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Abstract-_The quasi-stationary state approximation to mass transport and fluid-rock interaction provides a quantitative 
description of me~matic pmcesses over geologically significant time spans. The time evolution of a geochemical 
system within the quasi-stationary state approximation is represented by a sequence of stationary states. Each stationary 
state describes the fluid composition and rates of reacting minerals as a function of distance corresponding to a particular 
state of alteration of the host rock. Because time steps separating stationary states are not restricted by stability and 
accuracy requirements as apply to conventional finite difference algorithms, geologic time spans are attainable for 
complex geochemical systems, The approximation is valid if mineral reaction zone boundaries, surface area, porosity 
and permeabiity change slowly compared to the time required to establish a stationary state. The propagation in time 
of mineral alteration zones can be predicted without any additional assumptions of the intone ~lation~~p of the 
zone boundaries on time. Pure advective mass transport within the qua-s~tio~ state appro~mation is equivalent 
to a multiple reaction path description of combined fluid Sow and chemical reaction based on a Lagranglan reference 
frame. The validity of the quasi-stationary state approximation is examined for reaction of the minerals calcite and 
quartz. An exact expression is obtained for the velocity and position of the dissolution front formed in a single component 
system for a linear kinetic rate law. Under certain conditions the velocity of the front is independent of the reaction 
rate constant and surface area and equal to the local equilibrium result. The mineral volume fraction prohle depends 
linearly on the rate constant and surface area in the vicinity of the front. Numerical and analytical examples for the 
solution of quartz at 55O’C and 1 kb are in excellent agreement with numerical finite difference ~cu~tions based 
on exact transient mass conservation equations. Finally, the quasi-stationary state approximation is applied to the 
hydrochemical weathering of K-feldspar resulting from infiltrating rainwater. Product minerals gibbsite, kaolinite and 
muscovite form alteration zones which propagate with time in response to the reduction in surface area and, eventually, 
complete reaction of the dissolving K-feldspar mineral grains. During the initial stages of alteration gibbsite fonns 
directly from K-feldspar, but in later stages forms indirectly from kaolinite. 

THE ABILITY TO integrate equations governing geochemical 
processes in natural systems over time spans of geologic sig- 
nificance is essential for a quantitative description of mass 
transport coupled to fluid-rock interaction. In many cases 
usual finite di&rence techniques are limited to relatively short 
time spans as a result of the stringent ~u~rnen~ imposed 
by stability and accuracy considerations restricting the size 
of the allowable time step used in such algorithms. The sit- 
uation is further complicated by the presence of mineral re- 
action zones which propagate with time leading to a Stefan 
or moving boundary problem. The zone boundaries are 
marked by sharp reaction fronts where rapid changes occur 
in tluid composition and mineral reaction rates, further re- 
stricting the size of the time step. This work investigates the 
ability of the quasi-stationary state approximation to fluid- 
rock interaction and mass transport to overcome these dif- 
ficulties without loss in accuracy or numerical stability. 

The quasi-stationary state approxi~tion represents the 
time evolution of geochemical processes involving advective, 
diffisive and dispersive mass transport by a sequence of sta- 
tionary states, Each stationary state represents the fluid com- 
position and rates of reacting minerals as a function of dis- 
tance for a particular state of alteration of the host rock. 
Within the quasi-stationary state approximation, fluid com- 
position and mineral reaction rates adjust qu~i-s~tic~ly to 
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changes in the host rock as it is progressively altered with 
time. The propagation in time of mineral alteration zones 
can be predicted without any additional assumptions of the 
functional relationship of the zone boundaries on time. 

Because the time steps separating stationary states are not 
restricted by the stability and accuracy requirements appli- 
cable to inventions finite difference ~go~~rn~ geologically 
sign&ant time spans are attainable for complex systems. In 
contrast, the size of the time step relating one stationary state 
to the next is governed by changes in the positions of mineral 
reaction zones, surface area, porosity and permeability. It is 
the rate at which these quantities change which determines 
the lifetime of each stationary state. Provided alteration of 
the host rock occurs su&iently slowly compared to the time 
required to form a stationary state, the quasi-stationary state 
approximation is expected to be valid. 

The use of the quasi-stationary approximation to describe 
metasomatic processes is not new. FRANTZ and MAO (1976, 
1979) and WEARE et al. (1976) have previously used this 
approach, together with the gumption of local ~~b~urn 
between fluid and minerals, to describe mineral alteration 
resulting from diffusion and advection. These authors, how- 
ever, assumed that the fluid composition formed an invariaut 
point at reaction zone boundaries, au assum@ion which is 
not generally valid (LICHTNER et al., 1986b). The current 
formation differs f?om these studies in that minerals are 
assumed to react irreversibly with the fluid according to some 
prescribed kinetic rate law. Local equilibrium is recovered 
in the limit as the product of the rate constant and surface 
area tend towards infinity (LICHTNER, 1985). More recent 
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applications of the quasi-stationary state approximation to 
metasomatic processes can be found in DOBROVOLSKY 

(1987) LICHTNER ( 1987), and ORTOLEVA et al. ( 1987), and 

references therein. The method has also been used to solve 
moving boundary problems involving heat transfer in which 

melting or solidification takes place (CARSLAW and JAEGER, 

1959; RUBINSTEIN, 1971; LUNARDINI, 1981; CRANK, 1984; 

ARONSSON, 1985). In such cases the quasi-stationary state 
approximation is valid if the latent heat of fusion is much 
larger than the heat capacity of the liquid or solid phase. 

The term “stationary” is used throughout this work rather 
than “steady” to emphasize that stationary states correspond 
to fixed boundaries of mineral alteration zones as well as 
other properties of the host rock including surface area, po- 
rosity and permeability. The term “steady” is reserved for 
properties that may vary in time but do so at a constant rate. 
One may note that the quasi-stationary state approximation 
is analogous to the adiabatic approximation describing the 
motion of electrons and nuclei in crystals and molecules, 
also referred to as the Born-Oppenheimer approximation (see, 
e.g., BORN and HUANG, 1954). In this approximation the 
motion of electrons is presumed to follow the heavier and 
much slower-moving nuclei. 

The paper is divided into three sections. The first considers 
the mathematical formulation of the quasi-stationary state 
approximation from the corresponding exact transient de- 
scription based on the continuum theory of mixtures. All 
simplifications of porous media inherent in this theory apply 
also, of course, to the quasi-stationary state approximation. 
This section is followed by a section devoted to a single com- 
ponent system in which comparisons, both numerical and 
analytical, are made with the exact transient description. The 
paper concludes with an application of the quasi-stationary 
state approximation to weathering of a porous rock consisting 
of K-feldspar and quartz as rainwater percolates through the 
pores. 

2. THE QUASI-STATIONARY STATE APPROXIMATION 

The quasi-stationary state approximation to coupled mass 
transport and fluid-rock interaction is based on the assump- 
tion that fluid composition and mineral reaction rates adjust 
quasi-statically to changes in the state of alteration of the 
host rock. In a continuum based description of fluid-rock 
interaction, this includes changes with distance and time in 
mineral abundances, surface area, porosity and permeability 
and changes in the positions of reaction zone boundaries. 
The time evolution of a geochemical system in this approx- 
imation is represented by a sequence of stationary states. Each 
stationary state represents the fluid composition and mineral 
reaction rates corresponding to a particular spatial configu- 
ration of the host rock. Mineral abundances, boundaries of 
mineral alteration zones, porosity, permeability, and surface 
area of the reacting minerals are presumed to vary slowly 
compared to the time required to form a stationary state. 
The basis for the quasi-stationary state approximation is the 
observation that within a representative elemental volume 
the aqueous concentration of any particular species is gen- 
erally much less than its concentration in minerals (FRANTZ 
and MAO, 1976, 1979; WEARE et al., 1976). 

To investigate qualitatively the quasi-stationary state ap- 
proximation, it is instructive to consider a purely advective 
system from the point of view of a reference frame fixed with 
respect to the fluid, referred to as a Lagrangian frame of ref- 
erence (BEAR, 1972). For definiteness consider the weathering 
of a porous rock, which for simplicity is assumed to consist 
entirely of K-feldspar, as rainwater percolates through the 
rock at a constant flow rate. Under appropriate pH conditions, 
reaction zones corresponding to product minerals gibbsite 
and kaolinite are formed as K-feldspar dissolves. The evo- 
lution with time of the spatial distribution of mineral alter- 
ation products can be obtained by considering a series of 
fluid packets as depicted schematically in Fig. 1. Each packet 
represents a closed system with respect to the fluid phase. 
With respect to the reacting minerals, however, the packets 
form an open system. The first packet of fluid deposits a 
sequence of product minerals along the flow path as it reacts 
with K-feldspar consisting of gibbsite followed by kaolinite 
(Fig. 1 b). The widths of the alteration zones are determined 
by the amount of time the fluid in the packet reacts with K- 
feldspar as it traverses the flow path. Eventually the fluid in 
the packet must come to equilibrium with respect to K-feld- 
spar after a sufficiently long travel distance. The initial abun- 
dance of K-feldspar remains virtually unchanged by the pas- 
sage of a single packet, and hence the porosity, permeability 
and surface area of the K-feldspar are also unchanged. 
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RG. 1. Schematic illustration of the Lagrangian formulation of 
the quasi-stationary state approximation for the reaction of a hy- 
pothetical rock consisting of K-feldspar with infiltrating rainwater. 
(a) The first packet of infiltrating fluid enters a porous rock column 
consisting of an aqueous solution in equilibrium with K-feldspar. (b) 
As the packet moves downstream, the original fluid is d&laced leaving 
behind reaction zones of gibbsite and kaolinite (see figure legend). 
The kaolinite zone grows linearly with time, while the gibbsite zone 
is stationary. (c) The second and subsequent fluid packets trace out 
identical reaction pathsasthe first packet provided signihcant changes 
in the volume fractions of the reacting minerals, surface area, per- 
meability and porosity do not occur. (d) K-feldspar dissolves at the 
inlet leaving the next fluid packet undematurated with respect to 
gibbsite when it reaches the previously deposited gibbsite zone. As a 
consequence gibbsite dissolves at the upstream end of the gibbsite 
zone and precipitates further downstream. Similar effects can also 
occur as a result of changes in surface area of the reacting minerals. 
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The question arises as to how the various alteration prod- 
ucts deposited by one packet influence subsequent packets. 
Consider the second packet of fluid. Because its reaction path 
is identical to that of the first packet by assumption that the 
first packet did not sign&army alter the dissolving K-feldspar, 
it must behave in an identical fashion as the first packet. 
Thus, as it arrives at the gibbsite zone deposited by the first 
packet, it must also become saturated with respect to gibbsite 
and continue to precipitate gibbsite further downstream until 
the kaolinite zone is reached. At this point the packet becomes 
saturated with respect to kaolinite. Consequently, the second 
packet merely adds to the already existing alteration zones 
produced by the first packet at the same positions along the 

flow path (Fig. 1 c). Therefore, provided the surface area, po- 
rosity and permeability of the host rock remain unchanged, 
alteration products deposited by previous packets do not in- 
fluence the reaction path of subsequent packets, which there- 
fore follow the same reaction path as that of the very first 
packet. Thus, with the exception of reaction zones which end 
at the first packet and therefore advance downstream at the 
pore velocity, the positions of the mineral alteration zones 
are constant in time. In the example given here, the gibbsite 
zone is stationary while the downstream kaolinite zone moves 
with the fluid velocity. With the exception of the advancing 
front, this situation represents a stationary state in which the 
fluid composition and mineral reaction rates are constant in 
time. It turns out that the advancing front is actually of little 
practical importance because the fluid in this region is very 
close to equilibrium with respect to the host rock and therefore 
very little reaction occurs. 

Clearly this stationary state condition cannot last indefi- 
nitely. As minerals in the host rock begin to completely dis- 
solve (Fig. Id), or significant changes occur in the porosity, 
permeability or surface area of the reacting minerals, the re- 
action zones must readjust to the altered reaction and fluid 
flow rates. This produces a new stationary state reaction path. 
In this case previously deposited product minerals now begin 
to play a role in the determination of the composition of 
subsequent fluid packets and their reaction products. Thus, 
for example, referring to Fig. Id, when K-feldspar completely 
dissolves at the inlet to the porous column, the previously 
deposited gibbsite zone is no longer stable and it begins to 
dissolve at one end and precipitate further downstream. In 
general a particular stationary state reaction path persists until 
complete dissolution of a mineral occurs, or until significant 
changes occur in the porosity, permeability and mineral sur- 
face area. Note that a change in rock properties or fluid ve- 
locity is required to change the width of reaction zones in 
the stationary state regime. 

Transient formulation 

The mathematical formulation of the quasi-stationary state 
approximation follows from the corresponding transient de- 
scription (see, e.g., LIcHTNE R, 1985). The following devel- 
opment is based on a continuum representation of mass 
transport in a porous medium involving a multicomponent 
system of reacting minerals and fluid. Homogeneous reactions 
between WEOUS species are assumed to be sufficiently rapid 
to maintain local equilibrium within the fluid phase. In con- 

trast, heterogeneous reactions involving minerals and 5uid 
are described through irreversible kinetic rate laws of which 
local equilibrium is a special case. 

