= ГЕОХИМИЯ =

УДК 553.064/.065(265.53)

НОВЫЕ ДАННЫЕ О КОНЦЕНТРАЦИИ РТУТИ В ЖЕЛЕЗОМАРГАНЦЕВЫХ КОРКАХ ПОДВОДНЫХ ГОР СЕВЕРО-ЗАПАДНОЙ ПАЦИФИКИ

© 2012 г. П. Е. Михайлик, академик А. И. Ханчук, Е. В. Михайлик, М. В. Иванов, Е. В. Еловский, М. Е. Мельников

Поступило 27.08.2012 г.

В северо-западной Пацифике на подводных горах и поднятиях широко распространены железомарганцевые корки различного генезиса [1]. Одним из признаков, указывающих на их происхождение, является концентрация некоторых элементов-индикаторов, таких как Li, Co, Hg, РЗЭ и др. [2, 3]. Высокое содержание ртути, по мнению [4], является наиболее значимым из индикаторов гидротермального генезиса железомарганцевых образований открытой части океана. Проведенная авторами работа посвящена выяснению справедливости данного высказывания для железомарганцевых корок задуговых бассейнов (окраинные моря).

Материалом для исследований послужили образцы железомарганцевых образований северозападной Пацифики (рис. 1, табл. 1), полученные в различных рейсах на нис "Первенец" (25-й, 34-й,

Рис. 1. Расположение станций отбора железомарганцевых корок. *1* – станции драгирования, *2* – скважина глубоководного бурения (скв. 431-DSDP), *3* – номер станции.

Дальневосточный геологический институт Дальневосточного отделения Российской Академии наук, Владивосток Тихоокеанский океанологический институт им. В.И. Ильичева

Дальневосточного отделения Российской Академии наук, Владивосток

Государственный научный центр "Южморгеология", Геленджик Краснодарского края

36-й рейсы), "Зоне" (178-й рейс), "Геленджик" (объекты 6-06 и 6-07).

Определение ртути с низкой погрешностью в природных объектах, в частности в железомарганцевых образованиях, методом масс-спектрометрии с индуктивно связанной плазмой (ИСП-МС) сопряжено с некоторыми трудностями. Вопервых, подготовка пробы твердого вещества для определения ртути существенно отличается от подготовки пробы для определения большинства других микроэлементов, необходимых для геохимических исследований. Это обусловлено тем, что ртуть и ее соединения являются летучими; следовательно, подготовку пробы исследуемого вещества требуется проводить в закрытых сосудах, например при использовании метода микроволнового разложения с кислотным воздействием без полного вскрытия образца. Однако дальнейшее точное определение других микроэлементов в данном случае не представляется возможным из-за неполного растворения образца [5]. Во-вторых, сама методика измерения содержания ртути методом ИСП-МС требует высокой степени удаления ее из системы ввода после каждого измерения, что достигается использованием различных промывающих растворов, отличных от растворов, используемых для рутинного анализа большинства микроэлементов. Таким образом, метод ИСП-МС в случае определения ртути в твердых образцах становится методом одноэлементного определения, что противоречит изначальному позиционированию метода ИСП-МС как метода многоэлементного анализа.

Одним из лучших способов определения ртути является атомно-адсорбционная спектрометрия с использованием отечественного анализатора ртути PA-915+ с пиролитической приставкой ПИ-PO-915 [6]. На этом приборе можно с высокой селективностью определять ртуть в различных объектах природной среды. Его приставка ПИРО-915 позволила определять содержание ртути в твердой фазе методом пиролиза. Нижний предел обнаружения 0.5 мкг/т. Стандартными образцами на ртуть служили ГСО 7183-95, СПДС-1, 2, 3. Концентрации остальных элементов и минеральный состав определяли по методике, описанной в [7].

Результаты определения минерального состава показывают, что железомарганцевые корки гайотов Тихого океана, центральной части Охотского моря [7] состоят из вернадита — минерала, слагающего гидрогенные корки [8]. Детальные исследования минералогии Fe—Mn-корок Курильской островной дуги [9] показали, что преобладающим минералом является также вернадит. Среди прочих минералов марганца установлены тодорокит, асболан и асболан-бузерит. Железомарганцевые корки Японского моря состоят из тодорокита, бернессита и пиролюзита Таблица 1. Местоположение и минеральный состав железомарганцевых корок

