— ГЕОЛОГИЯ =

УДК 551.82:552.42:552.11(571)

НИЖНЕКОРОВАЯ РАННЕПРОТЕРОЗОЙСКАЯ МЕТАБАЗИТ-ЭНДЕРБИТОВАЯ АССОЦИАЦИЯ ДЖУГДЖУРСКОГО БЛОКА (АЛДАНСКИЙ ЩИТ): ЕЕ ИСХОДНАЯ ПРИРОДА И ГЕНЕЗИС ПРОТОЛИТОВ

© 2007 г. М. А. Мишкин, Г. М. Вовна, А. М. Ленников, член-корреспондент РАН В. Г. Сахно, З. Г. Бадрединов, Р. А. Октябрьский, А. Н. Соляник

Поступило 28.07.2006 г.

Происхождение и рост континентальной коры является одной из главных проблем в изучении эволюции Земли. В настоящее время состав архейской континентальной коры достаточно полно изучен в пределах архейских щитов, где она выходит на поверхность. Изучение состава раннепротерозойской сиалической коры сопряжено с большими трудностями, поскольку области ее распространения обычно менее эродированы по сравнению с архейскими щитами и в значительной мере перекрыты позднепротерозойскими и фанерозойскими образованиями. Исследователи раннего протерозоя на архейских кратонах чаще всего имеют дело с раннепротерозойскими вулканогенно-осадочными образованиями зеленокаменных поясов, имеющими внутрикратонную рифтовую природу, либо с осадочным покровно-складчатым комплексом. Состав же раннепротерозойской коры, располагающейся между архейскими кратонами, можно наблюдать только в отдельных тектонических блоках. Из них наибольший интерес представляют глубинные блоки метаморфических пород, где вскрываются нижние уровни раннепротерозойской коры, магматические протолиты которой дают представление о ранних этапах ее становления. Глубинные условия метаморфизма пород этих блоков подтверждаются данными минеральной геотермобарометрии.

В работе приводятся первые данные по составу раннепротерозойской нижней коры, полученные авторами для одного из глубинных блоков – Джугджурского, включавшегося ранее в состав Алданского щита, На существующих тектонических схемах Джугджурский блок расположен в юго-восточной части Алданского щита, в бассейнах рек Кун-Маньё, Аюмкан и Мая (рис. 1). Авто-

Дальневосточный геологический институт

ры настоящего сообщения на основании анализа опубликованных работ и результатов собственных полевых исследований разделили стратифицированный гранулитовый комплекс Джугджурского блока на две толщи. Нижняя толща сложена гиперстеновыми плагиогнейсами – эндербитами, переслаивающимися с двупироксеновыми кристаллосланцами. В верхней толще преобладают биотит-гранатовые, биотитовые, биотит-графитовые гнейсы с прослоями мраморов и подчиненным количеством эндербитов и двупироксеновых кристаллосланцев. Распространение этих толщ в пределах изученного района показано на рис. 1. Нижняя толща выделена нами в качестве метабазит-эндербитовой ассоциации. Описанию этой ассоциации и посвящена настоящая работа.

Метаморфизм пород Джугджурского блока, по данным минеральной геотермобарометрии, осуществлялся в условиях гранулитовой фации при T = 800°C и P = 9 кбар [1]. Возраст джугджурского комплекса раннее условно считался архейским. Однако эти представления не были подтверждены изотопным датированием. Нами получены первые данные по Sm–Nd-систематике пород метабазит-эндербитовой ассоциации джугджурского комплекса, которые свидетельствуют о его раннепротерозойском возрасте.