For the purpose of simplifying the resulting equations, it is useful 
to rearrange the chemical reactions occurring in the system into a 
particular canonical form (LICHTNER, 1985). Without loss in gen- 
erality it can be shown that they can always be written with unit 
stoichiometric coefficients corresponding to aqueous complexes and 
minerals according to: 

gVjiAj+Ai, (1) 
j-1 

and 

g Vj,Aj G A,, (2) 
j-l 

where the first set of reactions refer to homogeneous reactions within 
the fluid phase and the second set to heterogeneous reactions between 
fluid and minerals. The aqueous species denoted by the symbols { Ai} 
(j= I,..., N), and all irreversibly reacting minerals, denoted by 
the symbols {A,} (r = 1, . . . , M), are referred to as primary species. 
Aqueous complexes, designated by the symbol Ai, are referred to as 
secondary species. Unless otherwise indicated, the subscript i is re- 
served exclusively for these species. The quantities vii and v,, denote 
the respective stoichiometric reaction matrices. 

With this representation of the chemical reactions in the system, 
continuum mass conservation equations for the primary species can 
be expressed as the following system of N + M coupled, nonlinear 
partial differential equations (LICHTNER, 1985): 

and 

~(~*j)+V*Qj=-~Vj~~ (j=l,...,N), 
r-l 

$(&V;‘,=z (r= 1,. . . ,M), 

(3) 

(4) 

where the first set of equations refers to aqueous species, and the 
second set to minerals. In these equations 4 denotes the porosity of 
the porous medium, &and Z,denote the volume Fraction and reaction 
progress density, respectively, of the rth mineral with molar volume 
v,, and the quantities ‘Pj and tlj are referred to as the generalized 
concentration and generalized flux respectively of the jth primary 
species. The tight hand sides of Eqns. (3) and (4) represent source/ 
sink terms describing the. irreversible reaction of minerals and fluid 
with reaction rates E,@t. The generalized concentration *j is defined 
at position r and time t according to the expression 

*j(r* t) = Cj(r, t) + 2 VjfCf(r, t), (5) 

where C’(r, t) refers to the concentration of the jth primary species, 
and the sum runs over all aqueous secondary species with concen- 
tration Ci(r, t) related to the concentrations of the primary species 
through the mass action equation 

(6) 

where yl(r, t) denotes the activity coefficient of the Ith primary or 
secondary aqueous species and K, denotes the corresponding equi- 
librium constant. The generalized flux fIj is defined by the expression 

$0, 0 = Jj(r, t) + C uji J,(r, t), (7) 

where the Buid flux of the Ith species J,(r, t) is given by a sum of 
contributions from diffisive and advective fluxes according to 

J/O, t) = - 40, 0 2 &(r. OVG(r, t) + u(r, t)G(r, 0, (8) 
k 

where the sum is over both primary and secondary aqueous species, 
Du, denotes the diffusion coefficient matrix and u denotes the fluid 
Darcy velocity. The term “generalized” is used to refer to the quan- 



146 P. C. Lichtner 

tities ‘@j and s2, since they may have no direct physical meaning. For 
the case in which the stoichiometric coefficients uji are all positive, 
the generalized concentration ‘k/coincides with the total concentration 
of that species and fij to the corresponding total flux. However, for 
species such as H+, @“+ may take on negative values (LICHTNER, 
1985). 

Conservation of volume relates the porosity to the sum of the 
mineral volume fractions according to the expression 

(9) 

where & denotes the total reactive volume fraction occupied by 
minerals and fluid. The total reactive volume fraction is less than or 
equal to one. A value for q5R less than one provides for the presence 
of isolated pore spaces which are not part of the flow porosity, as 
well as inert rock which does not come in contact with the fluid as, 
for example, may be caused by armouring effects. 

The requirement that the only admissible solutions to the mass 
conservation equations are those for which the mineral volume frac- 
tions 4, satisfy the inequality 

0 5 &(r, t) 5 +R? (10) 

defines a moving boundary problem in which the spatial region oc- 
cupied by mineral A, in general varies with time. This condition 
complicates the solution to the mass transport equations. By taking 
into account the presence of mineral alteration zones, the reaction 
rate aE,/& can be written in the form 

$(r, f) = <,(r, r)I,(r, t), (11) 

where I,@, t) designates the actual rate of reaction, and the function 
I;(r, t), defined below, accounts for the presence of mineral A, in the 
representative elemental volume located at position r. One possible 
form of I, based on transition state theory (HELCESON et al., 1984; 
LASAGA, 1984) is given by the expression 

I,(& t) = ~(r, t)k$Q,(r, t) - K;’ 1, (12) 

where a,(r, t) denotes the surface area of the rth mineral per unit 
volume of bulk porous medium, K, denotes the equilibrium constant, 
k{ denotes the rate constant for the forward reaction as written in 
Eqn. (2), and Q, denotes the activity product defined by 

QJr, t) = fi (a#, t))‘l: 
1-1 

(13) 

where aj denotes the activity of the jth primary species. The function 
[,(r, 1) is defined as unity either if the rth mineral is present within 
the representative elemental volume located at position r, or if 
$,(r, t) = 0 but Z,(r, t) > 0 indicating the onset of precipitation. 
Otherwise l, has the value zero. Thus {,(r, t) can be expressed in 
symbols as 

1 

1 (&(r,t)#O,or@,(r,t)=OandI,(r,t)>O) 
.Mr, 0 = (14) 

0 (otherwise) 

According to the definitions above, the reaction rate Ir(r, t) 
is positive for precipitation, Q,(r, t) > K;' , and negative for 
dissolution, Q,(r, t) < K;‘. For Qr = K;’ the rate vanishes 
and equilibrium is obtained. Local equilibrium is obtained 
in the limit as the product of the rate constant and surface 
area tend towards infinity. As a consequence, Q, + Kg’, 
resulting in an indeterminate value for the reaction rate: co * 0. 

The description of the transient problem is completed by 
specifying appropriate initial and boundary conditions. These 
may be given, for example, by specifying the initial generalized 
concentration ‘kj” and mineral volume fraction 47 at t = 0 
as functions of distance, and the generalized solute flux @ 

or concentration S$’ at the inlet to the porous column as 
prescribed functions of time. 

Under conditions that changes in surface area, porosity 
and permeability are negligible, Eqns. (3) and (4) decouple 
and may be solved independently of each other. Generally 
this separation of the transport equations is valid only for 
time scales that are much shorter than the time for a mineral 
grain to completely dissolve, or the time required for signif- 
icant changes to occur in the reacting surface area, porosity, 
or permeability. Otherwise the equations are coupled. In ei- 
ther case their solution can be prohibitively time consuming. 
especially for many component systems. 

Stationary states 

The quasi-stationary state approximation follows from the 
transient description of the mass transport equations by ne- 
glecting the first term on the left-hand side of Eqn. (3) con- 
taining the partial time derivative 8(4qj)/at. This results in 
the following system of partial differential equations in the 
space coordinate r for the concentrations of the solute species 

C’Cl,=-CVj,$ (j= 1,. . . ,N). (15) 
I 

These equations must be solved subject to appropriate 
boundary conditions at the inlet and outlet to the porous 
medium, and continuity conditions of the concentration and 
flux across each reaction front. For systems with a single spa- 
tial dimension the latter conditions can be expressed in the 
form 

[ \k,], = *j-)(1,) - $+‘(I,) = 0, (16) 

(17) 

where the square brackets [. . .I,, denote the jump in the en- 
closed quantity across the reaction front I,, and the superscript 
(+) designates approaching the reaction front from the right 
and (-) from the left. A solution to Eqn. ( 15) subject to Eqns. 
( 16) and ( 17) defines a stationary state. It provides the con- 
centrations of the solute species and mineral reaction rates 
as functions of distance for fixed values of the mineral zone 
boundaries, surface area, porosity and permeability. These 
equations are far simpler to solve than the original partial 
differential equations for the transient case given by Eqn. (3). 

A stationary state may be thought of as the open system 
analogue of an equilibrium state corresponding to a closed 
system (DENBIGH, I95 1). Both are independent of time. Fur- 
thermore, an equilibrium state is a special case of a stationary 
state corresponding to the limiting case in which the %ux of 
matter or heat into the system vanishes, A stationary state, 
however, is generally not in equilibrium. A stationary state 
configuration corresponding to an interacting system of 
chemical species undergoing advective, diffusive or dispersive 
mass transport, is a function of the porosity, permeability, 
surface area of each reacting mineral, and the function Mr, 
t) defined in Eqn. (14), specifying the region of space each 
mineral occupies. Under certain simplifying assumptions, the 
mineral volume fractions {&(r, t)} serve to completely de- 
termine the properties of the host rock as functions of distance 
and time. Total rock porosity is related to the mineral volume 
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fractions according to the vofume conservation equation 
given by Eqn. (9). The fUnctional dependence of flow or con- 
nected porosity, as well as surface area and permeability is 
more difficult to determine, however, and generally must be 
based on phenomenological relationships. From geometrical 
considerations the surface area per unit volume of bulk porous 
medium of the rth mineral cu, can be argued to vary according 
to the two thirds power of the mineral volume Eraction & 
according to 

cP,(r, 0 I 1 2i3 
q(r, t) = CUT - 

#P ’ 
where a;” and #4” denote the initial sutface area and volume 
fraction, respectively, at t = 0. However, it should be noted 
that in general the surface area need not be so simply related 
to mineral abundance, but may also be a function of the 
surface roughness which may increase or decrease with the 
degree of reaction. A proper characterization of the perme- 
ability, and tortuosity in the case of bong mass transport, 
would, in principle, require knowledge of mineral textures 
in addition to their abundances. One empirical constitutive 
relation often used in practical calculations, the Carrnan- 
Kozeny equation, represents the permeability as a power 
function of porosity (BEAR, 1972). In the following it is pre- 
sumed that the mineral volume fractions completely char- 
acterize the host rock as it evolves in time. For such circum- 
stances, the stationary state representation of the concentra- 
tion of the jth primary species can be expressed as a function 
of the form C,(r; I&}). Likewise the reaction rate has the 
form &(r; (sb,)). 

For the case of advective and diffusive mass transport with 
a diagonal solute diffusion coefficient matrix consisting of 
equal and constant elements denoted by D, and constant 
flow velocity 1), the stationary state equations for a one-di- 
mensional system are given by 

These equations represent a set of coupled, second order, 
ordinary differential equations for the stationary states C’(X, 
{ 4,)). In general they are non-linear as a result of the kinetic 
rate term on the right-hand side, according to Eqn. (12). So- 
lutions to Eqn. (19) are subject to continuity conditions at 
reaction zone boundaries expressed by Eqns. ( 16) and ( 17). 

Lagrangian representation. The stationary state equations 
take a particularly simple form for constant pure advective 
fluid flow discussed qualitatively at the beginning of this sec- 
tion. For one-dimensional transport a stationary state satisfies 
the following set of first order ordinary differential equations 

For this case the continuity conditions expressed by Eqns. 
(16) and (17) are equivalent. Relating distance along the flow 
path to the travel time denoted by t’ according to 

a% v -=- 
dt’ (6’ 

or, in the case of constant porosity and Darcy flow velocity, 
by the integrated form 

I 

,=fif_ 

4’ 
(22) 

the stationary state equations for pure advective transport 
become, in either case, 

where the time t’ is introduced as the independent variable. 
These equations represent a Lagrangian formulation of cou- 
pled fluid flow and fluid-rock interaction (LICHTNER et al., 
1986c, 1987). Equations (21) or (22) represent the Lagrangian 
equation of motion for the center of mass of a fluid packet. 
The chemical composition of the packet is parameter&d by 
the time t’ that the packet is in contact with the host rock. 
Mineral products precipitated from the packet are left behind 
as the packet advances downstream. They do not back react 
with the fluid in the packet in contrast to aqueous reaction 
products resulting from a mineral dissolving into solution, 
which are carried along by the packet. Hence the fluid packet 
is open with respect to minerals which, from the point of 
view of an observer at rest with respect to the packet, con- 
tinuously enter and exit from the packet. The packet is pre- 
sumed closed with respect to transfer of matter within the 
fluid phase, implying that diffusive and dispersive fluxes are 
negligible compared to advective mass transfer. Because each 
stationary state solution to Eqn. (23) corresponds to a different 
reaction path traced out by the packet fluid composition in 
activity space, the Lagtangian formulation is also referred to 
as the multiple reaction path formulation (LICHTNER et al., 
1986~). Equations for a single reaction path were developed 
by HELGESON ( 1968) and later extended by HELGESON and 
MURPHY (1983) to include the irreversible reaction of min- 
erals described by a kinetic rate law. The single reaction path 
method has been extensively applied to many geochemical 
systems. 

