В. Д. СУВОРОВ, А. Б. КРЕЙНИН, В. Ф. УАРОВ, В. М. СОЛОВЬЕВ, С. Д. ЧЕРНЫЙ

ГЛУБИННЫЕ СЕЙСМИЧЕСКИЕ ИССЛЕДОВАНИЯ В ЦЕНТРАЛЬНОЙ ЧАСТИ ЗАПАДНОЙ ЯКУТИИ

Для Далдыно-Алакитского района Западной Якутии в результате работ методом глубинного сейсмического зондирования получены новые данные о площадном распределении граничной скорости по поверхности М. Как и в Малоботуобинском районе, верхи мантии характеризуются аномальными изменениями скорости от 8 до 9 км/с, что свидетельствует о значительной неоднородности вещественного состава пород. Охарактеризовано строение верхней части разреза земной коры.

Ранее в Малоботуобинском районе Западной Якутии комплексом профильных и площадных глубинных сейсмических исследований обнаружены аномально-повышенные (до 8,8-8,9 км/с) значения скорости упругих волн вдоль поверхности М [3-5]. Изменение скорости от 8,0 до 8,9 км/с по площади имеет сложный характер. Наряду с протяженными зонами аномальной скорости наблюдаются и изолированные участки, ограничиваемые областями с нормальной скоростью 8,0-8,4 км/с. Полученные данные указывают на повышенную неодпородность верхов мантии. Выделяются также аномальные особенности строения земной коры [4]. Предполагается обусловленность выделенных неоднородностей земной коры и верхов мантии глубинным проявлениям кимберлитового магматизма. Ниже рассматриваются результаты анало-гичных работ, выполненных в 1984 г. в Далдыно-Алакитском районе. Здесь проведено площадное изучение распределения граничной скорости по поверхности М и свойств верхней части земной коры. Исследования выполнялись Институтом геологии ЯФ СО АН СССР и Иреляхской геофизической экспедицией ПГО Якутскгеология с участием НОМВЭ CO AH CCCP

Применялась методика площадных наблюдений [3]. Основной объем работ использован на регистрацию преломленных волн от поверхности

Puc. 1. Обзорная карта района работ.

1 — контур расстановки регистраторов; 2 — контур участка с изученными свойствами поверхности М; 3 — источники возбуждения.

М в интервале удалений от источника возбуждения ~200—300 км (ПВ 1—5, 14, 16, на рис. 1). Для изучения свойств верхней части земной коры проводились наблюдения в интервале удалений 5-140 6-13). Реги-(ПВ КМ страция упругих колебаний выполнялась на плошалной расстановке 66 регистраторов «Тайга» С шагом 7-10 км. Площадь расстановки составила около 3,5 тыс км².

Осуществлено трехчетырехкратное прослеживание волн в первых

вступлениях до удалений от источника 100—120 км и однократное преломленной волны от поверхности М. Контуры соответствующих «освещенных» участков приведены на рис. 1. В первом случае контур совпадает с участком расстановки регистраторов. Для раздела М с учетом сейсмического сноса размер такой площади равен ~12 тыс. км².

В районе исследований недостаточно полно изучена волновая картина первых вступлений, характеризующих верхнюю часть разреза. В платформенном чехле бурением установлены слои с высокой скоростью сейсмических волн. Поэтому было выполнено дискретное наблюдение первых волн не только по площади, но и по продольному профилю с получением нагоняющих и встречных годографов. Нагоняющие годографы этих волн на удалениях 10—15 до 120 км от источника имеют кажущуюся скорость 6,1-6,4 км/с и практически параллельны. Учет данных каротажа недавно пробуренной здесь скважины позволил с большой долей условности отнести эту преломленную волну P_{np} к слою высокоскоростных пород осадочного чехла мощностью около 400 м, залегающего на глубине ~1,7 км. Средняя скорость в вышележащей толще оценивается в 4,7 км/с. Необходимы дополнительные наблюдения для решения вопроса о природе первых волн в рассматриваемом районе.

Поверхностные годографы первых вступлений до удалений 100 км характеризуются в целом регулярными изменениями времен пробега. При фиксированных расстояниях взрыв — прием вариации времен пробега по латерали достигают 0,2—0,3 с. Наряду с этим наблюдаются локальные особенности, выражающиеся в резком, до 0,2—0,3 с, изменении времен пробега, не повторяющихся на годографах, полученных с других пунктов взрыва. Необходимого количества данных для определения природы этих аномалий не получено. Наиболее вероятное объяснение заключается в предположении существования локальных неоднородностей в средней или нижней части покрывающей толщи.

Поверхностные годографы преломленной волны от поверхности М (P_{np}^{M}) имеют свойства, аналогичные обнаруженным в Малоботуобинском районе [3—5]. В целом поле редуцированных времен характеризуется плавным закономерным изменением. На рис. 2 в качестве примера приведены редуцированные годографы для трех пунктов взрыва. Данные,

Рис. 2. Зависимость редуцированных времен пробега первых вступлений от эпицентральных расстояний для различных пунктов взрыва. 1 — данные по волне $P_{np}^{M}(a)$ и продольный годограф (б); 2 — волны от границ в толще зем-

1 — данные по волне P_{пр} (a) и продольный годограф (б); 2 — волны от границ в толще земной коры; 3 — значения кажущейся скорости, км/с.