-	-				
Местоположение	Номер образца	Минеральный состав			
Магеллановы горы					
гайот Коцебу	14Д28-01	Вернадит			
	14Д28-02л				
	14Д28-03				
	14Д28-04				
	14Д28-05				
	14Д28-06				
гайот Говорова	08Д68-1-01	Вернадит			
	08Д68-1-02				
	08Д68-1-03				
Маршалловы острова,	40Д03-2-01	Вернадит			
гайот МА-40	40Д03-2-02				
	40Д03-2-03				
Императорский хребет					
гайот Йомей	EM-1	Вернадит			
(скв. 431-DSDP)	EM-2				
	EM-3				
	EM-4				
	EM-5				
	EM-6				
	EM-9				
подводная гора	Д13-1	Вернадит			
Детройт	Д13-5				
	Д13-7				
Охотское море					
трог Кашеварова	S19-1	Вернадит [7]			
	S19-2				
	S19-3				
	S19-4				
Курильская остров-	B15-87	Вернадит, редко			
ная дуга	B17-40	асболан, асбо-			
	B17-41	тодорокит [9]			
	B24-34				
	B17-43				
Японское море					
вулк. Беляевского	2069/2-A1	Тодорокит,			
	2069-2-5	бернессит, пиролюзит [10]			
вулк. Медведева	1343-6	impositositi [10]			
	1945				

Номер	Hg	Fe	Mn	Al	Si	Ca	K	Mg	Na	Р	Ti
	мг/т	%									
14Д28-01	148	10.45	22.22	0.41	1.01	13.19	0.46	0.85	1.53	4.78	0.83
14Д28-02л	112	17.37	25.32	0.77	3.13	2.85	0.56	1.14	2.10	0.61	0.94
14Д28-03	104	19.55	21.43	1.21	5.01	2.74	0.55	1.07	1.92	0.69	0.88
14Д28-04	90	17.67	24.30	1.57	3.46	2.35	0.55	1.38	1.72	0.50	1.43
14Д28-05	85	16.44	26.27	1.20	3.51	3.03	0.77	1.23	1.85	0.52	1.37
14Д28-06	53	21.30	19.38	1.73	7.34	2.51	0.63	1.03	1.82	0.48	0.94
08Д68-1-01	117	19.17	23.78	1.06	3.58	2.55	0.58	1.16	1.91	0.56	1.14
08Д68-1-02	105	22.47	21.28	1.33	5.23	2.77	0.59	1.13	1.96	0.63	1.06
08Д68-1-03	81	12.91	22.77	3.05	7.18	2.53	1.63	1.27	2.38	0.34	1.15
40Д03-2-01	91	15.74	29.75	0.41	1.86	2.98	0.57	1.20	2.11	0.39	0.94
40Д03-2-02	83	18.77	25.35	0.75	6.82	3.27	0.59	1.26	2.10	0.53	0.87
40Д03-2-03	62	17.57	26.88	0.77	3.42	2.66	0.56	1.18	2.46	0.35	1.03
EM-1	146	13.04	27.67	0.37	4.50	2.68	0.48	1.11	2.22	0.38	0.75
EM-2	91	13.83	27.87	0.37	4.60	2.70	0.48	1.10	2.10	0.40	0.72
EM-3	43	13.87	27.88	0.50	5.60	2.53	0.54	1.14	2.06	0.48	0.70
EM-4	26	14.15	26.48	0.33	4.40	2.60	0.46	1.10	2.36	0.40	0.66
EM-5	31	13.68	29.45	0.29	3.30	2.78	0.50	1.14	2.12	0.39	0.72
EM-6	49	13.71	27.85	0.23	3.40	2.70	0.46	1.17	2.84	0.41	0.68
EM-9	54	12.35	26.83	0.39	7.20	2.49	0.56	1.20	2.74	0.39	0.70
Д13-1	49	31.25	9.99	1.55	3.83	1.45	0.55	0.91	1.66	0.51	0.95
Д13-5	85	18.38	28.90	0.62	3.44	2.87	0.65	1.01	2.31	0.40	0.79
Д13-7	127	13.06	18.22	2.06	9.16	6.46	1.27	1.79	1.89	2.25	0.72
S19-1	343	14.47	22.13	0.234	8.41	2.55	0.73	1.51	2.15	0.48	0.37
S19-2	178	12.61	28.94	0.107	4.16	2.69	0.65	1.58	2.17	0.45	0.33
S19-3	350	9.01	26.91	0.25	0.7	2.32	0.8	1.98	1.91	0.42	0.35
S19-4	224	16.4	14.87	0.257	13.89	2.02	0.73	1.04	2.2	0.48	0.26
B 15-87**	490	9.99	10.76	5.25	16.33	3.21	0.98	1.86	2.27	0.15	0.28
B17-40**	860	2.87	25.68	3.33	14.42	1.93	1.52	1.86	1.91	0.09	0.16
B17-41**	810	20.31	10.76	1.66	12.41	0.93	0.79	1.02	1.76	0.78	0.09
B24-34**	680	6.43	24.39	2.76	12.23	2.50	1.25	1.68	2.71	0.10	0.14
B17-43**	2400	10.81	15.15	3.43	15.26	1.00	1.43	2.31	2.13	0.16	0.25
2069/2-A1	1430	0.04	51.70	0.80	2.64	1.24	0.15	1.47	1.45	0.45	0.01
2069-2 -5	445	15.75	14.81	1.57	1.86	0.55	0.12	0.38	0.71	0.04	0.08
1343-6	1860	0.253	54.7	0.24	5.99	1.82	0.15	1.02	0.75	0.07	0.01
1945	975	0.19	59.01	0.19	1.07	0.63	0.41	0.6	1.4	0.44	0.01
R	1	-0.60	0.34	0.29	0.38	-0.30	0.14	0.35	-0.39	-0.19	-0.67