A solution to Eqn. (23) yields the concentrations of the 
aqueous species and mineral reaction rates as a function of 
elapsed time, or equivalently, of the position of the packet 
along the flow path, as obtained from Eqn. (21) or (22). 
Transforming the solution Cj(t’; {4r}) to Eqn. (23) with the 
inverse of Eqn. (22), or the inverse of the integrated form of 
Eqn. (2 1) in the case of a time-dependent flow velocity, results 
in the following expression for the concentration Cj(G (&)) 
as a function of distance along the flow path 

Ci(x; (4,)) = 
r 

Cj(@/V {&}I (X5 vt'/+) 

c” (24) 
.I (x > ut’/+) 

where Cjm denotes the initial composition of the fluid which 
is assumed to be in equilibrium with the host rock. Similarly 
the mineral reaction rate aE&‘; (#,))/& can be expressed as 
a function of distance according to: 

( ?&bx/v; tf#Jr), tX~:t’/#d 

. (25) 
0 tx > ut’/~) 

Thus for times greater than 4x/u, equal to the time required 
for the front of the infiltrating fluid to travel a distance x, 
stationary state representations of the concentrations and rates 
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of reacting minerals are obtained which are functions of dis- 
tance only and not time. 

For constant surface area and permeability, the fluid com- 
position and location of mineral alteration zones are inde- 
pendent of porosity. This statement follows immediately from 
Eqn. (20) which only depends on the porosity of the porous 
medium through the surface area of the reacting minerals 
contained in the term involving the reaction rate on the right- 
hand side, and through the permeability which determines 
the flow velocity v. The width of a particular reaction zone 
within the Lagrangian representation can be determined by 
noting the times of appearance and disappearance of the cor- 
responding mineral, and multiplying the difference in these 
times by the flow rate. Thus, if the fluid becomes saturated 
with respect to the rth mineral at time 7, , (I) and the mineral 
stops precipitating at time up’, the width of the corresponding 
reaction zone Al, is given by 

Although it may not be immediately apparent from this 
equation, Al, is independent of the porosity for constant sur- 
face area and permeability of the porous medium as already 
noted above. This is because the surface area of the reacting 
minerals in contact with the fluid packet, and hence the re- 
action rate, are inversely proportional to the porosity and 
thus 7:) is directly proportional to # (LICHTNER et al., 1986c, 
1987). The ratio of the lengths of the reaction zones is in- 
dependent of the flow velocity and equal to the ratio of times 
of duration of the zones. Since the length of each reaction 
zone is proportional to the duration of time the mineral is 
in contact with the fluid packet, an increase in the dissolution 
rate, for example, caused by increasing the temperature or 
surface area, results in a decrease in the width of the reaction 
zone. 

Time evolution in the quasi-stationary state approximation 

The time evolution of a geochemical system within the 
quasi-stationary state approximation is represented by a se- 
quence of stationary states, each stationary state correspond- 
ing to a different degree of alteration of the reacting host 
rock. The volume fraction of the rth mineral at position r 
and time t + At, &(T, t + At), is determined from the sta- 
tionary state at time t. Integrating Eqn. (4) at a fixed point 
in space, noting that the mineral reaction rate Z, is constant, 
results in a linear dependence of the volume fraction 4, on 
time according to the expression 

dr(r, t + At) = 4,(r, t) + Vr,3;(r; { AjMr; {&)Ut, (27) 

where &(r, t) denotes the mineral volume fraction at time t. 
Once the mineral volume fractions have been determined 

at time t + At, the corresponding stationary state is obtained 
by solving Eqn. ( 15). Each stationary state must be consistent 
with Eqn. (lo), specifying that the mineral volume fractions 
be positive or zero, resulting in altered positions of mineral 
reaction zones. In addition the stationary state corresponds 
to altered mineral surface areas, porosity, permeability and 
tortuosity. The above process may be repeated, in principle, 
indefinitely. The final result must, of course, be independent 

of the time step At. This procedure amounts to a finite dif- 
ference algorithm in which the continuous evolution of the 
system with time is replaced by discrete time intervals At. 
Convergence is tested by varying the size of the time step At. 
The time step At represents the lifetime of the stationary 
state obtained at time t. The usefulness of the quasi-stationary 
state approximation rests on the rapid formation of a sta- 
tionary state compared to its lifetime At. The lifetime of the 
stationary state is determined by several factors including 
changes in surface area, porosity and permeability, as well as 
complete dissolution of one of the minerals. In this latter 
case, the stationary state lifetime is given by 

(28) 

corresponding to complete dissolution of the rth mineral at 
position r. This result is used below to determine the time 
evolution, within the quasi-stationary state approximation, 
of a single component system involving the propagation of 
a mineral dissolution front. 

3. SINGLE REACI’ING SOLUTE SPECIES 
WITH LINEAR KINETICS 

To investigate further the quasi-stationary state approxi- 
mation, it is instructive to consider a simple example in- 
volving the reaction of a hypothetical stoichiometric mineral 
A, with solute species A according to 

ACA,. (29) 

The reaction is assumed to proceed according to a linear 
kinetic rate law which may be expressed in the form 

1, = k,cu[C- C,], 

where k, denotes the forward rate constant for the reaction 
as written above, (Y denotes the surface area per unit bulk 
volume of porous rock, C denotes the aqueous concentration 
of species A, and C,, designates the concentration of species 
A in equilibrium with mineral A,. A sufficiently dilute so- 
lution is assumed so that the activity coefficient can be set 
equal to unity. An example of such a reaction is the disso- 
lution and precipitation of quartz. 

At t = 0 a fluid undersaturated with respect to mineral A, 
is allowed to infiltrate or diffuse into a porous medium with 
an initial volume fraction of mineral A, equal to 4,” and with 
porosity 4 as depicted in Fig. 2. The fluid originally present 
in the pore spaces is assumed to be in equilibrium with respect 
to the mineral. These statements are expressed mathemati- 
cally by the initial conditions specified by 

and 

C(x, 0) = c,, , (31) 

&(x, 0) = 4,” 9 (32) 

and the boundary condition 

C(O, 0 = co 7 

where Co < C, denotes the concentration of solute species 
A at the inlet, and $J, denotes the mineral volume fraction. 

For constant porosity of the porous medium transient mass 
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FIG. 2. Schematic diagram of a one-dimensional porous column 
consisting of a fluid reacting with a solid phase. A reaction front 
corresponding to complete dissolution of the solid is located at I(I). 

conservation equations for the solute species A and mineral 
AS can be expressed in the form 

.a% v ac ac 1 azs _- ____ =-- 
ax2 4 ax at 4 at ’ 

for the solute concentration C(x, t), and 

(34) 

for the mineral volume fmction &(x, t), as follows from Eqns. 
(3) and (4), where a&/& denotes the rate of reaction of min- 
eral A, with the fluid. 

As the mineral reacts with the undersaturated fluid, a re- 
action front forms separating the porous medium into two 
regions. One region is occupied by the mineral, and in the 
other region the mineral has completely dissolved (see Fig. 
2). In what follows the variation in porosity resulting from 
chemical reaction is not taken into account. The solution to 
the mass conservation equations must determine not only 
the solute concentration C(x, t) and mineral volume fraction 
&(x, t) as functions of distance and time, but also the position 
of the reaction front, denoted by Z(t). The requirement that 
the mineral volume fraction 4, satisfy the inequality 

0 5 #S(& 0 5 1, (36) 

defines a moving boundary problem in which the spatial re- 
gion occupied by mineral A, changes with time. The position 
of the mineral reaction front Z(t) is defined implicitly by the 
relation 

lim ~Jx, r) = 0, 
x++(r) 

(37) 

where the plus sign signifies that the boundary is to be ap 
proached from the side occupied by mineral A,, assumed to 
be the region x > Z(f). Taking into account the position of 
the reaction front, the reaction rate may be expressed ac- 
cording to the equation 

% (x, f) = ZJX, t)e(x - I(t)), 

where Z, is given by Eqn. (30) and 19(x) denotes the Heaviside 
function defined by 

e(x) = 1 1 (x>O) 
(39) 

I 0 (x<O) 

The Heaviside function 0(x) corresponds to the hmction Tr 
defined in Eqn. (14). 

Validity of the quasi-stationary state approximation 

In the case of surface controlled dissolution, the appearance 
of the reaction front is delayed from the initial time of reaction 
of the undersaturated fluid with the mineral. This is in con- 
trast with the situation of local equilibrium in which a sharp 
reaction front, referred to as a shock front, immediately forms 
(LICHTNER et al., 1986a,b). The local equilibrium case is 
briefly reviewed in Appendix I for the case of pure advective 
mass transport. The time required for the mineral A, to dis- 
solve completely at the inlet to the porous column follows 
by integrating Eqn. (35) with the reaction rate given by Eqn. 
(38) evaluated at x = 0. For constant surface area this time, 
denoted by ro, is given by 

w 
with 

AC,=C,-Co. (41) 

If the surface area is a function of the mineral volume fraction 
as expressed by Eqn. ( 18), the expression for 7. becomes mul- 
tiplied by a factor of three as follows directly by integrating 
Eqn. (35). The delay time is inversely proportional to the 
rate constant, surface area, concentration difference, and 
mineral molar volume, and directly proportional to the initial 
mineral volume fraction. In the limit as the product kfcr tends 
to infinity, 7. vanishes and local equilibrium between the 
fluid and mineral is approached. The value of r. may range 
over many orders of magnitude from hundreds of thousands 
of years to just seconds depending on the rate constant, surface 
area, initial mineral volume fraction, composition of the in- 
filtrating fluid, mineral solubility and temperature. 

For times earlier than 7. there exists an exact, analytical 
solution to the transient mass transport equations for the 
special assumptions of constant surface area, porosity, dif- 
fusivity and fluid flow velocity given by Eqn. (11.1) in Ap 
pendix II. In this case the mineral A, has not completely 
dissolved at any point along the flow path and I = 0. The 
results presented in Appendix II demonstrate that a stationary 
state is formed during a characteristic time r given by Eqn. 
(11.9). The condition for the validity of the quasi-stationary 
state approximation for the hrst reaction path is that the delay 
time TO be much longer than the time T required to establish 
a stationary state. Thus the ratio T~/T must satisfy the in- 
equality 

WW 

where the quantity A is defined by Eqn. (11.3). The value of 
the ratio depends on the temperature, pressure, fluid flow 
rate, dithtsion coefficient, surface area, and the initial abun- 
dance of the reacting mineral. In the limit as the product of 
the rate constant and surface approach infinity, the ratio of 
TO/T is proportional to the local equilibrium retardation factor 
of the dissolution front given by Eqn. (1.7) in Appendix I: 

WW 

In Fig. 3a estimates for the ratio TO/T are. plotted as a function 
of temperature for minerals quartz and calcite with the cor- 
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FIG. 3a. The ratio Q/T plotted as a function of temperature at 1 
kb for the minerals quartz and calcite. A value greater than one in- 
dicates validity of the quasi-stationary state approximation for the 
first stationary state. The retrograde solubility of calcite causes the 
ratio to increase with temperature in spite of the increase in the rate 
constant, while the ratio decreases for quartz because of its prograde 
solubility at 1 kb. The values used in the calculation for the various 
quantities entering Eqn. (42a) are given in the text and Fig. 3b. 

responding values used for the rate constants and equilibrium 
constants shown in Fig. 3b. The rate constant for calcite was 
taken from !SJ~BERG and RICKARD (1984) as modified by 
MURPHY et al. (1987), and that for quartz from RIMSTIDT 
and BARNEY (1980). For both minerals the rate constant kl 
may be represented in the form of a modified Arrhenius 
equation based on transition state theory given by (HELGESON 
et al., 1984) 

kf= AKT exp G , 
i 1 

where the enthalpy of activation AH* has the values -18 
and -8.4 kcaI mole-’ and the logarithm of the pre-exponen- 
tial factor A has the values -7.081 and -5.117 moles cm-* 
set-’ “K-l for quartz and calcite, respectively. Equilibrium 
constants K were taken from the computer code SUPCRT 
corresponding to a pressure of 1 kb (BOWERS et al., 1984, 
and references therein). A fluid flow rate of 1 m year, surface 
area of 10 cm-’ and initial volume fraction 47 = 0.1 were 
used. Values for the diffusion coefficient were adapted from 
OELKERS and HELGESON (1988), and range from low5 cm2 
see-’ at 25°C to lo-’ cm* see-’ at 600°C. In the case of 
calcite dissolution, the moIaIities of Ca2’ and CO:- were taken 
to be identical, and the effects of pH and other carbonate 
species were ignored. The ratio rO/r is found to decrease with 
increasing temperature for quartz, but increase for calcite as 
a consequence of its retrograde solubility. The quasi-station- 
ary state approximation appears to be valid over the entire 
temperature range of 25-600°C for both minerals, despite 
their widely differing rate constants. It should be noted, how- 
ever, that the curves shown in Figs. 3a and 3b represent an 
extrapolation of the available data for temperatures above 
approximately 300°C for quartz and 62°C for calcite, and 
should only be considered a rough estimate. 

