УДК 550.34

Омуралиев М. Институт сейсмологии НАН КР, г. Бишкек, Кыргызстан

ДИНАМИКА СЕГМЕНТАЦИИ АКТИВНОГО РАЗЛОМА И РАЗВИТИЯ ОЧАГА ЗЕМЛЕТРЯСЕНИЯ

Аннотация. В статье изложены современные основы модели очага землетрясения.

Ключевые слова: динамическая сегментация, активный разлом, сейсмическая волна, очаг землетрясения, скорость сейсмических волн, плотность, жесткость среды, спектр, сейсмический момент, моментная магнитуда.

АКТИВДҮҮ ЖАРАҢКАНЫ СЕГМЕНТТЕШТҮРҮҮНҮН ЖАНА ЖЕР ТИТИРӨӨ ОЧОГУНУН ӨНҮГҮҮСҮНҮН ДИНАМИКАСЫ

Кыскача мазмуну. Макалада жер титирөө очогунун моделинин заманбап негиздери баяндалган.

Негизги сөздөр: динамикалык сегментациялоо, активдүү жараңка, сейсмикалык толкун, жер титирөөнүн очогу, сейсмикалык толкундардын ылдамдыгы, тыгыздык, чөйрөнүн катаалдыгы, спектр, сейсмикалык учур, учур магнитуда.

DYNAMICS OF THE ACTIVE FAULT'S SEGMENTATION AND EARTHQUAKE FOCUS DEVELOPMENT

Abstract. Present-day basics of the earthquake focus model are given in the paper.

Keywords: dynamic segmentation, active fault, seismic wave, earthquake focus, seismic wave velocity, density, medium shear modulus, spectrum, seismic moment, moment magnitude.

Введение. В настоящее время существуют около десяти моделей очага землетрясения, начиная от модели упругой отдачи Рейда (1911) до модели лавиннонеустойчивого трещинообразования (ЛНТ) [1] и дилатантно–диффузионной (ДД) модели [2,3]. В ДД- модели изменение давления внутрипоровой жидкости в дилатирующей области является обязательным условием возникновения землетрясения. В ЛНТ модели при подготовке землетрясения происходит постепенный переход от объёмного дисперсного разрушения к локализованному, независимо от наличия или отсутствия внутрипоровой жидкости.

Следует отметить, что очаг землетрясения характеризуется фокальным механизмом, который определяется на основе знаков первых вступлений Р волн [4,5]. При этом выделяются нодальные (разломные) плоскости; главные оси напряжения: сжатия, растяжения и промежуточная; оцениваются подвижки по разлому и определяются их типы: сдвиги, сбросы, взбросы, сбросо - сдвиги, взбросо - сдвиги и т.д.

Аки [6] принял модель разлома прямоугольной формы и связывал среднюю дислокацию U с сейсмическим моментом Мо:

$$Mo = \mu UA, \qquad (1)$$

где µ - жёсткость, А – площадь разлома.

Шольц [7] рассматривал модель разлома с неровностями (asperity) на поверхности.

С развитием модели движущегося очага конечных размеров изучались спектры объемных сейсмических волн [8,9,10]. Спектр смещений характеризовался наличием горизонтального участка в области низких частот и затухающими осцилляциями с наклонной прямолинейной линией, огибающей в области высоких частот. Частота, соответствующая точке перегиба огибающих линий, называлась угловой частотой.

Дуда и Кайзер [11] рассматривали спектральные магнитуды, спектр магнитуды и количественную оценку землетрясений.