Установлена геологическая природа протолитов гранулитов джугджурского комплекса на основе изучения петрохимических особенностей и закономерностей распределения в них элементов-примесей по методике, изложенной в [2]. Полученные данные свидетельствуют, что нижняя толща имела вулканогенный исходный состав, а верхняя – вулканогенно-осадочный. Исходные вулканиты нижней толщи относятся к трем петрохимическим сериям: известково-щелочной, коматиит-толеитовой и пикритовой. В составе исходной ассоциации вулканитов известково-щелочной петрохимической серии установлены базальты, андезибазальты (двупироксеновые кристаллосланцы) и андезиты (эндербиты). По степени распространенно-

Дальневосточного отделения

Российской Академии наук, Владивосток

Рис. 1. Схематическая геологическая карта района исследований (составлена с использованием литературных материалов и полевых наблюдений А.М. Ленникова, М.А. Мишкина, Р.А. Октябрьского). *1*, 2 – джугджурский гранулитовый комплекс: *1* – гранулиты нижней толщи (эндербиты, метабазиты), 2 – гранулиты верхней толщи (глиноземистые гнейсы, эндербиты, метабазиты, кальцифиры); *3*–*5* – метаинтрузивные образования нижнего протерозоя: *3* – метагипербазиты и базиты, *4* – анортозиты, *5* – граниты; *6* – образования платформенного чехла; *7* – меловые гранитоиды; *8* – тектонические нарушения.

сти преобладают андезибазальты и андезиты. Коматиит-толеитовая серия представлена ассоциацией толеитовых, коматиит-толеитовых базальтов и коматиитов (двупироксеновые, двупироксен-амфиболовые и оливин-двупироксеновые кристаллосланцы). Среди вулканитов исходной ассоциации преобладают толеитовые базальты. В составе пикритовой серии установлены только пикритовые базальты (двупироксеновые кристаллосланцы), имеющие весьма незначительное распространение.

Рис. 2. Классификационная диаграмма Al–(Fe + Ti)– Mg (ат.%). Точками показаны составы гранулитов метабазит-эндербитовой ассоциации джугджурского комплекса. Римскими цифрами обозначены поля: *I* – коматиитов, *II* – коматиитовых и высокомагнезиальных базальтов, *III, IV* – вулканитов толеитовой (*III*) и известково-щелочной (*IV*) серий. Буквенными символами обозначены поля: *P* – риолитов, *Д* – дацитов, *A* – андезитов, *Б* – базальтов (Fe-*Б*, Mg-*Б* – высокожелезистых и высокомагнезиальных соответственно).

Химические составы главных разновидностей гранулитовых пород метабазит-эндербитовой ассоциации приведены на классификационной диаграмме Al–(Fe + Ti)–Mg (рис. 2), а средние их составы – в табл. 1.

В целом среди исходных вулканитов нижней толщи резко преобладают андезибазальты и андезиты известково-щелочной серии, присутствующие примерно в равных объемах. В исходном составе верхней вулканогенно-осадочной толщи среди магматических протолитов установлены базальты, андезибазальты (двупироксеновые кристаллосланцы) и андезиты (эндербиты) известково-щелочной серии.

На мультиэлементной диаграмме (рис. 3) метаандезиты (эндербиты) известково-щелочной серии джугджурского комплекса по содержанию редких элементов в целом сходны с "серыми гнейсами" фундамента архейских щитов [3], отличаясь от них пониженными содержаниями Th и Zr.

Sm–Nd-изотопные исследования пород метабазит-эндербитовой ассоциации были выполнены для двупироксеновых сланцев и эндербитов, отвечающих по исходному составу соответственно андезибазальтам и андезитам. Результаты Sm– Nd-изотопных исследований приведены в табл. 2. Полученные величины значений $T_{\rm DM}$ для изученных пород позволяют относить возраст формирования их протолитов к раннему протерозою. Положительные значения $\varepsilon_{\rm Nd}(T)$ свидетельствуют о ювенильном происхождении исходных вулканитов базальт-андезитовой ассоциации джугджурского комплекса.

Происхождение исходных расплавов "серогнейсовой" сиалической коры рассматривается многими исследователями как результат частичного плавления мафического источника, что подтверждено