Exact solution to the quasi-stationary state equations 

As discussed above, a solution to the equations representing 
the quasi-stationary state approximation is expressed as a 
sequence of stationary states, each stationary state corre- 
sponding to a different configuration of the host rock as it 
becomes altered with time. Mathematically, the quasi-sta- 

tionary state solution for solute species A reacting with min- 
eral A, can be represented by the sequence of stationary states 
{C(x; I,), C(x; 121, * * * ) for the solute concentrations cor- 
responding to the reaction front of mineral A,< located at po- 
sitions {I, , I,, - 9 - } at the discrete times { tl , tZ, . - . ). The 
first stationary state corresponds to I, = 0. For this stationary 
state t, = TV, the time of first appearance of the front. The 
lifetime of the kth stationary state can be expressed as 

atk = be I -th+bk,TO, (44) 

where 8kl denotes the Kronecker delta function, with values 
equal to one if k = I and zero othetwise. Note that the lifetime 
of the first stationary state is equal to t2, the time at which 
the front advances to I2 and a new stationary state is formed. 
The mineral volume fraction at time tk and reaction front 
position lk is denoted by +s(x; /k). By definition 

@.dk ;lk) = 0. (45) 
with 9,(X; &) = 0 forX < ik, and ‘@$(X; 1,) > 0 f0I.X > lk. The 
problem is thus to determine the functional form of the 
quantities C(x; lk) and @Ax; lk), as well as the positions of the 
reaction front lk and the associated times tk for k = 1, 2, . 

The differential equation for the stationary state C(x; I) with the 
reaction front located at the position I has the form: 

D~-fg+(~l) (x21(t)), 

0 (x < l(O), (46) 
Solutions to this equation for the cases of pure adveetion and diffusion, 
and combined adveetiondil%ion, satisfying the initial and boundary 
conditions given by Eqns. (3 1) and (33) and the continuity conditions 
given by Eqns. (16) and ( 17) are given in Appendix III. A 6xed position 
of the reaction front I, constant surface area, porosity, diffusivity and 
fluid flow velocity is assumed. According to Appendix III, for x 2 I, 
C(x; 1) has the form 

C(x; I) = c, - (C, - c,)e-so-‘), (47) 

where C, denotes the concentration at the reaction front 1. and the 
quantity q is defined by 

k,ry 
t! 

(D=O,u#O) 

q = (k,cX/c$Dp* (DZ 0,u = O), 

+@(A- I) (DfO,Y#O) 

0 loo 200 300 400 500 ’ 

TEMPERATURE, % 

(484 

(48b) 

(48c) 

FIG. 3b. Logarithm of rate constants and equilibrium constants 
for minerals quartz and calcite plotted as a function of temperature 
as used in Fig. 3a. The equilibrium constants correspond to a~pmssure 
of 1 kb. The rate constants are obtained from Eqn. (43) with twam- /.. 
eters given in the text. 
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for the respective cases of pure advection, pure diffusion, and com- 
bined advectiondiiffusion. Explicit expressions for C, are given in 
Appendix III. The quantity A is defined by 

g~[l+s!y~. 

Thus each stationary state has the particularly simple form of a func- 
tion exponentially decaying with distance from the reaction front. 
The characteristic length q-’ provides a measure of the approximate 
distance from the reaction front at which equilibrium of the fluid 
with mineral A, is obtained The corresponding stationary state dis- 
solution rate is given as a function of distance for x ;r 1 by the expres- 
sion 

1,(x; I) = -kfCyAC,e-q(X-‘), (50) 
with 

AC, = C, - C,, (51) 

as follows from Eqn. (30). The dissolution rate is most rapid at the 
reaction front where the mineral is farthest from equilibrium, and 
diminishes exponentialIy away from the front as the fluid composition 
approaches equilibrium with the mineral. 

For times t 5 Q an explicit expression for the volume fraction 
4,(x, t) can be obtained by integrating Eqn. (35), using Eqns. (30) 
and (38) with 1 = 0 to give: 

bJx,t)=bp l-kSp , 
( 1 

where the delay time T,, has been introduced from Eqn. (40). At each 
point x in space, the 4, decreases linearly with time, eventually be- 
coming zero at the inlet at t = Q. According to this result, it follows 
that 

a,(~; I= 0) = @( 1 - e-3. (52b) 

For t > q, the dissolution front l(t) > 0 forms, which propagates 
at a retarded velocity compared to the velocity of some inert solute 
species. In this case the quasi-stationary state approximation also 
yields an analytical solution for the mineral volume fraction and 
solute concentration as functions of time and distance, as well as the 
position and velocity of propagation of the reaction front as a function 
of time. To determine explicit representations for the functions c(x; 
I), a,(~; I) and l(t), assume that the reaction front has advanced to 
the position 1 in time tl, and consider the displacement of the front 
through a distance Al in time k,. As a result a new stationary state 
is formed corresponding to the front located at I+ Al and time t 
+ At,. Then the solute concentration for x L l(t) is represented by 
the stationary state c(x; I) given in Eqn. (47) with reaction rate given 
by Eqn. (50). Here 1 corresponds to any one of the 1, labeling the 
sequence of stationary states. Integrating Eqn. (35) with the boundary 
condition that the mineral volume fraction vanish at x = 1 and t = t, 
gives: 

6,(x, t) = @,(x; I) - (t - t~)~JcpAC,e-q(x-‘~, (53) 

where a,(~, I) denote the mineral volume Itaction at time t, with the 

position of the maetion front located at x = 1 (recall that @& I) = 0 
by definition). This relation is valid for x 2 1 and t sz t,, but less than 
or equal to the time required for the mineral to comdietely dissolve 
at x = 1 + Al, for Al > 0. For x 5 1 the mineral volume fraction 
VanisheS. 

The expression for $(x; 1) is determined as follows (see Eqn. (58)). 
The time Ml for the front to advance from 1 to I+ Al follows from 
Eqn. (53) by setting the mineral volume fraction evaluated at the 
position of the front at time t = tl + At, equal to zero according to 

&(I+ Al, t/+ At,) = 0, (54) 

(55) 

From Eqn. (53), using Eqn. (55), the mineral volume fraction can 
be written in terms of At, as follows: 

&(x, t) = $(x; l) - $(I+ Al;1 
t 1 

2 e”‘*‘-ar). (56) 

From this result it follows that a& /) satisfies the reWI%iOn relation 

a,(~; 1+ Al) = @“,(x; 1) - @J+ Al; /@X-‘-4’“, (57) 

obtained by evaluating Eqn. (56) at t = tl -I AtI and noting that &(x 
1 + Al) = &(x, t, + At,) by definition because tl+ti = tl + AtI. By 
dire1.3 substitution it can be verihed that the exact solution to this 
equation satisfying Eqn. (45) is given by 

+Jx; I) = @( 1 - e-9(x-‘)). (58) 

With this result it is possible to obtain an expression for the velocity 
of the front by computing the time Af required for the l&it to advance 
through a distance Al. The velocity ul is given by the ratio Al/At in 
the limit as At + 0. From Eqn. (58) it follows that 

%,(I+ Al, I) = 4,” (1 - eeqd), 

= 6,” qAl, (59) 

to first order in Al. Substituting this result into Eqn. (55), the velocity 
of the front q can be expressed according to 

“2!=hmI 
’ dt ar,--CI At,’ 

1 AC, =-- 
r& ACo. 

(60) 

The ratio AC,/ACe can be evaluated from the explicit forms for the 
stationary state corresponding to pure advection (Eqn. (IILI)), pure 
diffusion (Eqn. (III.5)) and combined advectiondil%ion (Eqn. (III. 1)) 
given in Appendix II, resulting in the expressions: 

1 

1 (D=O,o#O) (61a) 

ACr 1 

ac,= ql+l 
- (D#O,u=O), (6W 

*I - (D#O,u#O) 
@a+ 1) 

(614 

where w, is defined by 

~,=$ji-$, (62) 

u = u/d, and the appropriate expression for q is given by Eqn. (48a), 
(48b) or (48c), respectively. 

Advection. For pure advection the velocity of the front is 
given by 

t),=L 
W’ 

as follows from Eqns. (60) and (61a) with q given by Eqn. 
(48a). According to this expression, the velocity of propa- 
gation of the front for surface controlled dissolution given 
by linear kinetics is independent of the rate constant and 
surface area of the reacting mineral. Surprisingly, this result 
is identical with the expression obtained for the velocity of 
the front in the local equilibrium approximation given by 
Eqn. (1.6) for & b 1, where Kd is defined in Eqn. (1.7). A 
similar result has been obtained by ORTOLEVA et al. (1986) 
for the propagation of a redox front based on the traveling 
wave approximation (see Appendix IV). This approximation 
is limited to advective dominated systems. 
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Dzjiision. For pure diffusion it follows from Eqns. (60) 
and (6 1 b) with q given by Eqn. (48b) that 

dl 1 1 

v’=dt=(ql+ l)q70xlq270~ 

where the approximate form holds for ql % I. Integrating 
this expression with the initial condition 

gives the result 
/(To) = 0. (65) 

1 1 
I+-qP=-(f-70). 

2 q7ll 

For 41% 1, the first term on the left-hand side is negligible 
compared to the second term, and this expression reduces to 
the familiar result 

with 

f(t) = 2rm, (67) 

1 +ACo “* r=__= _ 
q(2G2 [ 1 2r$5mv;’ (68) 

The expression on the right-hand side is just the local equi- 
librium result for the condition that r B 1 (WEARE et al., 
1976; LICHTNER et al., 1986a). Thus in this case and for ql 
9 1, the rate constant and surface area cancel in the expression 
for the velocity of the front yielding the local equilibrium 
result. On the other hand, for ql 6 1 the position of the re- 
action front is a linear function of time and furthermore, in 
this case+ the velocity of the front depends on the rate constant 
and surface area. 

Combined advection-d@usion. For combined advection- 
diffusion the situation is more complicated. The velocity of 
the front can be expressed in the form 

1 v,=-?!- 
qTow,+ 1’ (69) 

as follows from Eqns. (60) and (6 lc) with q given by Eqn. 
(48~). In this case the product qTo is, in general, a function 
of the rate constant and surface area, as is wI according to 
Eqn. (62). Thus the velocity of the front, in general, depends 
on kinetics. From this relation the retardation of the front 
RI, defined as the ratio of solute velocity to the velocity of 
the front, can be expressed according to 

R, = G = Kd( 1 - x(?)e-“‘ID), 
I 

(70) 

where the function X(T)) is defined by 

x(n)=;(fi- 1Y, 

with the dimensionless variable 9 defined by 

(71) 

4kpD 
fl= ($u2 ’ (72) 

and & denotes the local equilibrium distribution coefficient 
defined in Eqn. (1.7). This result is obtained by substituting 
Eqns. (40), (48c), (49), and (62) into Eqn. (69) and making 
use of the definition of the retardation factor given in Eqn. 
(1.5). As is apparent from Eqn. (70) and Fig. 4a, the retardation 
factor R, in general depends on the rate constant and surface 
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0 123456 

UL/D 

FtG. 4a. A plot of the ratio RJ& where RI denotes the retardation 
of the reaction front as predicted by the quasi-stationary state ap 
proximation and Kd denotes the local equilibrium distribution coef- 
ficient, versus the dimensionless variable u//D. Each curve corresponds 
to a different value of the dimensionless parameter a defined in Eqn. 
(72). As the position of the dissolution front denoted by I increases, 
the retardation factor R, exponentially approaches the local equilib 
rium retardation for pure advective transport. The curve labeled q 
= co corresponds to the local equilibrium case. 

area. However, R, exponentially approaches the local equi- 
librium result as the position of the front 1 increases, regardless 
of the value of the parameter 7. The factor X(V) varies between 

the values of zero and one as shown in Fig. 4b. For 1 Q 1, 
x(n) is proportional to 7) and very little deviation occurs from 
the local equilibrium value of the retardation for all 1. Max- 
imum deviation occurs for rl & 1, in which case X(n) c 1. 
For pure advection (D = 0), Eqn. (70) reduces to the local 
equilibrium retardation factor in agreement with Eqn. (63). 
In the local equilibrium limit T) + co and the retardation 
factor becomes 

R$ = K,,( 1 - eAUND). (73) 

Integrating Eqn. (69) noting that 01 is a function of 1 given 

by Eqn. (62), results in a transcendental equation for r(t) given 

by 

($+ l),,+~exp(-T)-- I)=-&@-7.). (74a) 

This equation has two limiting solutions corresponding to 
diffusion and advection dominated regimes. For 1 < D/u, the 
movement of the reaction front is diffusion dominated and 
Eqn. (74a) reduces to Eqn. (66) for u = 0 and to Eqn. (67) 
for 41% 1; for 1% D/u, the motion of the front is dominated 
by advection and in this case Eqn. (74a) is consistent with 
Eqn. (63) in the limit as D + 0. Kinetics enters Eqn. (74a) 

through the factor q and through the characteristic time 70. 
The condition of local equilibrium is obtained in the limit 
as kfcy + ~0, resulting in the following limiting equation for 
the position of the reaction front &(f): 

I,(t)+z(exp[-+$Q)-- l)=$, (74b) 

where the distribution coefficient Kd is given by the limit 

(75) 

in agreement with Eqn. (1.7). This expression is valid for Kd 
9 1. It should be emphasized that Eqns. (74a) and (74b) are 
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‘1 

FIG. 4b. The function x(q) defined in Eqn. (7 1) plotted as a fnnction 
of n. Note that X(W) = 1. 

exact results within the quasi-stationary state approximation 
and apply generally to pure diffusion and advection as well 
as combined advection and diffusion. Equation (74b) can 
also be obtained directly by integrating the Rankine-Hugoniot 
equation, Eqn. (1.2), in the quasi-stationary state approxi- 
mation to the local equilibrium limit of the transport equa- 
tions. 