Таблица 2. Содержание макро- и микроэлементов, величины цериевой (Ce*) и европиевой (Eu*) аномалий и коэффициент корреляции (*R*) в железомарганцевых корках

ДОКЛАДЫ АКАДЕМИИ НАУК том 447 № 5 2012

НОВЫЕ ДАННЫЕ О КОНЦЕНТРАЦИИ РТУТИ

Таблица 2. Окончание

Haven	Со	Ni	Cu	Li	Ba	ΣРЗЭ	T1	Th	E .,*	C*
помер	Г/Т								Eu*	Ce*
14Д28-01	2913	3667	1219	4.3	2807	2193	159	8.6	0.81	1.38
14Д28-02л	7443	4218	469	6.1	1180	3494	140	51.4	1.02	1.13
14Д28-03	5140	2922	397	13.7	1294	2226	96	45.3	1.01	1.24
14Д28-04	5902	5478	2015	21.3	1863	2215	201	26.3	1.06	1.71
14Д28-05	5533	5382	1620	5.0	2427	2234	249	10.9	1.06	1.11
14Д28-06	4065	2328	527	4.3	1506	2995	85	34.7	0.92	2.64
08Д68-1-01	7027	3727	872	3.3	1386	2172	146	51.1	1.04	1.41
08Д68-1-02	4273	2640	670	1.0	1383	2076	90	38.6	1.12	1.42
08Д68-1-03	5280	5548	3933	10.2	2068	2075	181	10.7	1.15	2.99
40Д03-2-01	9358	5687	465	0.4	1270	2084	245	41.3	0.97	1.35
40Д03-2-02	6930	4978	342	1.6	1275	2128	124	38.6	0.81	1.90
40Д03-2-03	8762	4205	892	96.2	1634	1746	256	9.9	0.97	1.34
EM-1	4343	5275	566	3.3	1850	2938	183	27.7	0.91	4.25
EM-2	4210	5052	521	3.1	1556	2761	176	28.4	0.92	3.89
EM-3	3987	5215	608	8.8	1651	2544	208	28.3	0.94	3.59
EM-4	4227	4582	495	2.6	1399	2684	158	32.0	0.94	3.69
EM-5	4527	5771	665	1.8	1703	2888	192	27.2	0.93	4.29
EM-6	3299	5042	383	1.3	1351	2736	205	22.4	0.94	3.32
EM-9	4307	3995	490	4.8	3023	2566	30	27.4	0.92	5.27
Д13-1	2668	803	117	5.7	1797	2657	10	71.9	1.01	2.00
Д13-5	4232	4190	1095	1.9	2373	3711	51	19.6	1.01	2.89
Д13-7	1647	4293	730	70.8	2298	1990	31	24.4	1.05	0.85
S19-1	500	3692	235	30.2	674	768	94	25.9	1.05	1.50
S19-2	462	4002	388	52.7	819	651	130	14.2	1.09	1.61
S19-3	509	5302	450	75.4	1098	493	157	7.8	1.11	2.34
S19-4	396	1283	163	34.5	710	791	65	25.6	1.04	1.48
B 15-87**	200	422	57	51.0	1107	105	9.5	2.0	1.26	0.97
B17-40**	75.8	253	40	23.0	2561	180	6.7	2.5	0.97	1.19
B17-41**	622	533	40	28.0	1846	357	4.4	3.8	0.96	1.11
B24-34**	33.5	264	50	6.0	823	43	0.7	1.1	1.32	0.80
B17-43**	456	2259	371	58.0	2117	705	9.3	17.2	0.96	2.38
2069/2-A1	190	867	159	454	1490	195	2.9	1.8	3.70	1.71
2069-2 -5	11	168	9	161	840	12	1.3	1.0	5.40	3.29
1343-6	209	679	71	245	11080	46	1.5	0.6	6.47	1.10
1945	54	85	18	393	2043	41	1.1	0.3	1.98	1.19
R	-0.57	-0.57	-0.32	0.59	0.47	0.55	-0.46	-0.65	-0.58	-0.66