ДОКЛАДЫ АКАДЕМИИ НАУК том 412 № 3 2007

Компонент	1	2	3	4	5	6	7
	метакомати- иты	коматиитовые метабазальты	толеитовые метабазальты	пикритовые метабазальты	метабазальты	метаандези- базальты	метаандезиты
SiO ₂	47.06	44.64	50.10	48.39	49.30	54.80	58.4
TiO ₂	0.52	0.86	1.16	1.62	0.77	0.67	0.67
Al_2O_3	3.61	12.67	14.11	11.92	18.26	17.93	16.07
Fe_2O_3	2.83	4.64	3.3	3.97	3.59	3.90	2.79
FeO	8.66	9.68	9.20	10.21	6.72	4.71	5.21
MnO	0.22	0.17	0.30	0.19	0.12	0.14	0.14
MgO	24.68	11.61	7.08	9.14	6.72	4.18	3.72
CaO	6.73	10.29	10.02	10.21	9.42	7.46	6.42
Na ₂ O	0.93	1.65	2.83	2.43	2.91	4.12	3.73
K ₂ O	0.42	1.01	0.64	0.90	0.89	1.26	1.44
P_2O_5	0.06	0.68	0.35	0.59	0.29	0.36	0.31
П.п.п.	1.19	2.10	0.92	0.69	1	0.47	0.62
U	0.22	0.07	0.11	0.10	0.16	0.03	0.20
Th	0.38	0.28	0.49	0.61	0.57	0.15	0.90
Ba	10.00	236.87	206.87	522.33	315.72	604.90	502.88
Sr	38.375	546.93	345.41	450.75	563.56	806.63	644.55
La	2.33	15.72	19.25	34.86	15.13	22.59	20.72
Ce	6.34	38.36	46.93	79.82	33.57	49.98	44.91
Pr	0.96	5.66	6.57	10.98	4.55	6.67	5.95
Nd	4.62	24.82	26.99	46.48	18.34	27.82	24.21
Sm	1.38	5.41	5.70	9.63	3.77	5.47	4.71
Eu	0.54	1.60	1.66	2.31	1.22	1.88	1.20
Gd	1.77	5.30	5.38	9.40	3.7	4.82	4.33
Tb	0.29	0.78	0.86	1.45	0.58	0.77	0.71
Dy	1.71	3.96	4.45	6.84	2.98	3.66	3.49
Но	0.36	0.80	0.91	1.36	0.60	0.74	0.71
Er	1.04	2.32	2.77	4.01	1.76	2.17	2.06
Tm	0.14	0.30	0.38	0.52	0.23	0.30	0.29
Yb	0.92	1.93	2.47	3.25	1.52	1.91	1.89
Lu	0.14	0.28	0.37	0.46	0.22	0.29	0.29
Zr	23.77	41.36	47.58	63.13	38.73	28.88	30.94
Hf	0.73	1.27	1.42	2.22	1.13	0.99	0.74
Та	0.10	0.34	0.43	0.65	0.46	0.41	0.53
Nb	0.82	4.23	6.95	13.93	4.57	6.21	8.64
Y	8.485	19.60	22.92	34.97	14.62	17.74	16.82
Sc	31.10	40.20	38.92	41.41	24.27	21.78	19.25
Ni	745.385	141.19	112.74	87.91	41.71	32.94	35.51
Co	94.59	64.65	47.94	55.62	42.31	26.20	21.88
V	145.90	265.97	220.42	286.01	216.27	155.80	141.15

Таблица 1. Средние химические составы метавулканических пород метабазит-эндербитовой ассоциации Джугджурского гранулитового комплекса

Примечание. Оксиды – мас. %, элементы-примеси – г/т. Все анализы приведены к сумме главных петрогенных оксидов 100%. 1–3 – метавулканиты коматиит-толеитовой серии; 4 – метабазальты пикритовой серии, 5–7 – метавулканиты известково-щелочной серии.

Рис. 3. Мультиэлементная диаграмма для метаандезитов метабазит-эндербитовой ассоциации джугджурского комплекса. *1* – метаандезиты джугджурского комплекса; *2* – состав архейских "серых гнейсов" [3]. Нормировано по составу примитивной мантии (ПМ).

многочисленными экспериментами. В настоящее время большинство геологов считают, что в раннем архее сиалическая кора, которая соответствовала тоналит-трондьемит-гранодиоритовому составу ("серые гнейсы" ТТГ), сформировалась в результате плавления первичной базальтовой коры за счет тепла поднимающихся мантийных плюмов. В работе [2] на примере метабазит-эндербитового глубинного комплекса Сутамского блока Алданского щита было показано, что плюмовая модель формирования ранней сиалической коры может быть применена и для позднего архея.