Although the reaction front velocity is identical in the ad- 
vection dominated regime for surface and local equilibrium 
control&l reaction rates the spatial dependencies of the solute 
concentration, reaction rate and mineral volume fraction are 
nevertheless qualitatively different. Indeed, in the case of sur- 
face controlled reaction, the concentration, reaction rate and 
mineral volume fraction are piecewise continuous across the 
reaction front. Hence the Rankine-Hugoniot equation (see 
Eqn. (1.2)) leads to an indeterminate result for the velocity 
of the front. As the product of the rate constant and surface 
area increases, the local equilibrium limit is obtained. In this 
limit, both the solute concentration and mineral volume 
fraction contain jump discontinuities across the reaction 
front, and the reaction rate contains a delta function singu- 
larity (LICHTNER et al., 1986a,b). For x = 1 the exponential 
factor appearing in Eqn. (58) can be replaced by a first order 
Taylor expansion resulting in an expression for the volume 
fraction of the form 

(76) 

Thus the volume fraction profile near the front depends on 
the rate constant and surface area. Near the reaction front 
the mineral volume fraction varies linearly with distance with 
a slope proportional to q. This suggests the possibility of de- 
termining q from field observations of mineral volume frac- 
tion profiles. 

The position of the reaction front determined from Eqn. 
(74a) is plotted in Fig. 5 for the dissolution of quartz at 550°C 
with a dil?irsion coefficient of 1 O+ cm’ set- ‘, a Darcy velocity 
of 1 m year-‘, initial volume fraction of quartz equal to 0.9, 
and a porosity of 10%. The concentration of quartz at the 
inlet is taken as zero. The rate constant for the dissolution 
of quartz has the value lo-’ moles cm-’ set-’ at this tem- 
perature. Curves are shown for surface areas corresponding 
to 0.01, 0.1, 1, and 10 cm-‘. The dashed line through the 
origin corresponds to the local equilibrium result for pure 
advection. Note that all curves become paraliel to the local 

equilibrium case for sufhciently large times in agreement with 

Eqn. (73). The early time behavior is diffusion dominated 
and the effect of advection is unimportant on the position of 
the dissolution front. Each curve is shified from the origin 
by its corresponding delay time TV. 

There does not exist an analytical solution to the transient 
formulation of the mass conservation equations for transport 
by combined advection and diffusion for the moving bound- 
ary problem, either in the local equilibrium limit or for surface 
controlled dissolution. Therefore to test the quasi-stationary 
state approximation, the exact, transient mass transport 
equations given by Eqns. (34) and (35) with the reaction rate 
given by Eqn. (38) must be solved numerically. The numerical 
finite difference methods outlined in LICHTNER (1985) and 
LICHTNER et al. ( 1986b) can be used for such purposes. The 
results obtained are indistinguishable from the curves in Fig. 
5 indicating that indeed, the quasi-stationary state approxi- 
mation is an excellent approximation to the transient mass 
conservation equations. Furthermore, the curve coimspond- 
ing to a surface area of 10 cm-’ approximates the local equi- 
librium result, also obtained numerically by solving Eqn. (34) 
combined with the mass action equation given in Eqn. (I. 1). 

Numerical solution 

There are several factors which may act to alter the sta- 
tionary state before complete dissolution of the mineral occurs 
that are not accounted for in the analytical solution presented 
above. These include changes in surface area of the dissolving 
mineral grains, and changes in porosity and permeability of 
the porous medium. As noted above, for pure advection a 
change in porosity alone does not change the stationary state, 
according to Eqn. (20). However, if the permeability is altered, 
then the flow rate 2) must change thereby altering the sta- 
tionary state. Only the effect of varying surface area on the 
stationary state is considered in what follows. 
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FIG. 5. The position of the quartz dissolution front as a function 
of time at a temperature of 55O’C obtained by numerically solving 
Eqn. (74a) for l(t) for different surface areas as indicated in the figure. 
A Darcy velocity of 1 m year-‘, diffusion coefficient of 10V4 cm2 
set-‘, a rate constant of 10e9 moles cme2 set-r, zero initial concen- 
tration of solute species A, and an initial volume fraction of A, of 
0.9 were used in the calculation. All curves eventually become parallel 
to the local equilibrium result for pure advective transport indicated 
by the dashed line through the origin. The curves are displaced by 
the time TO required for quartz to completely dissolve at the inlet, 
which determines the time of initial appearance of the reaction front. 
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If the surface area of mineral A, changes as a consequence 
of chemical reaction, an analytical solution to the stationary 
state equations no longer exists and numerical techniques 
must be used. The solute concentration, reaction rate, mineral 
volume fraction and position of the reaction front are ob- 
tained at a discrete set of times corresponding to distinct 
stationary states. The essential difference between variable 
and constant surface area is that in the former case the po- 
sition of the reaction front need not change from one sta- 
tionary state to the next as was the case for the exact solution 
presented above. The spatial variation of the surface area, 
however, is different for different stationary states. 

A finite difference approximation to the stationary state 
equations represents the solute concentration by a discrete 
set of values Cf: where the subscript n refers to the nth node 
point x, = nAx, and Ax designates the spacing between node 
points. Usual finite difference algorithms can be used to obtain 
the stationary states Ci, as discussed in detail below for pure 
advection and for combined advection and diffusion, of which 
pure diffusion is a special case. 

Pure advective transport: Lagrangian reference frame-For pure 
advection the mass transport equation corresponding to the kth sta- 
tionary state is given by 

(77) 

for a fixed position of the dissolution front designated by /k. In the 
case of variable surface area, for distinct stationary states K, and K*, 
it is possible that I., = l.,. The multiple reaction path formulation of 
the quasi-stationary state approximation corresponds to introducing 
a Lagrangian reference frame letting x = d/g. The notation t’ is 
used to distinguish the time of a Lagrangian fluid packet from the 
time t specifying the evolution of the system at a fixed point in space. 
Substituting t’ for x in Eqn. (77) gives 

(78) 

Either form of the stationary state equations may be solved using 
standard finite difference techniques. Replacing the time derivative 
in the Lagm&an formulation by its finite difference form one obtains 
the finite difference analogue 

where the subscripts m + 1, m refer to times t&+, and t& respectively, 
differing by time step At’: 

tA+, = t:, + At’, (80) 

withm=0,1,2,... . The mth node point x,,, is associated with time 
th by Eqn. (22), x,,, = ut’,&. Form = 0, t6 = 0 and Ci = C,, where 
C, denotes the concentration at the inlet to the porous medium. 
Values of h in the range 0 < X ZG 1 correspond to the implicit, and 
A = 0 to the explicit finite difference algorithm. The value X = 1 is 
referred to as the fully backward implicit finite difference algorithm, 
and X = % corresponds to the Crank-Nicholson algorithm. 

With the reaction rate for the kth reaction path @/at given by 
Eqn. (38), the following recursion relation for the solute concentration 
is obtained: 

c;+, =c,-u,(C,-CL), (81) 

where the coefficient Q,,, is defined by 

with the characteristic time TV defined by 

(83) 

where abn denotes the surface area at the mth time step corresponding 
to the kth stationary state. The surface area is assumed to be a function 
of the mineral volume fraction & according to Eqn. ( 18). 

For constant surface area, the solution to the recursion relation 
Ci must agree with the results previously obtained for the exact 
solution. In this case the characteristic time Q,,, is independent of 
both indices k and m and denoted by TV (see Eqn. (II. 12) in Appendix 
II). It follows that the quantity ok, = ok depends only on the index 
k through /k and not on m. As a consequence, the recursion relation 
Eqn. (8 1) can be solved analytically to give 

C; = C, - (U.k)m(C@ - C,). (84) 

This result can be compared with the exact solution for constant 
surface area given by Eqn. (47) or Eqn. (111.8). Expressed in terms 
of the time along the flow path corresponding to the Lagrangian 
reference frame, Eqn. (47) yields for t’ r &): 

C(t’;I,) = C,- e-(r’-b’d”)l’R(C,- C,) (1’> &/o). (85) 

For t’ 5 &./u the concentration is constant and equal to its value at 
the inlet 

c(t’; /,) = C, (t’s &,v). (86) 

According to the finite difference result, in the absence of chemical 
reaction, ak = 1 and Eqn. (84) yields 

Ci = C, (all m), (87) 

in agreement with Eqn. (86). When reaction occurs, the two results 
agree provided 

ok& At’) G e-&“‘“, (88) 

by comparing Eqn. (84) with Eqn. (85). Expanding bk(x, At’) in a 
Taylor expansion gives to third order in At’ 

ak=, -g+“(E)‘-6h2(s)l+. . . . (89) 
TR 

Comparing this expansion with the expansion of the exponential 
function 

e-‘wr .=__ 1 -~+$X)‘-;(K~+. . . ( (90) 

demonstrates that X = ‘12 gives results that are exact to second order 
in At’, while the explicit (X = 0) and fully backward implicit (X = 1) 
finite difference algorithms are only exact to first order. 

For variable surface area the finite difference equations for the 
solute concentration must be solved numerically. According to Eqn. 
(82), Q,, ZG 1 and therefore the finite difference equations always 
possess a solution. To ensure that the solution is stable and no os- 
cillations occur, it is necessary and sufficient that Q,,, z 0, resulting 
in the following restriction on the size of the time step At’ 

AI’<%. (91) 

According to this result the fully backward implicit finite difference 
algorithm is unconditionally stable. Accuracy considerations result 
in a more stringent requirement on the size of the time step. 

To obtain the mineral volume fraction it is necessary to replace 
the reaction rate appearing in F.qn. (35) with its value averaged over 
the n - 1st and nth node points, it”, defined by 

where 
1:” = k,a!&C:: - C,), (93) 

according to Eqn. (30). Justification for this is given in Appendix V 
(see also LICHTNER et al., 1986a). The average mineral volunie fiac- 
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tion $g’ associated with the nth node point fork + 1st reaction path 
is obtained in terms of the previous path according to the expression 

.$?I = &c VJ&at,, (94) 

where Atk designates the time interval separating the two reaction 
paths. When mineral A, completely dissolves at a particular node 
point, the reaction front advances to the next node point. Thus the 
position of the reaction front &+, for the k + 1st stationary state is 
determined by the equation 

1, if @Jo, >O 
kl= 

i 
&+hx if $$sO * 

In the latter case the time step is computed to be 

A&!&_ 
Klr :,&,I * 

(95) 

(96) 

Validity of the quasi-stationary state approximation requires that 
the velocity of the front is greatly retarded compared to the fluid 
velocity 

RF%= 1, (97) 

or, equivaIemly, that the solute concentration is much less than the 
mineral concentration so that 

A&$?!?. (98) 

This in turn implies that the time step A& governing the alteration 
of the mineral A, is much greater than the time step At’ associated 
with the motion of a single packet of fluid: 

At’% At.+. (99) 

Indeed, for constant surface area the time required for the reaction 
front to advance one node point of width Ax, can be approximated 
by 

each fluid packet could not form a closed system within the 
fluid phase. 

To consider the case of advection, diffusion and dispersion, the 
finite difference analogue of Eqn. (46) is expressed in the form 

wheren= l,..., N, and C’f is defined by 

Ci=C”,-C W 
with 

C’i=AC 0, 
and 

Ck,, = 0. 

The coefficients g, , gr and /& are delined by 

g,=l-%, 

and 

t%= 

(103) 

(104) 

(105) 

(106) 

(107) 

(108) 

(109) 

These equations determine the kth stationary state with the reaction 
front &ated at ik. They may be expressed in matrix form according 
to 

Mkck+i =b, (IlO) 

where C& denotes the column vector 

c;=(cf,. . . ,cBT, (111) 

b designates the vector 

b=(grACo,O,. , . ,O)=, (112) 

srscript T designates the transpose, and the matrix Mk where the SI 
has the tridi as follows from Eqn. (63). Conversely the time step At’ for a fluid 

packet to advance a distance Ax is given by the equation 

At’_* 
- v ’ (101) 

The ratio of the two time steps At’ and A& is given by 

&om which Eqn. (99) follows. 

