивостока, 159 e-mail:lplyus@hotmail.com

Поступила в редакцию 04.05.2006 г.

Выполнено экспериментальное моделирование поведения платины в системах Pt–Fe–S–Cl–H₂O, Pt–Fe(Ni)–As–S–Cl–H₂O и Pt–Ni–As–Cl–H₂O. В ходе кинетических опытов установлено, что появление As и S в системе ведет к изменению характера комплексообразования Pt и общему уменьшению валовой ее концентрации в растворах. Процесс сопровождается генерацией промежуточных комплексов, диспропорционирование которых приводит к спонтанной кристаллизации куперита и сперрилита. Гидротермальную подвижность Pt обеспечивают в изученных *P*-*T*- μ_i условиях, главным образом, гидросульфидные ее комплексы, при несомненном участии хлоридных. Присутствие Ni в системе снижает редокс-потенциал, уменьшает растворимость Pt, препятствует появлению минеральных фаз собственно Pt при обильном формировании сульфидов и арсенидов Ni. Обсуждаются особенности поведения Pt и Au в гидротермальных условиях. Рассмотрены некоторые характерные черты механизма кристаллизации минералов благородных металлов в гидротермальной среде.

В последние годы получили развитие представления о многообразии условий миграции металлов платиновой группы, включая магматический, флюидно-постмагматический и гидротермальный диапазоны рудообразования [1]. В связи с открытием гидротермальных месторождений платины возникла потребность количественной оценки ее транспортных возможностей в комплексных растворах и геохимических барьеров, способствующих осаждению. До последнего времени экспериментально растворимость платины в гидротермальных условиях изучалась под давлением насыщенного пара растворов NaCl/H₂SO₄ в относительно простых системах при T < 350°C [2-4]. Целью настоящей работы было изучить поведение платины при 300-500°С и давлении 1 кбар в сложных водных системах с хлором, серой и мышьяком, связанных, так или иначе, с ее комплексообразованием.

Для сближения условий моделирования с деталями естественных процессов мы использовали метод буферирования фугитивности кислорода, активностей серы, и мышьяка с помощью минеральных ассоциаций. Модельное взаимодействие рудоносных хлоридных растворов с сульфидными, сульфоарсенидными ассоциациями позволяет оценить роль хлора, серы и мышьяка в массопереносе платины.

ТЕХНИКА И МЕТОДИКА ЭКСПЕРИМЕНТА

Работа выполнена ампульно-автоклавным методом. Источником платины при растворении служили стенки герметизированных Pt ампул ($10 \times 80 \times 0.2$ мм). Буферную смесь (~200 мг) помещали не-

посредственно в исследуемый раствор, так как ниже 500°С двухампульная методика не эффективна [5]. Длительность опытов варьировала от 10-15 до 30 суток при 500-400 и 300°С, соответственно. Экспозиция кинетических серий составляла 24-720 часов. Подготовка закаленных растворов к анализу завершалась экстракцией Pt_{aq} в алкиланилин. Концентрацию Pt измеряли методами атомно-абсорбционной и атомно-эмиссионной спектроскопии в аналитическом центре ДВГИ ДВО РАН. Чувствительность, в зависимости от метода, составляла 0.1-0.2ү, интегральная ошибка не превышала 10%отн. Твердые фазы после опытов анализировали на аппарате ДРОН-3, химический состав новообразованных фаз определяли на платиновых подложках с помощью рентгеновского микроанализатора CamScan MV 2300 (VEGA TS 5130 MN) в ИЭМ РАН (Черноголовка).

РЕЗУЛЬТАТЫ ОПЫТОВ

Система Pt-Fe-Cl-S-O-H

При изучении поведения металлической платины в этой системе летучесть серы и кислорода поддерживалась пирит-пирротин-магнетитовой (PPM) ассоциацией. Численное значение этих величин "*in situ*" рассчитывали по конечному составу пирротина методом, предложенным в работе [6]. Для этого использовалась величина межплоскостного расстояния $d_{(102)}$ закаленного пирротина (табл. 1). Известно, что ассоциация PPM, фиксирует pH среды в слабокислой-близнейтральной области [7]. В качестве