На востоке Азии выделено, по имеющимся в литературе изотопным датировкам, три архейских кратона: Сибирский, Китайский и Омолоно-Охотский (рис. 4). Омолоно-Охотский кратон объединяет известные архейские Охотский и Омолонский массивы, являющиеся, по представлениям авторов, единой архейской структурой.

В раннем протерозое (2.5–1.65 млрд. лет) продолжалось формирование сиалической коры во-

 $80^\circ \ 90^\circ \ 100^\circ 110^\circ 120^\circ 130^\circ 140^\circ 150^\circ 160^\circ 170^\circ 180^\circ 170^\circ$

Рис. 4. Схема распространения ранней нижнепротерозойской коры на востоке Азии. *1* – архейская сиалическая кора; 2 – нижнепротерозойская сиалическая кора; *3* – предполагаемое распространение ранней сиалической коры рифейского и раннепалеозойского возраста; *4* – точки изотопного датирования нижнепротерозойских пород. *I–III* – архейские кратоны: *I* – Сибирский, *II* – Китайский, *III* – Омолоно-Охотский. ЦА – Центрально-Азиатский, ВЧ – Верхояно-Чукотский, К – Катазиатский складчатые пояса.

круг архейских кратонов будущего Азиатского континента за счет первичной базальтовой коры.

Как показано в [2], при обосновании модели происхождения исходных расплавов "серых гнейсов" необходимо изучение реальных разрезов нижних уровней сиалической коры. Замечательной особенностью этих разрезов, повторяющейся на всех континентах, является переслаивание исходных вулканитов коматиит-толеитовой и известково-щелочной серий в гранулитовых комплексах. Верхние части этих разрезов коматиитов не содержат и представлены обычно вулканитами известково-щелочной серии (андезит-дацитовая ассоциация) [2]. Подобное соотношение положения исходных вулканитов в нижнекоровых сиалических

Таблица 2. Результаты Sm–Nd-изотопного изучения двупироксеновых сланцев и эндербитов джугджурского комплекса

№ обр.	Nd, г/т	Sm, г/т	¹⁴³ Nd/ ¹⁴⁴ Nd	¹⁴⁷ Sm/ ¹⁴⁴ Nd	$T_{\rm DM}$	$\epsilon_{\rm Nd}(T)$
Э-17/158	26.38	5.45	0.511772	0.1248	2356	5.30
Э-17/159	43.13	7.77	0.511566	0.1089	2298	6.18
Э-35/296	16.96	3.28	0.511435	0.1169	2689	1.15
Э-41/339	16.70	1.93	0.511452	0.0997	2264	6.80

Примечание. Изотопные измерения Sm и Nd выполнены в Университете Хоккайдо, г. Саппоро (Япония), Г.М. Вовна под руководством проф. Д. Маеды на многоколлекторном масс-спектрометре "Finnigan-MAT262". Расчеты значений $\varepsilon_{Nd}(T)$ приведены для T = 2400 млн. лет. Образцы Э-17/158, Э-17/159, Э-35/296 – двупироксеновые сланцы, Э-41/339 – эндербит.

ДОКЛАДЫ АКАДЕМИИ НАУК том 412 № 3 2007

разрезах может быть объяснено только с позиции мантийно-плюмовой модели. Модель формирования протолитов метабазит-эндербитовой ассоциации по [2] включает две стадии. В первую стадию формируются вулканиты коматиит-базальтовой ассоциации при декомпрессионном частичном плавлении вещества поднимающегося мантийного плюма. Во вторую стадию происходит образование вулканитов андезит-дацитовой ассоциации путем частичного плавления первичной базальтовой коры за счет тепла поднимающегося мантийного плюма и отделяющихся от него магм. Принципиальное сходство исходного разреза джугджурского комплекса с описанным в [2] исходным разрезом верхнеархейского сутамского комплекса позволяет принять для него плюмовую модель формирования вулканитов. Источником плюма служила деплетированная верхняя мантия

Имеющиеся в настоящее время изотопные данные по возрасту метаморфических и магматических комплексов Востока Азии позволяют наметить предполагаемое распространение раннепротерозойской сиалической коры (см. рис. 4).