Очаги землетрясений фактически в реальных условиях, например, в Тянь-Шане, готовятся и проявляются в зонах активных разломов [12], где в очаговой зоне отмечается система (ассоциация) разрывовов [7]. Так, очаг Кеминского землетрясения (1911, М=8.2) готовился и проявился в зонах Южно и Северо-Кеминского, Аксуйского, Чиликского разломов взбросового и взбросо-сдвигового типа общей протяжённостью около 200 км. Южно и Северо-Кеминские разломы расположены субширотно, субпараллельно, а остальные разломы - кулисно. Каждый из разломов в свою очередь состоит из ряда звеньев - сегментов. Очаг Чаткальского землетрясения (1946 г., М=7.4) готовился и проявился в пределах Таласо-Ферганского и Атойнокского разломов северо-западного и северо-восточного простирания, сдвигово-сбросового и взбросового типа, соответственно. Очаг Суусамырского землетрясения (1992 г., М=7.2) готовился и проявился в зонах Предарамсуйского и Пердсуусамыртооского разломов взбрососдвигового типа, расположенных кулисно-субширотно. Очаг землетрясения Нура (2008 г., М=6.6) готовился и проявился в зоне Предзаалайского разлома взбросового типа, которая состоит из пяти ветвей, образованных поэтапно с юга на север на южном крыле Алайской впадины.

На основании анализа полей плотности (концентрации) сейсмогенных разрывов Кср [13], [14], [15] в области подготовки сильных землетрясений - около 10 (в пределах территории Кыргызстана с 1970 г.) в связи с зонами активных разломов и сейсмических излучений по данным локальной сети сейсмических станций [16], а также проявления флюидов и частичного плавления, отраженных в соотношениях Vp, Vs, Vp/Vs [17], [18], сформулированы основные принципы модели развития очага землетрясения. Они заключаются в следующем:

- 1. Вдоль зоны активного разлома образуются аномальные области с относительно большой плотностью (концентрацией) сейсмогенных разрывов разного параметра и межаномальные области с относительно малой плотностью сейсмогенных разрывов.
- 2. Плотность сейсмогенных разрывов аномальных областей периодически растёт. Аномальная область расширяется, а межаномальная область сокращается.
- 3. Аномальная область формируется в активном сегменте зоны разлома, а межаномальная область – в малоактивном сегменте, представляющий собой своеобразный «барьер» в зоне разлома. По мере развития аномальных областей концентрация сейсмогенных разрывов достигает критического значения - в межаномальной области разрывы концентрируются и барьер разрушается. Формируется система разрывов разного параметра И излучения соответствующей частоты. По ходу развития системы разрывов проявляются флюиды и процессы частичного плавления. В зоне активного разлома проявляется динамическая сегментация В соответствии с иерархией сейсмических циклов.
- 4. Величина выделившейся энергии при образовании определённого разрыва в физическом смысле есть разница уровней энергии возбуждённых частей массива горных пород до и после образования данного разрыва. Сумма энергии

излучений всех имеющихся частот (от низкой до высокой частоты), соответствующих разрывов разного параметра в их системе (ассоциации) определяет сейсмическую энергию очага землетрясения.

На рисунке 1 приведены, в качестве примера, отдельные этапы подготовки Исфара-Баткенского землетрясения (1977 г., М=6.3, φ=40.08°, λ=70.87°, h=20 км) в зоне Катрантооского разлома Южной Ферганы на основе изучения изменения поля плотности сейсмогенных разрывов в пространстве и во времени [14]. При этом использован каталог землетрясений, составленный по данным сети сейсмических станций Кыргызстана, Таджикистана и Узбекистана с 1967 г. Параметр плотности сейсмогенных разрывов (Кср) определялся в ячейках с шагом 1 год. Наиболее информативным размером оказались ячейки 11.1 х 8.2 км (6' х 6').

Рисунок 1. Карта-схема параметра плотности сейсмогенных разрывов Кср в области подготовки Исфара-Баткенского землетрясения (1977, M_L = 6.3) в зоне Катранстооского разлома Южной Ферганы за периоды: а - 1967-1973 гг., б-1967-1975 гг., в – 1967- 1977.01.09. Пунктирной линией обозначена зона Катрантооского разлома. Звёздочкой обозначен эпицентр.