исходных при формировании флюида служили вода, растворы 1mNaCl и 0.1mHCl. По завершению опытов наблюдали образование черного налета на стенках и мелких обрезках платиновых ампул (подложках). Последние использовали для рентгеноспектрального анализа новообразованных минералов. В результате был установлен куперит (Coop): Pt – 85.2 ± 0.5, S – 14.7 ± 0.3, Fe до 0.2 (% мас.), соответствующий составу $Pt_{0.95}Fe_{0.01}S_{1.05}$. Следует заметить, что с ростом температуры скорость кристаллизации Соор заметно растет. Так, при 300°С толщина прерывистого слоя Соор составила за 3 недели ~3 нм, тогда как при 500°C уже за 10-12 суток сплошной налет достиг 10-15 нм. В этой связи выполнена серия кинетических опытов по растворению металлической платины в воде при 300°С, когда интенсивность кристаллизации Соор минимальна. Растворимость собственно Соор измерена в ампулах, предварительно футерованных PtS при 500°С. В результате построены кинетические кривые растворения металлической Pt и PtS (рис. 1). Валовая концентрация платины в растворе на начальном этапе, до экстремального максимума, определяется растворением металлической платины, с появлением Coop - Pt_{мет} и PtS, а вслед за сплошной "футеровкой" куперитом, его растворимостью. На этом этапе максимум на кинетической кривой растворения в воде связан с формированием гидроксидного комплекса $Pt(OH)_2^0$ [8]. По мере насыщения среды компонентами ассоциации РРМ, активность гидросульфидов растет и валовая концентрация Pt уменьшается, фиксируя, тем самым, форму экстремума на кривой. В хлоридной среде к гидроксидным комплексам платины присоединяются хлоридные (табл. 2). Изменение валовой концентрации Pt в условиях экспериментов представлено поверхностью в координатах lgmPt – состав среды – температура (рис. 2).

В процессе взаимодействия гидроксидных и хлоридных комплексов платины с гидросульфидными возможна генерация сложных соединений, координационная сфера которых включает несколько лигандов одновременно [9]. Такого рода смешанные комплексы не устойчивы, со временем они диспропорционируют, что приводит к осаждению PtS по схеме:

Pt(OH)₂ + $xH_2S^0 + yHS^-$ → (PtS · $xH_2S \cdot yHS^-$)^{y-} + H₂O + 0.5O₂ → $xH_2S + yHS^- + PtS\downarrow$.

Стехиометрия предложенных полиядерных комплексов Pt, конечно, гипотетична. Реализацию такого механизма кристаллизации Соор косвенно подтверждает осаждение CuS из раствора гидросульфидов меди при 200°С [10]. Это объясняет ха-

5 ГЕОХИМИЯ № 11 2007

Таблица 1. Летучесть серы и кислорода, рассчитанная по составу пирротина

t,°C	d ₍₁₀₂₎ , Å	m _{FeS}	<i>a</i> _{FeS}	$\lg f_{S_2}$	$\lg f_{\mathrm{O}_2}$
300	2.065	0.940	0.53	-10.73	-32.16
400	2.060	0.035	0.50	-7.00	-26.01
500	2.056	0.930	0.48	-4.17	-20.63

Примечание. *d* – межплоскостное расстояние, *m* и *a* – соответственно, мольная доля и активность троилита в пирротине.

рактер кинетических кривых (рис. 1) и ступенчатую кристаллизацию Соор из раствора.

Растворимость Соор иллюстрирует слабую зависимость между валовой концентрацией Pt в растворах и исходной их кислотностью (табл. 2). Кроме того, в "чистой" воде содержание Pt несколько возрастает с температурой, тогда как в хлоридной среде картина противоположна.

Система Pt-Fe-Cl-S-As-O-H

Для оценки влияния мышьяка на поведение платины в гидротермальных условиях была изучена валовая концентрация Pt в хлоридно-сульфидно-мышьяковых растворах. В качестве исходных использован раствор 0.1*m*HCl, буферной ассоциацией служила смесь арсенопирит (АРу)-пирротин-магнетит (АРуРМ). Для насыщения системы мышьяком, добавляли ~5 мг Аs_{мет}. Исходный АРу имел состав (% масс.): As – 42.05; Fe – 35.90; S – 20.97; Ni – 0.59. При этом сделано допущение, что ассоциация АРуРМ поддерживает фугитивность серы и кислорода на уровне значений, рассчитанных для буфера РРМ. Основанием этому служила фазовая диаграмма системы As–S–O–H в координатах lg $f_{0,}$ –*T* [11].