западной части Центрально-Азиатского B складчатого пояса раннедокембрийские образования выделялись в составе Дзабханского микроконтинента, Гарганской глыбы и Тувино-Монгольского массива. Архейский возраст метаморфических пород Байдарикского блока Дзабханского микроконтинента и Гарганской глыбы обоснован изотопными датировками [4], и они включены нами на рис. 4 соответственно в контуры Китайского и Сибирского кратонов. Раннедокембрийский фундамент Тувино-Монгольского массива перекрыт осадочно-покровным комплексом рифея-венда. Проведенные исследования [4] выявили, что позднерифейско-вендские метапороды осадочно-покровного комплекса Тувино-Монгольского массива содержат отдельные детритовые зерна цирконов с ядрами раннепротерозойского возраста $(1935 \pm 21$ и 2557 ± 34 млн. лет, метод SHRIMP-II; см. рис. 4, точка 1). Эти результаты подтверждаются Sm-Nd-методом. Установлено [4], что отдельные разновидности пород этого складчатопокровного комплекса имеют раннепротерозойский Nd-модельный возраст 1.8-2.2 млрд. лет при отрицательном значениях ε_{Nd} . Это свидетельствует о наличии в исходных осадочных верхнерифейско-вендских породах примеси нижнепротерозойского корового материала фундамента Тувино-Монгольского массива.

В работе [5] обобщены данные по Sm–Nd-систематике фанерозойских гранитоидов южного складчатого обрамления Сибирского кратона и Западного Забайкалья, которые свидетельствуют о наличии здесь раннепротерозойского этапа корообразования (см. рис. 4, точки 2–6), что подтверждается непосредственными выходами раннепротерозойских пород в Патомско-Бодайбинской структурной зоне (см. рис. 4, точка 7).

В восточной части Центрально-Азиатского складчатого пояса раннепротерозойские образования известны в Буреинском массиве (Гонжинский блок, 2160 ± 100 млн. лет, U–Pb-метод; см. рис. 4, точка 8) [6], Ханкайском массиве (Сергеевский блок, 2471 ± 0.08 ; 2106 ± 0.07 млн. лет, Rb–Sr-метод; см. рис. 4, точка 9) [7], массиве Цзямусы (Китай) (Машаньский блок, 2275 млн. лет, U-Рb-метод; см. рис. 4, точка 10) [8]. Следует отметить, что метапороды складчато-покровного позднерифейско-вендского комплекса массива Цзямусы содержат единичные зерна детритовых цирконов, ядра которых имеют возраст 1675-1900 млн. лет (метод SHRIMP) [9]. Наличие раннепротерозойской сиалической коры в основании восточной части Центрально-Азиатского пояса подтверждается также находками ксеногенных зерен циркона раннепротерозойского возраста в фанерозойских гранитоидах. Примером может служить ксеногенный циркон (2215 ± 7 млн. лет, метод SHRIMP-II) [10] из юрских гранитов Буреинского массива (Мамынский блок, см. рис. 4, точка 11).

Южной ветвью Центрально-Азиатского пояса на востоке Азии является Катазиатский складчатый пояс. Блоки нижнепротерозойских пород здесь известны на юго-восточном побережье Китая (1689, 1761 млн. лет, U–Pb-метод) [11], о. Тайвань (2087 млн. лет, U–Pb-метод; см. рис. 4, точки 12, 13) [11], зоне Хида Японии (1960 млн. лет, U– Pb-метод; см. рис. 4, точка 14) [12].

В пределах Верхояно-Чукотской складчатой области к ее раннепротерозойскому фундаменту нами отнесены описанные в настоящей работе гранулиты Джугджурского блока (см. рис. 4, точка 15). Севернее Джугджурского блока нижнепротерозойские породы вскрыты скважинами под осадочным чехлом верхоянского комплекса (см. рис. 4, точки 16, 17) [13]. В восточном складчатом обрамлении Омолоно-Охотского кратона к раннему протерозою относятся метаморфические породы бассейна р. Авековой на полуострове Тайгонос (1737 ± 68 млн. лет, U–Pb-метод; см. рис. 4, точка 18) [14]. Обширные выходы кристаллических пород нижнего протерозоя известны в пределах Чукотского массива (1990 ± 150 млн. лет, Rb-Sr-метод; см. рис. 4, точка 19) [15], которые коррелируются с изотопно-датированным нижним протерозоем Аляски.