Numerical results for the dissolution of quartz at 55O’C 
for pure advection are presented in Fig. 6 for constant (solid 
line) and variable (dashed line) surface area. A flow rate of 
I m year-’ and a surface area of 10 cm-’ are used in the 
calculation. The remaining parameters are the same as in 
Fig. 5. The short dashed line through the origin refers to the 
local equilibrium result. The delay time 7. for constant surface 
area has the value 3.97 X lo6 set according to Eqn. (40). The 
delay time is increased by a factor of three for the variable 
surface area case compared to constant surthce area consistent 
with Eqn. (18). For the case of variable surface area the ve- 
locity of the front changes rapidly with time at the initial 
appearance of the front. The two curves become parallel as 
time increases. These results may also be checked by nu- 
mericahy solving the transient mass conservation equations, 
yielding in~~ishable results 

Advection-dt@sion. The kagrangian formulation only ap- 
plies in the absence of difTusion, D = 0, because otherwise 

Mk= 

ional form 

-8ki gl 0 0 *** o- 

g2 -8k2 8, 0 *** 0 

0 g2 -,f&, 0 * * * 0 
. . . 
. . . 
* * 

0 * . . 0 gz -&v-l g1 
0 . . * 0 0 g2 -BkK 

* (113) 

Note that the position of the reaction front enters these equations 
only through the coefficient & according to the definition given by 
Eqn. (109). 

From the kth stationary state, the mineral volume fraction 
corresponding to the k -t 1st stationary state is determined 
from the relation 

4 :;:’ = i$$, + pJi,rg Ark, (114) 

where At& designates the time step between the kth and k 
+ 1st stationary state. 

Shown in Fig 7 are the positions of the dissolution front 
for quartz at 55O’C corresponding to pure diEusion (dashed 
curves) and combined advection and diffusion (solid curves), 
plotted as a function of time for variable and constant surface 
area. A flow rate of 1 m year-‘, a diffusion coefficient of 10m4 
cm* set-’ , and an initial surface area of 10 cm-’ are used in 
the calculations. With increasing time the solid curves must 
eventually become parallel to the local equilibrium limit for 
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FIG. 6. Position of the reaction front as a function of time for 
constant (solid curve) and variable (long dashed curve) surface area 
for pure advection for the system in Fig. 5. The dashed line through 
the origin corresponds to the local equilibrium result. An initial surface 
area of 10 cm-‘, JDarcy flow velocity of 1 m year-‘, and initial mineral 
volume fraction of 0.9 were used in the calculation. For the case of 
variable surface the velocity of the front is initially a function of time, 
but eventually becomes constant and equal to the local equilibrium 
result. 

pure advection represented by the dashed line through the 
origin. The curves for variable surface area are shifted from 
the constant surface area curves resulting from an increase 
in the delay time 7. by a factor of three. These results are 
consistent with numerical calculations based on the transient 
mass transport equations. 

4. HYDROCHEMICAL WEATHERING OF K-FELDSPAR 
BY INFILTRATION METASOMATISM 

In this section the quasi-stationary state approximation is 
applied to a simplified description of hydrochemical weath- 
ering of a granitic rock consisting of the minerals K-feldspar 
and quartz. Rainwater is assumed to percolate through the 
pore spaces of the host rock at a Darcy flow rate of 10 m 
year-‘. The calculation presumes that the rate of weathering 
is controlled by surface reaction of K-feldspar, which dissolves 
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FIG. 7. Position of the reaction front as a function of time for pure 
ditfusion (dashed curve) and combined advection and ditksion (solid 
curve) for constant and variable surface area. The same parameters 
are used as in Fig. 5 with an initial surface area of 10 cm-‘. The solid 
curves eventually become parallel to the local equilibrium result for 
pure advection corresponding to the dashed line through the origin. 

incongruently to form product minerals gibbsite, kaolinite 
and muscovite. A soil zone, not explicitly incorporated in 
the calculations, is assumed to lower the pH of the infiltrating 
rainwater to acidic values. As the host rock becomes weath- 
ered in time, a saprolitic zone is formed throughout which 
most of the K-feldspar is replaced by the minerals gibbsite 
and kaolinite. Quartz remains essentially unaltered during 
the weathering process. The calculation is restricted to a single 
spatial dimension, and no account is taken of changes in 

permeability and porosity of the weathered saprolite zone 
which could act to divert the flow of water along the saprolite- 
fresh rock interface (VELBEL, 1984). 

Thermodynamic data for minerals and aqueous species at 
25°C and 1 bar are taken from the computer program 
SUPCRT (see BOWERS et al., 1984, and references therein). 
The rate constant for quartz is taken from RIMSTIDT and 
BARNES (1980) and that for K-feldspar from HELGESON et 
al. (1984). Very little data is available for reaction rates of 
the product minerals gibbsite, kaolinite and muscovite. LA- 
SAGA (1984) has given preliminary values for gibbsite and 
kaolinite. Furthermore, it is difficult to estimate the surface 
area corresponding to these minerals. In view of this uncer- 
tainty, the approach adopted here is to choose values for the 
product of the rate constant and surface area such that near 
local equilibrium conditions for precipitation are achieved. 
A single value for this product of 1O-‘4 mole sec..’ is used 
for all three minerals. Values of the equilibrium and rate 
constants used in the calculation are given in the accompa- 
nying table. The composition of the fluid is described by the 
5 components K+, A13++‘. H’, SiOZ and Cl-, an inert species 
included for charge balance. The initial fluid composition 
used in the calculation corresponds to a dilute HCl solution 
with pH 4. The initial composition of the host rock corre- 
sponds to a porous arkosic sandstone with volume fractions 
of 0.2 for K-feldspar and 0.7 for quartz, and a porosity of 
10%. The initial surface areas of K-feldspar and quartz are 
taken as 12 and 40 cm* cm&, respectively, and are allowed 
to vary with reaction according to Eqn. ( 18). 

TABLE: Reactions accompanying the weathering of K-feldspar m the system K+ 
Al~O,-SiOq,yHCt-H~O at 25 ‘C and I bar. 

H,O z H’ + OH- 

/ AI(O + H’ f Al” + Hz0 4.73 

I At( + 4H’ t Al” + 4HlO 22.11 I 

I H,SiOi + H’ t SiOx,, + 2H10 9.57 I 

NS 
Mineral Irreversible Hydtulysis Reaction M k (moles em-’ WC-‘) Log K 
gibteite AI( + 3H+ + -14.0 7.96 

Al” + 3Hz0 

kaolioite AIISi~O,(OH), + 6H* t -14.0 7.43 

2Al” + 2SiOb, + 5HaO 

muscovite KA12(AN,010XOH)2 + IOH’ t -14.0 14.56 

K’ + 3Al” + 3SiOx,, + 6H20 

K-feldspar KAlSi,Og I 4H+ t -12.6s (pHdcp.) 0.08 

K’ + Al’+ + 3SiOxm, + 2HlO -15.5 (pH-indep.) 

q”fUtl SiOl t Si04w1 -17.5 -4.0 
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The time evolution of the weathering process is represented 
by the sequence of stationary states obtained by numerically 
solving Eqn. (23) based on the Lagrangian representation of 
the quasi-stationary state approximation. The reaction rates 
of the various minerals are shown as a function of distance 
along the flow path in Fig. 8 for the reaction path corre- 
sponding to the first Lagrangian fluid packet. FVoduct min- 
erals gibbsite, kaolinite, and muscovite precipitate from so- 
lution as the infdtrating fluid reacts with K-feldspar, forming 
alteration zones of varying length along the flow path. Gibb- 
site is the first mineral to precipitate from the packet with an 
initial zone width less than one meter, followed by kaolinite 
and muscovite. The spatial overlap between the gibbsite-ka- 
olinite and kaolinite-muscovite zones is a consequence of 
disequilibrium of the fluid with respect to these minerals. 
The dissolution rate of K-feldspar is constant over approxi- 
mately the tirst 9 meters of the flow path and equal to the 
far from equilibrium rate of 3.79 X 10-r’ moles liter-’ set-‘. 
The rate sharply decreases at the onset of precipitation of 
muscovite and rapidly approaches equilibrium. The infil- 
trating fluid reaches quasi-equilibrium with K-feldspar and 
muscovite within approximately 15 meters of the surface of 
the host rock. Although muscovite, from its initial onset, 
continues to precipitate along the entire flow path, its rate of 
precipitation is so small that it is produced in only infinites- 
imal quantities. 

The lifetime of the first reaction path, and therefore the 
time of occurrence of the second path, is dependent on the 
assumption used for computing the change in surface area 
of the dissolving K-feldspar grains. For constant surface area 
and assuming a constant fluid flow rate, the positions of the 
alteration zone boundaries remain stationary with time until 
K-feldspar completely dissolves at the surface of the host rock. 
This time, denoted by rW, can be estimated from the equation 
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FIG. 8. Reaction rates of reactant and product minerals plotted as 
a function of distance for the fust reaction path resulting from the 
hydrochemical weathering of K-feldspar and quartz A dilute HCl 
solution of pH 4, with a Darcy flow velocity of 10 m year-’ infiltrates 
into the porous rock with an initial porosity of 0.1. See text for a 
discussion of the parameters used in the calculation. The overlap of 
the product mineral reaction xones is a consequence of disequilibrium 
of the reacting minerals with the fluid. The dissolution rate of K- 
feldspar is constant over the first 9 meters of the tlow path. Quartz 
dissolves along the initial part of the flow path, but precipitates tiuther 
downstream as a result of the dissolution of K-feldspar. The widths 
of the reaction zones are directly proportional to the fluid flow velocity 
and independent of the porosity of the porous medium, 

(115) 

yielding a value of approximately 16,000 years for the pa- 
rameters given above ( VK, = 108.74 cm3 mole-‘). This sit- 
uation could occur if the decrease in surface area resulting 
from an overall decrease in grain size, was compensated for 
by an increase in surface area as a result, for example, of the 
creation of etch pits with reaction. An alternative possibility 
resulting in constant surface area is flow in a fmcture in which 
only one surface of the dissolving mineral grains is exposed 
to the fluid. By taking into account the reduction in surface 
area of the K-feldspar grains according to Eqn. (181, the 
product mineral reaction zone boundaries continuously 
evolve with time. The lifetime of each stationary state in this 
case is determined by the time required for a significant 
change to occur in the K-feldspar surface area. As a conse- 
quence, the lifetime for the first reaction path is much shorter 
than that corresponding to constant surface area. It was found 
that, for the case of variable surface area, 200 year time in- 
tervals between stationary states was adequate to obtain con- 
vergence. 

As shown in Fig. 9 depicting the positions of the reaction 
zone boundaries as a hmction of time for times up to 100,000 
years, K-feldspar completely dissolves over the initial 9 meters 
of the host rock after approximately 48,000 years have 
elapsed, three times the value for constant surface area. The 
movement of the reaction zones up to this time is entirely a 
consequence of the change is surface area of the dissolving 
K-feldspar grains. The gibbsite zone almost completely over- 
laps the kaolinite zone for times up to approximately 30,000 
years. However, as K-feldspar continues to dissolve, a zone 
consisting of pure gibbsite and quartz several meters wide is 
formed. As time progresses, both the gibbsite and kaolin&e 
zones continue to grow, the gibbsite at the expense of kaolinite 
and the kaolinite zone at the expense of K-feldspar. The 
overlap between the gibbsite-kaolinite zones remains ap 
proximately constant. For times greater than 60,000 years 
the reaction zone boundaries move at constant velocities, 
indicating formation of a steady-state. The K-feldspar and 
kaolinite-muscovite boundaries advance at a velocity of ap 
proximately 0.57 mm year-‘, whereas the downstream gibb- 
site boundary and the upstream kaolinite boundary advance 
at a rate of approximately 0.21 mm year-‘. The upstream 
gibbsite boundary moves at a slower rate of approximately 

0.077 mm year-‘. These rates can be expected to be propor- 
tional to the Darcy flow velocity, with a slower velocity re- 
sulting in a proportionately slower advancement of the 
weathered saprolite zone. 