В продуктах опытов при 300, 400 и 500°С наблюдали появление сперрилита (Sper-PtAs₂) в виде налета светло-серого цвета на подложках и внутренних

Рис. 1 Кинетические кривые растворения платины (1), ее моносульфида (2) и изменение валовой концентрация Pt в системе.

Раствор	300°C	400°C	500°C			
Pt _{met}						
H ₂ O	$-5.90 \pm 0.30(6)$	$-5.85 \pm 0.17(2)$	$-5.57 \pm 0.20(2)$			
1mNaCl	$-5.48 \pm 0.27(2)$	$-5.07 \pm 0.40(3)$	$-6.02 \pm 0.30(2)$			
0.1 <i>m</i> HCl	$-5.30 \pm 0.40(2)$	$-4.94 \pm 0.30(2)$	$-5.69 \pm 0.30(2)$			
PtS						
H ₂ O	$-6.16 \pm 0.25(6)$	$-5.87 \pm 0.16(2)$	$-5.72 \pm 0.30(4)$			
1 <i>m</i> NaCl	$-5.81 \pm 0.30(2)$	$-6.12 \pm 0.40(3)$	$-6.54 \pm 0.15(3)$			
0.1 <i>m</i> HCl	$-5.34 \pm 0.15(3)$	$-5.47 \pm 0.30(3)$	$-5.59 \pm 0.15(3)$			

Габлица 2. Валовая концен	грация платины (lg <i>m</i> Pt)) в закаленных раст	ворах ($P_{\text{обш}} = 1$	кбар)
---------------------------	-----------------------------------	---------------------	------------------------------	-------

Примечание: т – моляльность (число молей на 1 кг воды), в скобках – число определений.

стенках платиновых ампул. Sper диагностирован рентгеновским методом в камере Гандольфи и подтвержден рентгеноспектральным анализом. При 400°С, наряду со Sper, сформировался идиоморфный призматический АРу с примесью Pt в составе. На изотерме 500°С, судя по микрозондовым определениям, преобладают призматические кристаллы куперита с примесью Fe и As. В составе идиоморфных тонкопризматических кристаллов новообразованного пирротина, судя по анализу на подложках, также установлена примесь Pt и As (табл. 3). Рентген продуктов опытов фиксирует новообразование пирита за счет резкого уменьшения исходного арсенопирита.

Судя по толщине слоя новообразований, скорость спонтанной кристаллизации заметно увеличивается с ростом температуры. Так, при 300 и 400°С в опытах длительностью менее трех и двух недель, соответственно, расчет состава новообразованного сперрилита фиксирует Рt в количестве большем 1 ф. ед. из-за просвечивающей Pt подложки. При 500°С в опытах длительностью 10 сут. сперрилит уже стехиометричен – Pt_{0.90}Fe_{0.10}As_{1.60}S_{0.40} и характеризуется высоким содержанием серы.

Поведение Pt в растворе 0.1*m*HCl, буферируемом ассоциацией АРуРМ, обнаруживает, по аналогии с Соор, экстремальный максимум содержания Pt^{aq} в начале кинетической кривой, перед кристаллизацией арсенида и сульфида платины (рис. 3). Характер кривой растворения объясняется, аналогично случаю с куперитом, с позиций теории промежуточного активированного комплекса [12]. В более сложной системе гидроксидные и хлоридные комплексы платины взаимодействуют с сульфидно-арсенидными. Скорость растворения ассоциации АРуРМ оказывается так же ниже скорости растворения металлической Pt. Стехиометрия смешанных комплексов в хлоридно-сульфидно-арсенидных растворах может оказаться весьма сложной. Такая возможность требует специального изучения и в этой работе не обсуждается. Валовая концентрация Pt и As, измеренная в закаленных растворах, дана в табл. 4. В связи с аналитическими трудностями валовое содержание As^{aq} установлено лишь при 400°С, когда сходимость результатов была удовлетворительной.