Примечание. ** – по [9].

(табл. 1) — типичных минералов гидротермальных марганцевых отложений [10].

Концентрации макро- и микроэлементов, величины европиевой и цериевой аномалий, а также коэффициент корреляции (корреляция между ртутью и представленными в таблице элементами) приведены в табл. 2, из которой видно, что распределение макро- и микроэлементов характеризует неоднородность химического состава. Это, в свою очередь, указывает на различный генезис исследованных образцов, которые подразделяются на гидрогенные и гидротермальные.

Рис. 2. Зависимость накопления ртути от концентрации лития (а) и величины европиевой аномалии (б). Тихий океан: *1* – Магеллановы горы, *2* – Маршалловы острова, *3* – гайот Йомей, *4* – подводная гора Детройт; Охотское море: *5* – трог Кашеварова [7], *6* – Курильская островная дуга [9]; Японское море: *7* – вулк. Беляевского, вулк. Медведева [10]; *8* – образец В17-43 с содержанием Hg 2400 мг/т (Курильская островная дуга, Охотское море) [9].

К первым относятся корки гайотов северозападной Пацифики и подводных гор центральной части Охотского моря [7]. Вторую группу составляют железомарганцевые корки Курильской островной дуги, часть образцов которых имеют характеристики гидрогенных образований [9], и подводных вулканов Японского моря [10].

Полученные данные по содержанию ртути (табл. 2) показывают, что гидротермальные железомарганцевые корки с подводных вулканов Японского моря характеризуются содержанием ртути от 445 до 1860 мг/т (аномалией считается концентрация Hg больше 120–150 мг/т [6]), что в несколько раз выше ее концентрации в гидрогенных железомарганцевых корках гайотов С-3 Пацифики (табл. 2). Приведенные в табл. 2 содержания ртути на много меньше, чем ее концентрация в этих же образцах, определенная ранее методом ИСП-МС (до 2920 мг/т) [10]. Более того, высокое содержание Hg – до 2400 мг/т (обр. В17-43) было выявлено в гидрогенных железомарганцевых корках Курильской островной дуги [9], которое анализировалось методом ИСП-МС при одновременном многоэлементном определении (табл. 2). В гидрогенных рудных образованиях трога Кашеварова концентрации ртути, также повышены (178–350 мг/т). Значения содержания ртути, полученные ранее для этих образцов (ИСП-МС), находятся в пределах 840–2490 мг/т [7].

Применение статистических методов интерпретации данных химического анализа (табл. 2) не выявило четкой связи накопления ртути относительно марганца (R = 0.34). Это дает основание предположить, что при формировании железомарганцевых корок оксигидроксиды марганца не участвуют в процессе сорбции ртути из морской воды или гидротермального флюида, что подтверждается исследованиями [11]. Прослеживается обратная связь накопления железа относительно ртути (R = -0.60). Чем ниже концентрация железа, тем выше содержание ртути в исследуемом образце. В гидротермальных образованиях происходит селективное накопление марганца относительно железа [12]. Это отражается на величине марганцевого (Mn/Fe) и титанового ((Mn + Fe)/Ti) модулей, которые являются геохимическими критериями разделения гидротермальных и гидрогенных железомарганцевых образований [9]. Коэффициент корреляции между концентрацией ртути и Mn/Fe равен 0.61, а для (Mn + Fe)/Ti составляет 0.83.

Концентрации ртути и лития имеют отчетливую корреляционную зависимость (рис. 2а). Высокие содержания лития в железомарганцевых корках являются одним из критериев, указывающих на гидротермальный генезис. Прослеживается связь между концентрациями ртути и величиной европиевой аномалии (рис. 2б), которая, по мнению [13], может служить более надежным индикатором вклада гидротермального компонента в состав железомарганцевых корок окраинных морей.