полученные с ПВ 4, иллюстрируют значительные (до 0,7—0,8 с) изменения времен (при фиксированных базах наблюдений). Линиями и различными знаками указаны положения отдельных продольных годографов. Для годографа с ПВ 14 характерными являются малые вариации по горизонтали. Этим годографам свойственны высокие, до 8,6— 8,9 км/с, значения кажущейся скорости. Годографы волны $P_{\rm np}^{\rm M}$ с ПВ 5 имеют кажущуюся скорость ~8—8,1 км/с. Данные указывают на существование значительных горизонтальных неоднородностей в верхах мантии.

На рис. 2 приведены также годографы волны с кажущейся скоростью 6,5—6,8 км/с, выходящей в первые вступления несколько раньше волны $P_{\rm nff}^{\rm M}$. Существенно, что ее присутствие значительно сдвигает выход в первые вступления преломленной волны от раздела М. Так, например, с ПВ 15 волна $P_{\rm nff}^{\rm M}$ до удалений 270 км не зарегистрирована. Отличительной чертой рассматриваемой волны является высокая интен-

Рис. 3. Схема строения верхней части разреза.

1— глубины залегания преломляющей границы в осадочном чехле (числитель), граничная скорость, км/с (знаменатель) и направление падения границы; 2— то же, по ранее выполненным профильным работам [2]; 3— граничная скорость в км/с, определенная по элементам встречных годографов; 4— линия профильных наблюдений; 5— зоны повышенной неодности верхней части осадочного чехла; 6— изогипсы, км.

сивность. Природа этой волны пока не установлена. Можно предполагать, что она является отраженной от границы, расположенной в толще консолидированной коры. Вследствие ограниченного количества данных более подробное изучение этого факта не проводилось.

При обработке поверхностных годографов волн P_{np}^{oc} и P_{np}^{M} использовались способы интерпретации, приведенные в работах [1—3]. При определении значений граничной скорости по разделу М использовались данные о его рельефе, полученные ранее [6] по данным отраженных волн.

В результате проведенных работ свойства преломляющей границы в осадочном чехле удалось изучить лишь на небольшом участке в северной части исследованной площади (рис. 3). Глубина ее залегания возрастает в ю.-з. направлении от 1,5 до 2,2 км. Значения граничной скорости изменяются от 6,2 до 6,4 км/с, углы наклона границы $1-3^{\circ}$. Области, характеризующиеся аномальными изменениями времен пробега волн, не повторяющимися на данных, полученных с различных пунктов взрыва, объединены в зоны повышенной неоднородности верхней части осадочного чехла. Надежное определение параметров разреза на этих участках выполнить не удалось, необходимы дополнительные более детальные работы.

Схема распределения граничной скорости (V_r) по поверхности М приведена на рис. 4. Она показывает сложный характер изменения V_r по площади. В северо-западной части площади выделяется область сложной формы (по изолинии 8,6 км/с) с аномально высокими значениями V_r , достигающими 9 км/с. Увеличение граничной скорости наРис. 4. Схема распределения граничной скорости по поверхности М.

1 — точки определения скорости; 2 изолинии, км/с; 3 — зона со скоростью > 8,6 км/с.

мечается также вблизи южной границы площади. Остальная часть территории характеризуется «нормальными» 8—8,4 км/с значениями скорости. Так же, как и в Малоботуобинском районе, сложное распределение значений V_r происходит на фоне слабо выраженного рельефа раздела M, определяемого по данным отраженных волн [3, 6].

Таким образом, как в Малоботуобинском, так и в Далдыно-Алакитском районах Западной Якутии верхи мантии характеризуются ано-

мальным строением. Вероятно, что высокие скорости продольных упругих волн соответствуют мантийным эклогитам, поднявшимся с больших глубин к подошве земной коры.

ЛИТЕРАТУРА

- 1. Крылов С. В., Суворов В. Д., Селезнев В. С. О картировании граничной скорости при совместном использовании преломленных и отраженных волн // Геология и геофизика.— 1983.— № 1.— С. 90—95.
- 2. Суворов В. Д. К интерпретации поверхностных годографов преломленных волн // Там же.— 1984. № 6.— С. 111—117.
- 3. Суворов В. Д., Крейнин А. Б., Подваркова И. В. и др. Площадные глубинные сейсмические исследования в Малоботуобинском районе Якутии // Там же.— 1985.— № 1.— С. 82—91.
- 4. Суворов В. Д., Крейнин А. Б., Селезнев В. С. и др. Глубинные сейсмические исследования по профилю Олгуйдах — Мирный — Ленск./Там же, 1983, № 9.— С. 72—80.
- 5. Уаров В. Ф. Сейсмические особенности верхней мантии в Западной Якутии // Там же.— 1981.— № 9.— С. 120—121.
- Уаров В. Ф. Глубинное сейсмическое зондирование земной коры и верхов мантии в Якутской кимберлитовой провинции ∥ Канд. диссертация.— Новосибирск, 1983.— 161 с.

ИГ ЯФ СО АН СССР, Якутскгеология Якутск НОМВЭ, Новосибирск Поступила в редакцию 26 марта 1986 г.

V. D. Suvorov, A. B. Kreinin, V. F. Uarov, V. N. Soloviev, S. D. Cherny

DEEP SEISMIC INVESTIGATIONS IN THE CENTRAL PART OF THE WESTERN YAKUTIYA

New data on spacial distribution of boundary velocity on Moho have been obtained for Daldyn-Alakit region of the Western Yakutiya by the methods of DSS. The uppermost mantle like in Malo-Botuobinsk region is characterized by abnormal change in velocity from 8 to 9 km/sec, that indicates to considerable homogeneity in matter composition of rocks. The structure of the upper part of the earth crust's section is described.