Система Pt-Fe-Ni-Cl-S-As-O-H

Влияние сопутствующих металлов на перенос платины в хлоридно-сульфидно-арсенидной среде мы оценили, добавив в систему никель. Известно, что и сульфиды, и арсениды никеля нередко сопутствуют платиновой минерализации [13]. В этом слу-

Рис. 2 Поверхности изменения валовой концентрации платины в водно-хлоридной среде, буферируемой РРМ при растворении Pt_{мет} (а) и PtS (б), *P*_{общ} = 1 кбар.

чае в качестве исходной минеральной ассоциацией мы использовали смесь Ni-NiO-APy-As_{мет}. Рентгенофазовый анализ твердых продуктов опытов обнаружил новообразованный магнетит, сульфиды и арсениды Ni (хезлвудит – Ni₃S₂ и никельарсенид – Ni₅As₂) и полное отсутствие каких-либо собственных соединений платины. Стенки ампул и платиновые подложки покрылись в ходе опыта сплошным налетом металлического никеля без примесей платины в пределах чувствительности микрозонда. Изменение валовой концентрации Pt в этих условиях показано в табл. 4.

Изменение состава твердой навески в ходе опытов позволяет описать буферную реакцию схемой 6FeAsS + 6NiO + 12Ni + O₂ = 2Fe₃O₄ + Ni₃S₂ + 3Ni₅As₂. Эта реакция контролирует активности серы и мышьяка, а фугитивность кислорода поддерживается на уровне более низком, чем в случае со смесью АРуРМ. Последнее обстоятельство подтверждает параллельное снижение концентрации Pt^{aq} и повышение As^{aq}, в соответствии с результатами работы [14]. Новообразованные куперит и сперрилит отсутствуют в продуктах опытов, что обусловлено, скорее всего, крайне низкой растворимостью платины в этих условиях и более высоким сродством никеля к сере и мышьяку.

Система Pt-Ni-Cl-As-O-H

Для более корректной оценки влияния мышьяка на поведение платины мы исключили из системы серу. В этом случае с раствором 0.1*m*HCl взаимодействовала исходная смесь твердых фаз: Ni-NiO-As_{мет}. В продуктах опытов была установлена ассоциация Ni-NiO-Ni₅As₂. На стенках ампул кристаллизовался металлический никель, так же в отсутствие Pt-содержащих фаз. Продукты опытов определяют наиболее вероятную схему реакции: 4Ni + NiO + 2As → Ni₅As₂ + 0.5O₂ [15]. Летучесть кислорода в растворе 0.1mHCl в присутствии металлического мышьяка при 300°С составляет по результатам расчетов $\lg f_{O_2} = -47.9$ [16]. Растворимость платины в этой среде оказалась на пределе чувствительности спектрофотометра АА-6200 (табл. 4), что подтверждает незначительное влияние хлоридных и арсенидных комплексов Pt на ее массоперенос в восстановительных условиях.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Положение экстремального максимума валовой концентрации платины в зависимости от состава среды и температуры позволяет сделать следующие выводы (рис. 3а, табл. 2). Увеличение абсолютной величины максимума в хлоридной среде по сравнению с "чистой" водой говорит, судя по форме поверхности, об участии хлоридных комплексов платины с самого начала ее растворения. При этом

ГЕОХИМИЯ № 11 2007

Таблица 3. Состав новообразованных фаз при $P_{\text{общ}} = 1$ кбар (% мас.)

					-
Минерал (<i>t</i> , °C)	Pt	Fe	S	As	Σ
Sper (400)	60.40	2.61	2.14	34.12	99.27
APy (400)	4.96	34.30	18.10	42.34	99.70
Sper (500)	54.78	5.21	5.01	33.82	98.82
Coop (500)	79.50	3.26	16.00	1.65	100.41
Po (500)	2.20	57.82	37.59	2.36	99.97

особенно благоприятна кислая среда. С появлением и ростом активности гидросульфидов, экстремальный максимум, судя по изоплетам поверхности растворения, сдвигается в область более низкой температуры. Параллельно снижается валовая концентрация Pt в растворах, главным образом, за счет падения активности хлоридных составляющих. Аналогичная картина была отмечена, в частности, и для докритической области, где низкая хлоридная растворимость Pt (менее 1 мг/т), явилась следствием появления "водных сульфидов" [2]. В нашем случае это вызвано растворением Ру и Ро ассоциации РРМ. Вслед за прохождением максимума кинетической кривой уменьшение валовой концентрации Pt стабилизируется на уровне, определяемом уже растворимостью PtS. Эволюцию растворимости Соор иллюстрирует в изученных координатах ее поверхность (рис. 3б и табл. 2).