На рис. 3 представлены графики распределения ртути в зависимости от концентрации гидрогенных элементов (Th, Tl и ΣРЗЭ). Графики данных демонстрируют обратную связь в накоплении этих элементов. Из этого следует, что накопление ртути в океанских гидрогенных корках не связано с гидрогенной составляющей, а ее концентрации редко превышают 120 мг/т (табл. 2). Это подтверждается отсутствием ее связи с величиной цериевой аномалии, одной из основных характеристик поставки гидрогенного вещества в железомарганцевые корки (табл. 2). Однако гидрогенные корки Охотоморского региона [7] содержат ртуть в количествах, сопоставимых с гидротермальными (табл. 2), а железомарганцевые образования котловины Дерюгина в районе

ДОКЛАДЫ АКАДЕМИИ НАУК том 447 № 5 2012

Рис. 3. Зависимость накопления ртути от концентрации тория (а), талия (б) и суммы редкоземельных элементов (в). Условные обозначения см. рис. 2.

Баритовых гор (тонкие корочки в виде "экваториальных" поясков на галечном материале ледового разноса, поднятые в 54-м рейсе нис "Академик М.А. Лаврентьев", 2011 г.) концентрируют ртуть (42 мг/т) втрое меньше, чем окружающие осадки, где, по данным [14], развита активная современная эндогенная флюидодинамика.

Приведенные факты указывают на уникальность железомарганцевого рудогенеза окраинных морей, где на формирование железомарганцевых корок влияют многие факторы и определение генезиса невозможно по одному или двум признакам. Накопление ртути в железомарганцевых образованиях окраинных морей требует более детальных исследований с привлечением данных о роли микробиального фактора в формировании железомарганцевых образований [15].

Проведенные исследования показывают, что высокая концентрация ртути в железомарганцевых образованиях задуговых бассейнов не является значимым индикатором, отражающим гидротермальный генезис железомарганцевых корок, как это было установлено для таковых открытой части океана [4]. Кроме того, показано, что определение концентрации Нg многоэлементным методом ИСП-МС некорректно в связи с тем, что ртуть и ее соединения являются летучими.

Работа выполнена при финансовой поддержке проектов ДВО РАН № 12–І–П23-01 и № 12–ІІІ– А–08–152.

СПИСОК ЛИТЕРАТУРЫ

- 1. Аникеева Л.И., Андреев С.И., Казакова В.Е., и др. Кобальтбогатые руды Мирового океана. СПб.: ВНИИОкеангеология, 2002. 168 с.
- 2. *Батурин Г.Н.* Руды океана. М.: Наука, 1993. 303 с.
- 3. Дубинин А.В. Геохимия редкоземельных элементов в океане. М.: Наука, 2006. 360 с.
- 4. *Toth J.R.* // Geol. Soc. Amer. Bull. Pt I. 1982. V. 91. P. 44–54.
- Sample Preparation for Trace Element Analysis / Z. Mester, R. Sturgeon. Ed. Amsterdam: Elsevier, 2003. V. 41. 1286 p.
- Другов Ю.С. Экспресс-анализ экологических проб: практическое руководство. М.: Бином; Лаборатория знаний, 2010. 424 с.
- Михайлик П.Е., Деркачев А.Н., Чудаев О.В., Зарубина Н.В. // Тихоокеан. геология. 2009. Т. 28. № 1. С. 32–43.
- Мельников М.Е. Месторождения кобальтоносных марганцевых корок. Геленджик: ФГУГП ГНЦ "Южморгеология", 2005. 230 с.
- 9. Батурин Г.Н., Дубинчук В.Т., Рашидов В.А. // Океанология. 2012. Т. 52. № 1. С. 95–108.
- Михайлик П.Е. Состав, строение и условия формирования железомарганцевых корок Японского и Охотского морей. Автореф. дис. канд. геол.-минерал. наук. Владивосток, 2009. 22 с.
- Koschinsky A., Hein J.R. // Mar. Geol. 2003. V. 198. P. 331–351.
- Страхов Н.М., Штеренберг Л.Е., Калиненко В.В., Тихомирова Е.С. Геохимия осадочного марганцоворудного процесса. М.: Наука, 1968. 495 с.
- 13. Батурин Г.Н., Дубинчук В.Т., Рашидов В.А. // ДАН. 2011. Т. 440. № 2. С. 213–219.
- Астахов А.С., Саттарова В.В., Свининников А.И. и др. // Тихоокеан. геология. 2007. Т. 27. № 5. С. 13– 31.
- 15. *Ehrlich H.L.* Geomicrobiology. N.Y.: Marcel Dekker, 1996. 719 p.

551