The widths of the various reaction zones shown in Fig. 9 
are somewhat deceptive because the abundance of each min- 
eral throughout the zone is not indicated. By comparison 
with Fig. 10a in which the mineral volume fractions and 
porosity are shown as a function of distance for various times, 
it is apparent that gibbsite is concentrated over less than half 
of its total zone width. Muscovite is not produced in su& 
cient abundance to appear in the figure. Porosity increases 
throughout the weathered saprolite zone as a result of the 
negative volume of reaction, consistent with a pseudomorphic 
replacement mechanism observed in weathered rock. A sharp 
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weathered-fresh rock interface exists which advances into the 
host rock with time. Also shown in Fig. 10 are the mineral 
volume fractions as a function of distance for times corre- 
sponding to the steady-state regime. Both the gibbsite and 
kaolinite zones steadily grow with time as the K-feldspar zone 
recedes, 

The concentration of aqueous species K+, H+, SiOZ, and 
total Al am plotted in Figs. I la,b,c and d, respectively, as 
functions ofdistance for various times indicated in the figures. 
The potassium ion concentration continuously increases with 
distance as K-feldspar dissolves. The advance of the K-feld- 
spar boundary is apparent from Fig. 1 la, marked by the po- 
sitions where the concentration of the potassium ion increases 
from its initial value of lob6 moles liter-‘. The pH dramat- 
ically increases at the kaolinite-muscovite boundary over a 
distance of a few centimeters as the fluid approaches equi- 
librium with K-feldspar. The continuous increase in concen- 
tration of SiOr is a result of the dissolution of quartz, with 
the position of the kaolinite boundary marked by a discon- 
tinuous change in slope. The sharp increase in the concen- 
tration of SiOr is a consequence of the dissolution of kaolinite 
at the beginning of the kaolinite boundary. The total alu- 
minum concentration exhibits a sharp spike coincident with 
the increase in pH at the kaolinite-muscovite boundary. The 
movement of the upstream gibbsite zone boundary is ap- 
parent in Fig. I Id for times greater than 40,000 years after 
K-feldspar has completely dissolved, marked by the sudden 
increase in the total aluminum concentration. 

From the change in concentration and mineral volume 
fraction across a particular reaction front, the velocity of the 
front, denoted by uI, can be determined in the steady-state 
flow regime from the expression 

V 

“=o(l +Lj)’ 

with the coefficient Lj defined by 

5 vjr C'(tir) 

(1 16) 

(1171 

as demonstrated in Appendix IV. This result is based on the 
traveling wave approximation (see, e.g., ORTOLEVA et al., 
1986, and Appendix IV) and applies to a multi-com~nent 
system for the case. of advective dominated mass transport. 
The traveling wave approximation requires that the reaction 
front form a coherent front (HEL~RICH and KLEIN, 1970), 
in which case Lj is the same for all species. The angular 
brackets{- - -)d enote the difference in the enclosed quantity 
evaluated at downstream and upstream sides of the front. 
The expression for the front velocity is formally similar to 
the corresponding local equilibrium expression with angular 
brackets replacing square brackets denoting the jump in the 
enclosed quantity across the reaction front (cJ LICHTNER, 
1985). The front velocity obtained from Eqn. (116) yields 
excellent agreement with the corresponding velocities esti- 
mated from Fig, 9. For example, referring to Fig. 1 la, it fol- 
lows that (Pk+) = 1O-3.9s moles liter-’ at the K-feldspar 
dissolution front. Furthermore, Cp$ = 0.2, and therefore OK/ 
CZ 0.57 mm year-‘. Similarly it follows that the velocity of 
the upstream gibbsite zone boundary is approximately equal 

to vgibb m 0.074 mm year-’ taking 4bb ~ZJ 0.077 obtained 

TIME (YEARS) x IO4 

RG. 9. Position Of reaCtiOn zone boundaries as a fimCtiOn of time 

for the hydrochemical weathering of K-feldspar incorporating variable 
surface area of the dissolving K-feldspar grains. The figure is con- 
structed from a sequence of 500 stationary states each separated by 
a time interval of 200 years. Parameters used in the calculation are 
the same as in Fig. 8, depicting the first stationary state. K-feldspar 
completely dissolves over the first 9 meters of the flow path after 
appro~ately 48,ooO years have elapsed. For times longer than ap- 
proximately 60,000 years a steady-state is established in which the 
reaction zone boundaries move at constant velocities. 

from Fig. 10 and ( \kA,) = 1 O-4.75 according to Fig, 11 d, with 
c&b = 3 1.956 cm3 mole-‘. The velocity of the downstream 
kaolinite boundary is estimated to be approximately zlkool 
x 0.25 mm year-’ taking (\irsQ) * 10-4.25 - 10-5.2s 
= 10-4.3 with tpgd = 0.1 and pb, = 99.52 cm3 mole-‘. 

To investigate the evolution of the fluid composition along 
the flow path with time, aqueous concentrations correspond- 
ing to stationary states at times t = 200, 2, 3, 4, 5, and 6 
X IO4 years are plotted on an activity diagram in Fig, 12 with 
x and y axes corresponding to log asiq and log aK+/aH+, re- 
spectively. Shown in the figure are the stability fields of gibb- 
site, kaolinite, p~ophyllite, muscovite and K-feldspar. The 
vertical dashed line indicates the saturation line of quartz. It 
should be kept in mind that the fluid is generally not in equi- 
librium with the minerals in the diagram. The sharp bend in 
the curves at the gibbsite-kaolinite boundary indicates the 
onset of precipitation of kaolinite. For times greater than 
50,000 years, the reaction paths are essentially coincident 
consistent with the steady-state behavior observed for the 
reaction zone boundaries in Fig. 9. With increasing time the 
vertical segment of the reaction paths moves towards the 
quartz saturation line as the fluid approaches equilibrium 
with quartz. 

Reaction rates of reactant and product minerals for the 
stationary state corresponding to 50,000 years are shown in 
Fig. 13 as a function of distance. In similar fashion to the 
first reaction path, the dissolution rate of K-feldspar decreases 
sharply at the kaolinite-muscovite boundary and rapidly ap- 
proaches equilibrium. Muscovite continues to precipitates 
further downstream, but at an infinitesimal rate. Internal 
growth within the kaolinite zone is reduced from that of the 
first path, as a consequence of the decreased dissolution rate 
of K-feldspar corresponding to a smaller surface area. The 
behavior of the reaction rates of product minerals shown in 
the figure is typical for reaction paths subsequent to the first 
path. The rates of product minerals exhibit sharp peaks cor- 
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FIG. 10. Volume fractions of the reactant and product minerals and porosity as a function of distance for the 
indicated times. The same parameters are used as in Fig. 8. Muscovite is produced in too small amounts to appear in 
the figure. Initially the gibbsite zone is produced directly from the dissolution of K-feldspar. For times greater than 
48,000 years after which K-feldspar has completely dissolved throughout the gibbsite zone, the growth of the gibbshe 
zone results from the dissolution of kaolin&. The kaolinite zone continuously increases in width, growing more rapidly 
at the expense of K-feldspar than it is converted into gibbsite. 

responding to dissolution at the beginning of alteration zones. 
Gibbsite, kaolinite and muscovite dissolve at their respective 
upstream boundaries and precipitate further downstream. 
Coincident with the dissolution of kaolinite, a sharp peak 
occurs in the rate of gibbsite precipitation that is almost the 
mirror image of the kaohnite dissolution rate, indicating that 
gibbsite is forming from kaolinite. A similar behavior occurs 
downstream where the precipitation rate of kaohnite is the 
approximate mirror image of the dissolution rate of mus- 
covite, indicating that muscovite is being transformed into 

kaolinite. This is illustrated in more detail in Fig. 14 where 
the reaction rates of kaolinite and muscovite are shown as a 
function of distance. The kaolinite precipitation rate has a 
sharp peak coincident with the onset of dissolution of mus- 
covite. An increase in the rate constant or surface area of 
kaolinite, for example, would result in an increase in the 
height of the peak as its width decreases, approaching a delta 
function singularity in the limit of local equilibrium. Note 
that the magnitude of the rates indicate that aluminum is 
not strictly conserved by the replacement reactions. For ex- 
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FIG. 11. Aqueous concentration of species K+, H+, SiO2 and total Al plotted as a function of distance. for the indicated 
times. The same narameters are used as in Fib!. 8. The position of reaction zone boundaries are visible as discontinuous 
changes in slope in the concentration profiles. 

ample, for the transformation of kaolinite to gibbsite, the 

rate of gibbsite would need to twice that of kaolinite if alu- 
minum were to be exactly conserved by the reaction. 

There has been much discussion in the literature concem- 
ing the origin of the gibbsite zone in the genesis of bauxite 
deposits. To explore in more detail this issue for the calcu- 
lation described here, the reaction rates of gibbsite and ka- 
olinite are plotted as a function of distance for various times 
in Fig. 15. For earlier times the gibbsite precipitation rate 
and kaolinite dissolution rate are not correlated with one 
another as occurs at later times. Thus, at earlier times gibbsite 

‘Si02 

FIG. 12. Plot of reaction paths at the indidated times on an activity 
diagram. On the vertical axis is plotted the ratio up/ax+ and on the 
horizontal axis the activity ~2~~. The paths terminate at equilibrium 
with muscovite and K-feldspar. For times longer than 60,000 years 
a steady-state is formed with little change in the reaction path with 
time. The vertical dashed line denotes saturation of quartz. 

forms directly from K-feldspar, whereas at later times it forms 
primarily from the precursor kaolinite. For times later than 
48,000 years, the time required for K-feldspar to dissolve 
completely over the first 9 meters of the flow path, gibbsite 
forms entirely from kaolinite. 

5. CONCLUSION 

The quasi-stationary state approximation appears to be a 
powerful, quantitative tool for describing the metasomatic 

DISTANCE (METERS) 

FlG. 13. Reaction rates of reactant and product minerals for the 
stationary state corresponding to 50,000 years plotted as a function 
of distance. The behavior is typical for stationary states subsequent 
to the fmt. The giblkte and kaolinite zones dissolve at their nxpective 
upstream boundaries and precipitate further downstream. Internal 
precipitation takes place throughout the lmolinite zone resulting from 
the dissolution of K-feldspar. A detail of the kaolinitsmuscovite 
boundary is shown in Fig. 14. 
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DISTmCE METERS) 

FIG. 14. Detail of the reaction rates of kaohnite and muscovite at 
50,000 years plotted as a function of distance in the neighborhood 
of the kaolin&-muscovite reaction zone boundary. The sharp peak 
in the precipitation rate of kaolinite coincides with the dissolution 
of muscovite. Note that aluminum is approximately conserved by 
the reaction of muscovite + K-feldspar to form kaolinite. 

alteration of minerals in response to pure advective, pure Finally, calculations describing the weathering of K-feld- 
diffusive, and combined advective-diffisive mass transport. spar yielded two distinct processes for the formation of gibb- 
Within the quasi-stationary state approximation the time site. During the initial period of the weathering process gibb- 
evolution of tbe system is approximated by a sequence of site formed directly from K-feldspar, but at later times it 
stationary states which q~~~ti~y adjust to changes in formed indirectly through the precursor kaolinite. Kaolinite 
the properties of the host rock. Its validity depends on the formed both directly as a weathering product of K-feldspar 
rapid formation of a stationary state compared to the time and indirectly through the precursor muscovite. While it is 
required for significant changes in rock properties. The time difficult to compare these results directly with field obser- 
for formation of a stationary state is related to the differences vations because of their simplified nature, it is hoped that 
in concentration of a species in aqueous solution compared calculations such as these may form the first step towards 
to its con~n~tion in a mineral. S~ifi~n~y larger time more realistic calculations in~~mting host rock compo- 
steps can be taken in the numerical integration of the quasi- sitions of greater complexity, as well as two-dimensional fluid 
stationary state equations than is otherwise possible using flow. For the latter, it is essential to incorporate the change 

DISlANCE(METERS) MSTANCE MEW?S) 

MSTARCE WETERSf 

conventional finite difference algorithms, allowing integration 
of the governing equations over geologic time spans. 

Viewed qualitatively, the quasi-stationary state approxi- 
mation offers a conceptual understanding of the formation 
and propagation of mineral alteration zones resulting from 
surface ~n~o~~ reaction rat- that is distinct from a local 
~u~b~urn ~hromato~phic description. Thus reaction 
fronts remain stationary in time despite steady fluid flow, 
unless significant changes in surface area, mineral abun- 
dances, porosity or permeability occur to alter the stationary 
state. 

Application of the quasi-stationary state approbation to 
the dissolution of quartz led to the observation that under 
certain circumstances the propagation of the quartz disso- 
Iution front was independent of the rate constant and surface 
area and coincided with the local equilibrium limiting be- 
havior. For combined advectivediffisive mass transport the 
situation was more complicated, but after a sufficiently long 
period of time had elapsed the local ~~b~urn front velocity 
was attained. 