Результаты экспериментов при 200–350°С в среде бисульфидов, поддерживаемой соотношением $H_2S^{\circ}/HS^{-}/SO_4^{2-}$, так же позволили зафиксировать снижение бисульфидной растворимости Pt с ростом температуры, и связать ее с возможным увеличением роли хлоридных комплексов [4]. В изученном нами диапазоне *P*-*T*- μ_i картина меняется. Так в среде без хлоридов "бисульфидная растворимость" Pt, наоборот, с температурой явно растет (рис. 36; табл. 2).

Вертикальные отрезки – интервал неопределенности.

lgmPt ^{aq}			lg <i>m</i> As ^{aq}	Исходная	Новообразованные
300°C	400°C	500°C	400°C	ассоциация	фазы
-6.28 ± 0.15	-6.40 ± 0.20	-7.60 ± 0.10	-5.60	APyPM	PtAs ₂ , PtS
-6.78 ± 0.30	-6.80 ± 0.30	н/опр	-4.82	NNO + APy + As	Fe_3O_4 , Ni_3S_2 , Ni_5As_2
-7.08 ± 0.30	-7.49 ± 0.30	н/опр	н/опр	NNO + As	Ni ₅ As ₂

Таблица 4. Концентрация Pt в среде 0.1*m*HCl в зависимости от температуры и эволюция состава твердой навески в ходе опытов

Появление хлоридов в системе при более низкой температуре (300°С) подтверждает предположение этих авторов и на изученной нами изобаре. В то же время на других изотермах валовая растворимость Рt меняется знакопеременно, и однозначный рост наблюдается лишь в кислой среде, несмотря на порядок меньшую концентрацию собственно хлоридов.

Особенности изменения валовой концентрации Pt на кинетической стадии растворения в комплексной среде говорят о том, что с появлением гидросульфидов она уменьшается, главным образом, за счет хлоридных составляющих. Таким образом, само участие хлоридов сомнений не вызывает. Вклад их в кислой среде, несомнений не вызывает. Вклад их в кислой среде, несомнению, положителен, тогда как в близнейтральной области (1*m*NaCl) он становится знакопеременным. Существенное увеличение хлоридной растворимости Pt с ростом температуры (200 — 500°C) отмечено нами в среде без серы и лишь при lg $f_{O_2} > -20$ [17].

С появлением в сульфидно-хлоридной системе мышьяка, валовая концентрация Pt в растворах продолжает снижаться. Арсенопирит в хлоридной среде смещает ее в более восстановительную, по сравнению с пиритом, область, по крайней мере, при 300-400°С [14]. Это объясняет наблюдаемое снижение валовой концентрации Pt в закаленных растворах. Этот процесс сопровождает кристаллизация сперрилита, арсенопирита а, при более высокой температуре, куперита с пирротином (табл. 3, 4). Сведения о формах мышьяка в сульфидных и хлоридных растворах пока весьма ограничены. Предполагается, что арсенопирит в водной среде с сероводородом растворяется инконгруэнтно, обеспечивая присутствие в растворе ортомышьяковистой кислоты по схеме $4\text{FeAsS} + 4\text{H}_2\text{S}^0 + 5\text{O}_2 + 2\text{H}_2\text{O} = 4\text{FeS}_2 + 2\text{H}_2\text{O} = 4\text{$ $+ 4H_3AsO_3^{\circ}$ [11]. Кроме того, формы нахождения As зависят от pH среды, активности H₂S° и редокс-потенциала системы. Увеличение примеси серы в Sper с ростом температуры, и новообразование арсенопирита говорят о росте активности гидросульфидов и возможном появлении биядерных сульфидно-арсенидных комплексов. Существует мнение о том, что $H_2As_2S_4^0$ доминирует в нейтральных, а $HAs_2S_4^-$ и As₂S₄²⁻ – в кислых и слабокислых растворах [18].