В результате раннепротерозойских корообразовательных процессов архейские кратоны Азии оказались спаяны в единый протоконтинент, являвшийся составной частью Пангеи.

В областях распространения раннепротерозойской коры в рифее и фанерозое были проявлены два главных геотектонических режима: внутриконтинентальное рифтообразование и режим эпиконтинентального моря. По степени растяжения земной коры рифты не превышали стадии раскрытия современного Красного моря. Рифтовый магматизм в них связан с мантийным плюмообразованием в верхней деплетированной мантии и представлен ультраосновными и основными породами толеитового ряда ("офиолиты" по другим авторам), основными, средними и кислыми породами известково-щелочного ряда ("островодужная серия" по другим авторам). Щелочной магматизм этого времени свидетельствует о перемещении части магматических источников плюмов в неистощенную нижнюю мантию.

За счет осадков эпиконтинентальных морей был сформирован рифейско-палеозойский терригенный и терригенно-карбонатный покровноскладчатый комплекс.

Имеющиеся геологические и изотопно-геохронологические данные позволяют полагать, что в это время продолжалось формирование ранней сиалической коры за счет базальтового ложа западной части Палеопацифики (см. рис. 4). Однако рассмотрение этих процессов выходит за рамки настоящего сообщения.

СПИСОК ЛИТЕРАТУРЫ

- Авченко О.В. Минеральные равновесия в метаморфических породах и проблемы геобаротермометрии. М.: Наука, 1990. 180 с.
- 2. Мишкин М.А., Вовна Г.М., Лаврик С.Н., Октябрьский Р.А. // Геохимия. 2001. № 7. С. 691–711.

- 3. *Martin H*. Arhean Crustal Evolution / K.C. Condie Ed. Amsterdam: Elsevier, 1994. P. 205–259.
- Казаков И.К., Сальникова Е.Б., Натман А. и др. // Стратиграфия. Геол. корреляция. 2005. Т. 13. № 1. С. 3–25.
- 5. Ярмолюк В.В., Коваленко В.И., Ковач В.П. и др. // Геотектоника. 1999. № 4. С. 3–20.
- Геологическая карта Приамурья и сопредельных территорий, 1:2 500 000 / Под ред. Л.И. Красного, Пэн Юньбяо. Объясн. записка. СПб.; Благовещенск; Харбин, 1999. 135 с.
- 7. Коваленко С.В., Давыдов И.А. // ДАН. 1991. Т. 319. № 5. С. 1173–1177.
- Tectonic Framework and Crust Evolution of Eastern Jilin and Heilongjiang Provinces / C. Zhao, P. Yujing, D. Zengxin. Eds. Shenyang: Laoning Univ. Press. 1996. 186 p.
- 9. Wilde S.A., Zhang X., Wu F. // Tectonophysics. 2000. V. 328. № 1/2. P. 115–130.
- 10. Сорокин А.А., Кудряшов Н.М., Ли Цзиньи // Тихоокеан. геология. 2004. Т. 23. № 5. С. 54–67.
- 11. Yui T.F., Heaman L., Lan C.Y. // Tectonophysics. 1996. V. 263. № 1/4. P. 61–76.
- Yamashita K., Yanagi T. // Geochem. J. 1994. V. 28. P. 333–339.
- Ковач В.П., Котов А.Б., Смелов А.П. и др. // Петрология. 2000. Т. 8. № 4. С. 399–408.
- 14. Ланда Э.А., Марковский Б.А., Шевченко С.С. и др. В сб.: Материалы Всерос. совещ. "Геодинамика, магматизм и минерагения континентальных окраин Севера Пацифики". Магадан: СВКНИИ ДВО РАН, 2003. Т. 2. С. 139–142.
- 15. *Жуланова И.Л.* Земная кора северо-востока Азии в докембрии и фанерозое. М.: Наука, 1990. 302 с.