4 6 6 10 

2 4 6 8 10 
OISTANCEWETERSI 

2 4 6 B IO I2 14 I6 
DISTANCE~METERS) 

p1 15 
‘0 
z IO 

4 6 8 IO I2 I4 I6 
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YG. 15. Reaction r$es of gibbsite and kaolinite plotted as a function of distance for various times. During the early 
penods of the weathermg process, gibbsite is produced directly from K-feldspar, whereas at later times it is produced 
from the dissolution of kaolinite as indicated by the mirror images of the gibbsite and kaolinite rates. 
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in permeability of the weathered saprolite zone from the al- 
most impermeable host rock. 
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APPENDIX I: LOCAL EQUILIBRIUM APPROXIMATION 

The local equilibrium approximation for the dissolution reaction 
given in Eqn. (29) can be precisely defined as the limit of the surface 
controlled reaction rate given in Eqn. (30) as the product of the rate 
constant k,and surface area a! become infinite (e.g. LICHTNER, 1985). 
In this case the reaction rate 13Z~/&(x, t) becomes an additional un- 
known quantity to be determined by solving the mass transport 
equations. The additional equation needed is the mass action equation 
expressed in the form of an inequality 

K-’ t C(x, t), (I.11 

where K denotes the equilibrium constant for the reaction as written 
‘in Eqn. (29), and a sufficiently dilute aqueous solution is assumed 
to justify unit activity coefficient. Equality holds when the fluid is 
sat&t& with respect to the solid (I$, # 0), and the inequality when 
the fluid is undersaturated (4, = 0). This restriction on the mass 
action equation combined with Eqn. (36) defines a moving boundary 
problem for the local equilibrium case. The mineral dissolves at a 
sharp reaction front which advances with time at a retarded velocity 
q. The velocity of the reaction front u, is determined from the gen- 
eralized Rankine-Hugoniot equation specifying conservation of mass 
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across the front. The frontal velocity q is given as the ratio of the 
jump in flux to the jump in solute and mineral inanition across 
the front according to the expression (LIWTNER, 1985) 

(I.21 

valid for pure advective fluid flow, where u denotes the Darcy velocity, 
and the square brackets [. . .] denotes the jump in the enclosed quan- 
tity across the reaction front. For the initial and boundary unctions 
given by Eqns. (31), (32) and (33), the jump in solute and mineral 
concentration are given by 

ICI = C, - G, (1.3) 
and 

Ml = $7. (1.4) 

With these results the ~~n~Hugo~ot equation results in a retar- 
dation factor R$ of the front given by 

(1.5) 

=I+&, 

where the distribution coefficient & is defined by 

(1.6) 

0.7) 

This result is completely analogous to the description of a chro- 
matograpbic column in which ion-exchange reactions are substituted 
for mineral dissolution reactions. According to this result the lower 
the solubility of the mineral, that is the smaller the ~~b~urn con- 
centration, the greater the retardation of the reaction front. Under 
most circumstances of geologic interest the mineral concentration is 
much larger than the equilibrium aqueous concentration resulting 
in the inequality 

(1.8) 
or, 

K&- 1. (1.9) 

Neglecting changes in porosity and permeability of the porous me- 
dium resulting from dissolution of mineral AS, the solute concentra- 
tion is given by the expression 

c(x,t)=fJ(x-I(t))C~+(l -0(x--&))C,, (1.10) 

and the mineral volume fraction by 

~~(x,~)=~x-~f))#~, (1.11) 

where e(x) denotes the Heaviside function defined by 

@@~=I * 1 (xr0) 
(1.12) 

I 0 (x<O) 

Substituting Eqn. (1.11) into Eqn. (35) the reaction rate is found to 
be of the form 

where a(x) denotes the Dirac delta function defined by 

a(x) = g(x). 

(1.13) 

(I. 14) 

Thus the concentration and mineral vofume both contain jump dis 
continuities across the reaction front The rate of dissolution is sing&r 
at the front, proportional to the Dirac delta function. This behavior 
is charactet%tic of a chemical shock front. 

APPENDIX II: TRANSIENT SOLUTION TO THE 
ADVIKX’ION-DIFFUSION-REAmON EQUATION 

AND THE STATIONARY STATE LIMIT 

The advection-diffision equation coupled to the linear kinetic re- 
action rate law given by Eqn. (30) admits an analytical solution pro- 

vided the reacting mineral does not completely dissolve at any point 
in space. The solution given here has been adopted from OGATA 
( 1964,197O) who considered the problem of irreversible ion-exchange. 
With the initial and boundary conditions speci6ed by Eqns. (3 1) and 
(33) the following expression is obtained for the solute concentration 
c(x, 0: 

C(x, t) = c, - 

+ ,(I + AXW=‘)erfc XSAZU 
[ I) -x7’ (11.1) 

where e&(x) denotes the complementary error function, the quantity 
q is defined by 

q=&(A- l), (11.2) 

where 

(11.3) 

and u denotes the average pore velocity defined by 

,=fl 
#‘ 

(11.4) 

The stationary state limiting form of the transient solution is given 
by the expression 

C(x) = c, - (C, - CfJ5? 

This result follows from Eqn. (II. 1) when 

(11.5) 

OI.6) 

and 

e(’ + almme~c a 0. (n.7) 

Therefore, it follows from properties of the error function that a 
stationary state is established for t % 7 where r is implicitly defined 
by the quadratic equation 

Al&-X 
-w2 

2vs . 
f11.8) 

A value of 2 is chosen for the argument of the error function because 
erfc(-2) = 1.995, which is within 0,25’% of e&(-co) = 2. At the 
inlet to the porous medium, x = 0, 7(x, D, u, 4, k,, a) is given by 
the simple expression 

7= 16z 
A%$. 

(11.9) 

Noting that A may be expressed in the form 

@=1+4Lt: 
711’ 

(II.10) 

where the characteristic transport and reaction times or and ra are 
defined respectively by 

and 

D 
TT=--, 

ii= 

6 ra=---, 
ksa 

(II.1 1) 

(II. 12) 

T has the limiting values 
1673 (71% 7~) 

7= 

i 

(II. 13) 
4TR (TR 4 TT) 

Thus two limiting cases exist depending on the relation between 7x 
and ra . 

For pure diITusion (u = 0) Eqn. (II. 1) reduces to 
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+e@erff*]], (11.14) 

where 

q= (II. 15) 

Steady state is reached when t g 4~. 
For the case of pure advection (D = 0) the solute concentration is 

given by the expression 

qx, t) = c, - (C, - c,)e+-e cbx ( 1 t - - 
v ’ 

(II. 16) 

In this case the stationary state limit holds provided t z=- @x/v. This 
is the time required for a packet of fluid to arrive at position x, and 
therefore the stationary state limit gives the exact result over the 
region to the left of the ix&ration front. 

APPENDIX Iu: STATIONARY STATE SOLUTIONS TO 
THE ADVRC’I’ION-DIFFUSION-REACTION EQUATION 

The stationary state solution to the ~v~on~~on-~~on 
equation satis@ing the initial and boundary equations given by Eqns. 
(3 1) and (33) and continuity conditions at the reaction zone boundary 
I given by Eqns. ( 16) and ( 17) has the form: 

l-edD 

C(x; I) = 

( 

CoeUX’D+[C~-CoeY’lD]~ (xzzl) 
(III. 1) 

c, - (C, - c,)e-+‘) (X&l)’ 

where C, denotes the concentration at the zone boundary 1 and q is 
defined by the expression 

and 

c?=$(h- l), fIII.2) 

*= 1+4k/cuD 
[ I &2 ’ 

(111.3) 

with u = v/#. Continuity of the &IX at the zone boundary results in 
the following expression for C, 

c,= (111.4) 

For pure di&tsion the stationary state concentration reduces to 
the expression 

c(x;l)= ~ 
~~c~-cQ~~+cQ c=o 

(111.5) 

where I c, - (C, - c,)e-fi (x 2 I) 

4= !!$ ‘12, ( ) (111.6) 

and 
c=cw-cQ 

I ql+* 
(111.7) 

Finally for pure advection the stationary state concentration is 
given by the expression 

i 

CO &SO 
C(x;l)= (IIM) 

c, - (C, - co)e-~(x-‘) (XL0 
where 

\ 

(111.9) 

APPENDIX Iv: THE TRAVELING 
WAVE APPRO~~~ON 

In this appendix the traveling wave approximation is used to derive 
an expression for the velocity of a reaction front for a muhicom- 
portent, one-dimensional system. It is presumed that one or more 
reaction fronts exist with the front located at position Z(t) propagating 
with velocity q. This ~pro~~tion assumes that in the n~~~~ 
of each reaction front the solution to the mass transport equations 
can be represented in the form of a traveling wave given by 

*j(h; t) = 9,(X- I(t)), (IV. 1 a) 
and 

#,(x, tf = $5(x - &)X (IV.lb) 

for the general&d solute concentration and mineral volume traction, 
respectively (ORTOLEVA et al., 1986). Different reaction fronts are 
assumed to be sufficiently far apart so as not to interact with each 
other. This form CaMOt hold when diffisional mass transport is im- 
portant, as demonstrated below, and therefore the travehng wave 
~ro~mation is only useful for advective dominated systems. 

Combining Eqns. (3) and (4), the transient mass conservation 
equations for a single spatial dimension can be written in the form 

Representing the generalized concentration *j and mineral volume 
fraction 6, by Eqns. (IV.la,b), and introducing the coordinate x’ 
defined by 

Eqn. (IV.2) becomes 
X’ =x - /(I), (IV.3) 

~Vj,wP;'&) =O, (IV.4) 
r-1 

where q denotes the velocity of the front defined by 

dl 

u’=dt- 
This transformation amounts to choosing a coordinate system at rest 
with respect to a Lagmn&n fluid packet moving with the front. It 
follows that the quantity in curly brackets must be equal to a constant, 
or 

-+Dz 
M 

i- V*j - V,(#U; + 2 Yjr c;‘&) = constant. (IV.6) 
r-I 

For the case of pure advective mass transport, evaluating the 1eR 
hand side of this equation at two distinct points leads to the following 
expression for the velocity of the front 

(IV.7) 

where the retardation factor RI is given by 

R[= 1 +L,, 

with the coefficient Lj defined by 

(IV.8) 

The angtdar brackets (. . .) denote the difference in the enclosed 
quantity at the two chosen points. This result is formatly sinGIar to 
the result obtained in the local equilibrium limit with the angular 
brackets (. . .) repking square brackets [. . .I dmow the jumP 
across the reaction front (cf: LJCHTNER, 1985, and Appendix I). The 
travehng wave ovation requires that L, be the same for alI 
species j, and themfore that I(r) mpresent a coherent front (m- 
FERtcXi and KLBIN, 1970). 
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dC(x' ) 
-#D dx - t UC(Y) - u,(&C(x’) t I;‘&) = constant. (IV. 10) 

The general solution to the quasi-stationary state equations for either 
pure diffusion, pure advection, or combined advection and diffusion 
can be expressed in the form for x 2 I: 

C(x’) = c, - (C, - c&YQx’, (IV.1 la) 
and 

4,(x’) = &,P ( 1 - e+), (IV. 1 lb) 

where x’ = x - l(t), and q is given by Eqn. (48). Substituting Eqns. 
(IV. 1 la) and (IV. 1 lb) into Eqn. (IV. lo), and collecting terms it follows 
that 

((u- @,)C,t P;;‘@) t ((bDq+ @,- u)AC,+ ur~;‘&,“)e4” 

= constant, (IV. 12) 

for all x’ z 0, where AC, is defined in Fqn. (41). This can only be 
true if the coefficient multiplying exp(-qx’) is identically zero, re- 
sulting in the following expression for the velocity of the front: 

(IV. 13) 

However, Eqn. (IV.13) contradicts the exact results given by Eqn. 
(64) for pure diffusion, as well as Eqn. (69) for combined advection 
and diffusion. Thus the travel wave approximation is not valid in 
these cases. 

For pure advection (D = 0), Eqn. (IV. 13) gives for the retardation 
factor 

17-L Loz 
(IV. 14) 

in agreement with Eqn. (63) for R, % 1. This result also follows directly The average volume fraction 4::’ for the k + 1st reaction path is 
from Eqn. (IV.9) with obtained recursively from the expression 

(C)=C(co-C(O)=C,-co, (IV. 15a) 
and 

(4,) = &(co) - MO) = $7, (IV. 15b) 

obtained by evaluating the quantities enclosed in the angular brackets 
asymptotically at x’ = co, and at the reaction front x’ = 0. 

R’=&+(l*,+i&_‘,At~. W.5) 

obtained by combining the finite difference form of Eqn. (V.2) with 
Eqn. (V.4), where AC denotes the time step between the kth and k 
+ 1st reaction paths. 

APPENDIX v: LAGRANGIAN REPRESENTATION 
SPACE AVERAGED REACTION RATE 

As demonstrated by LICHTNER et al. (1986a) it is necessary to 
space average the mineral dissolution equation to accurately describe 
the motion of the reaction front. Writing 

one obtains 

W.1) 

P s .T.+AX 
=2 

Ax X” 
Mx, w, W.2) 

where the reaction rate Z,(x, t) is given by Eqn. (30). Assuming that 
Ax is su5ciently small so that Z, varies linearly throughout the interval 
Ax, the reaction rate may be expanded in a Taylor series to hmt order 
giving 

r,(x,t)=z~(x”,~)i~(x”,tXx-x”), (V.3) 

and therefore 

&+A% 

s 
Z,(x, t)dx = AXl,(x. t %L-c, t) =; Ax(Z,” t I,.+‘). (V.4) 

*I 
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