Порядок новообразования минералов в системе Pt-Fe-Cl-S-As-O-H: Sper (300°C) → Sper + APy (400°C) → Соор + Sper + Po (500°C) и эволюция их состава (табл. 3) свидетельствуют об увеличении роли серы в сравнении с мышьяком по мере роста температуры. Следует заметить, что в системе без мышьяка куперит появляется уже при температуре ~300°C [8].

Полученные результаты позволяют считать, что гидротермальная подвижность платины и появление собственных ее минеральных форм связаны не только с составом и эволюцией лигандформирующих компонентов среды, но и с присутствием других металлов. В этой связи показателен никель. Как сказано выше, куперит и сперрилит в Ni-содержащей гидротермальной среде вообще не образуются. Растворимость платины в этих условиях резко уменьшается, и активно формируются сульфиды и арсениды Ni. Вхождение платины в сульфиды и арсениды никеля допускается многими [19]. Известно, например, что на месторождениях Печенги эти минералы – основные носители платины [20]. Мы, из-за малого размера новообразованных сульфидов и арсенидов никеля, не смогли достоверно измерить их состав на микрозонде. Следует заметить, что куперит в ассоциации с сульфидами никеля обычно встречается в рудах магматического генезиса [13, 21]. Сперилит ассоциирует при температуре около 300°С и ниже с гидротермальными сульфидами меди (ковеллином, дигенитом и борнитом) на месторождении Солт Чак, Аляска [22]. Здесь куперит отсутствует, как и в экспериментально изученной нами системе с мышьяком, а примесь никеля в сопутствующих сульфидах крайне низка.

Число известных месторождений платины, гидротермальный генезис которых не вызывает сомнений, выросло в последние годы [23]. Однако оно заметно уступает числу золоторудных месторождений того же генезиса. Было предложено связать это обстоятельство с тем, что в гидротермальных условиях растворимость Au на два порядка выше, чем Pt [4]. По данным ряда исследователей ведущими формами переноса золота являются гидросульфидные комплексы [24, 25]. При этом существует мнение, что рост концентрации As увеличивает растворимость Au, и в восстановительных условиях ведущую роль в транспорте золота, наряду с серой, играет мышьяк [18]. В хлоридносульфидной среде, буферируемой ассоциацией РРМ, валовая концентрация золота увеличивается параллельно росту температуры и активности хлоридов [26, 27]. Кроме того, возможно участие сложных хлоридно-бисульфидных комплексов золота, которые, в отличие от таких же комплексов Рt, устойчивы выше 400°C [28, 29].

Эксперименты по распределению золота и платины между флюидом и расплавом базальта при высокой температуре (1100–1350°С) обнаружили, что в хлоридном флюиде растворимость платины выше, чем золота, и с понижением температуры экстрагирующая роль хлоридных флюидов в отношении благородных металлов растет [30]. Хлор при высокой температуре играет, таким образом, ведущую роль в процессах мобилизации и переноса платины. В природной гидротермальной среде обычное присутствие сульфидов и арсенидов вносит свои коррективы. Так в восстановительной обстановке, обусловленной соответствующими минеральными ассоциациями, как показано выше, активность хлоридных комплексов платины подавляется. В связи с тем, что сульфидная растворимость платины ниже, чем золота, ее подвижность в гидротермальных условиях менее интенсивна. Это фиксирует различия в геохимическом поведении рассмотренных благородных металлов.

Как показано выше, смена характера комплексообразования Pt с появлением серы и мышьяка в системах ведет к кристаллизации таких минералов как куперит и сперрилит даже из растворов с низкой концентрацией платины. Активность серы и мышьяка задается в этом случае растворением сульфидов и арсенидов. Подобный же механизм, но инициируемый изменением редокс-потенциала, справедлив при кристаллизации металлической Pt, как установлено в системе без сульфидов [29]. Осаждение благородных металлов в гидротермальных условиях описано впервые для золота [31]. Кристаллизацию металлического золота автор связал со сменой при падении температуры комплексов одновалентного золота на комплексы трехвалентного [32]. Мы полагаем, что принципиальная схема изменения комплексообразования применима и к случаю с платиной, а возможно, универсальна. Так, появление серы и мышьяка в системе вызывает кристаллизацию сульфидов и арсенидов платины; изменение редокс-потенциала в хлоридной среде высаживает металлическую платину [29]; смена одно- на трехвалентные комплексы золота ведет к кристаллизации Au_{мет} [31]. Это обстоятельство объясняет, в частности, причины формирования в гидротермальных условиях минералов, которые ранее считались магматическими. В общем случае, представленные результаты определяют геохимические барьеры и условия их реализации в соответствующих природных обстановках.

Работа выполнена при финансовой поддержке проекта 06-II-CO-08-029 "Геолого-генетические модели крупномасштабных месторождений благородных, цветных и редких металлов Севера Дальнего Востока России".

СПИСОК ЛИТЕРАТУРЫ

- 1. Додин Д.А., Чернышов Н.М., Яцкевич Б.А. Платинометальные месторождения России.: Наука. Санкт-Петербург. 2000. 729 с.
- Gammons C.H., Bloom C.S., Yu V. Experimental investigation of the hydrothermal geochemistry of platinum and palladium.
 Solubility of platinum and palladium sulfide minerals in NaCl/H₂SO₄ solutions at 300°C // Geochim. Cosmochim. Acta. 1992. V. 56. P. 3881–3894.
- Gammons C.H. Experimental investigation of the hydrothermal geochemistry of platinum and palladium. IV. The stoichiometry of Pt (IV) and Pd (II) chloride complexes at 100 to 300°C // Geochim. Cosmochim. Acta. 1995. V. 59. P. 1665–1668.
- 4. *Pan P. and Wood S.A.* Solubility of Pt and Pd sulfides and Au metal in aqueous bisulfide solutions. II. Results at 200 to 350°C and saturated vapour pressure // Mineral Deposita. 1994. V. 29. P. 373–390.
- 5. *Chou I.M.* Oxygen buffer and hydrogen sensor techniques at elevated pressures and temperatures. In Hydrothermal Experimental Techniques (H.P. Eugster, ed.).: J. Wiley and Sons. New York. 1987. P. 61–90.
- Безмен Н.И., Грановский Л.Б., Сипавина Л.В. Равновесие пирротин-магнетит как индикатор равновесия в эксперименте // Очерки физико-химической петрологии. М., Наука. 1997. Т. 6. С. 34–45.
- Crerar D.A., Susak N.J., Boresik M., and Schwartz S. Solubility of the buffer assemblage pyrite-pyrrhotitemagnetite in NaCl solutions from 200 to 350°C // Geochim. Cosmochim. Acta.1978. V. 42. P. 1427–1437.
- Плюснина Л.П., Лихойдов Г.Г., Некрасов И.Я. Поведение платины в водной сульфидно-хлоридной среде при 300–500°С и 1 кбар // ДАН. 2000. Т. 370. С. 99–101.
- Белеванцев В.И., Колонин Г.Р., Васильева Н.Г. и др. Возможные формы нахождения и растворимость золота в рудообразующих растворах // Труды ин-та геологии и геофизики СО АН СССР. 1982. № 505. С. 83–118.
- Romberger S.B., Barnes H.L. Ore solution chemistry. III. Solubility of CuS in sulfide solutions // Econ. Geology. 1970. V. 65. P. 901–919.
- 11. *Heinrich C.A., Eadington P.* Thermodynamic predictions of the hydrothermal chemistry of arsenic, and their significance for the paragenetic sequence of some cassiterite-arsenopyrite-base metal sulfide deposits // Econ. Geology. 1986. V. 81. P. 511–529.
- 12. Стромберг А.Г., Семченко Д.П. Физическая химия.: М., Высшая школа. 1988. 495 с.
- Verryn S.M., Merkle R.K. Cooperite, braggite and vysotskovite in the system PtS-PdS-NiS at 1100, 1000 and 900°C // Mineral. Petrol. 2000. V. 68. P. 63–73.

ГЕОХИМИЯ № 11 2007

- Pokrovskii G.S., Kara S., Roux J. Stability and solubility of arsenopyrite, FeAsS, in crustal fluids // Geochim. Cosmochim. Acta. 2002. V. 66. P. 2361–2378.
- Плюснина Л.П., Лихойдов Г.Г., Ханчук А.И. Экспериментальное поведение платины в системах Pt-Fe-As-Cl-H₂O и Pt-Ni-As-Cl-H₂O при 300-500°С и 1 кбар // ДАН. 2005. Т. 405. № 1. С. 105-107.
- 16. Тихомирова В.И., Чичагов А.В., Ахмеджанова Г.М. Экспериментальное моделирование парагенезиса самородных благородных металлов с интерметаллидами, содержащими элементы 5 группы. В кн.: "Экспериментальная минералогия". М.: Наука. 2004. Т. 1. С. 364–375.
- Плюснина Л.П. Влияние фазовых переходов в системе Мп–О₂–H₂O на растворимость платины и золота при 200–400°С и 1 кбар // Геохимия. 2002. № 1. С. 80–86.
- Некрасов И.Я. Геохимия, минералогия и генезис золоторудных месторождений.: М., Наука. 1991. 302 с.
- Чернышов Н.М. Платиноносные формации Курско-Воронежского региона.: Изд-во Воронежского Университета. Воронеж. 2004. 416 с.
- Дистлер В.В., Филимонова А.А., Гроховская Т.Л., Лапутина И.П. Платиновые металлы в медно-никелевых рудах Печенгского рудного поля // Геол. рудн. месторождений. 1998. Т. 31. С. 3–17.
- 21. *Mostres A.B., Hofmeyer P.K., Potgieter G.A.* The PGM of the Merensky Reef at the Impala platinum mines // Econ. Geol. 1982. V. 77. P. 1385–1394.
- Watkinson D.H., Melling D.P. Hydrothermal origin of the platinum mineralization, Alaska // Econ. Geol. 1992. V. 87. P. 175–184.
- Дистлер В.В., Юдовская М.А., Прокофьев В.А., Мун Я.В. Гидротермальное платиновое оруденение месторождения Ватерберг, Трансвааль // Геол. рудн. месторождений. 2000. Т. 42. № 4. С. 363–376.

- 24. *Seward T.M.* The hydrothermal geochemistry of gold. In "Gold metallogeny and exploration. (R.P. Foster, ed.). 1991. P. 37–62.
- Benning L.G., and Seward T.M. Hydrosulfide complexes of Au(I) in hydrothermal solutions from 150–400°C and 500–1500 bars // Geochim. Cosmochim. Acta. 1996. V. 60. P. 1849–1871.
- Gibert F., Pascal M.L., Pichavant M. Gold solubility and speciation in hydrothermal solutions: Experimental study of the stability of hydrosulfide complexes of gold at 350°C to 450°C and 500 bars // Geochim. Cosmochim. Acta.1998. V. 62. P.2931–2948.
- 27. Лихойдов Г.Г., Некрасов И.Я Растворимость золота в комплексной водной сульфидно-хлоридной среде при 300–500°С и Р_{общ} = 1 кбар // Геохимия. 2001. № 4. С. 394–403.
- Loucks R.R., Mavrogenes J.A. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions // Science. 1999. V. 284. P. 2159–2163.
- 29. Likhoidov G.G., Plyusnina L.P., J.A. Scheka and Aphanas' eva T.B. Experimental study of gold and platinum solubility in a complex fluid under hydrothermal conditions // Resource Geology. 2000. V. 50. № 2. P. 83–92.
- 30. Горбачев Н.С., Налдретт А., Бругманн Г. и др. Экспериментльное изучение распределения платиноидов и золота между раствором при T = = 1100–1350°C, P = 5 кбар // ДАН. 1994. Т. 335. С. 356–358.
- 31. *Gammons Ch.H.* Hydrothermal synthesis of gold grains with apparent five-fold symmetry // Canad. Mineral. 1996. V. 34, pt.1. P. 1–8.
- 32. *Gammons Ch.H. and Williams-Jones A.E.* The solubility of Au-Ag alloy + AgCl in HCl/NaCl solutions at 300°C: new data on stability of gold(1) chloride complexes in hydrothermal fluids // Geochim. Cosmochim. Acta. 1995. V. 59. P. 3453–3468.