На начальном этапе подготовки землетрясения проявились аномальные области: западная, восточная с относительно большой плотностью (малыми значениями параметра Кср) и межаномальная область с относительно малой плотностью (большими значениями Кср) вдоль зоны Катрантооского разлома. В зоне разлома динамической сегментации. Геометрия развивался процесс аномальных И межаномальной областей изменялась по мере концентрации разрывов. Ha завершающем этапе подготовки землетрясения барьер разрушился, аномальные области объединились с образованием ассоциации разрывов разного параметра в очаге.

Рассмотрим спектры сейсмических волн и системы (ассоциации) разрывов в очагах ряда землетрясений (таблица 1). В областях этих землетрясений в пределах Кыргызского и Терскейского поднятий широко распространены метаморфизированные интрузивные породы среднего и кислого состава докембрийского - рифейского возраста. Землетрясения такие как: 1 (06.01.2004), 2 (08.11.2006), 4 (06.06.2007) проявились в сегменте зоны Чункурчак-Шамси-Тюндюкского разлома, в междуречье Кегети и Тюндюк. Разлом имеет субширотное простирание и южное падение. На висячем крыле разлома формировалось Кыргызское устойчивое поднятие. Землетрясение 3 (25.12.2006 г.) проявилось в зоне Южно-Кочкорского разлома, субширотного простирания, южного падения. На южном крыле разлома образовалась Укокская антиклиналь Западно-Терскейского устойчивого поднятия. Ветвь данного разлома - Карасуйский разлом, распространилась в северном направлении в сторону Кочкорской впадины.

Землетрясение 5 (03.02.2010 г.) проявилось в Байдамтальском сегменте Чункурчак-Шамси-Тюндюкского разлома. Данный сегмент имеет юго-восточное простирание и южное падение.

T 6	1
Гаолина	Т
гастица	

N⁰	Дата	Время,	Широта,	Долгота,	Энергетический
nn		час-мин-сек	град-мин	град-мин	класс, К
1	16.01.2004	09-06-17.80	42-32.74	75-18.45	12.2
2	08.11.2006	02-21-30,00	42-33	76-02.57	12.1
3	25.12.2006	20-00-58.34	42-05.16	76-02.57	14.2
4	06.06.2007	11-09-25.76	42-34.21	75-22.66	12.2
5	03.02.2010	01-55-36.24	42-25.34	75-39.29	12.6

Нами составлены годографы (на эпицентральном расстоянии до 100 км) землетрясений, определены скорости волн Vp, Vs, Vp/Vs, Vf, а также плотность пород ρ в пределах очага [17] и вероятная жёсткость среды на основе формулы $\mu = \rho \cdot Vs^2$, (таблица 2).

Таблица 2

№ nn	Vр, км/сек	Vs, км/сек	Vp/Vs	Vf, км/сек	Плотность горных пород р, г/см ³	Жёсткость среды µ 10 ¹⁰ ,кгм ⁻² сек ⁻²
1	6.6	3.62	1.76	8.53	2.85	3.734
2	6.51	3.81	1.71	9.21	2.90	4.209
3	6.19	3.58	1.73	8.96	2.80	3.588
4	6.65	3.68	1.81	8.31	2.85	3.859
5	7.11	4.28	1.66	10.7	3.10	5.678

На основе данных (более 20 сейсмических станций) первых вступлений Рволны с учётом глубины гипоцентра определены (ИС НАН КР) механизмы очагов землетрясений (таблица 3).

Таблица 3

Вероятна № я глубина		Ось раст	гяжения Т	Промежуточ	Ось сжатия Р		
1111	очага Н, км	PL	AZM	PL	AZM	PL	AZM
1	18	55	128	28	168	19	248
2	28	28	69	58	277	13	16
3	22	14	223	69	270	14	317
4	10	55	127	32	285	10	22
5	34	18	64	69	276	10	158

Таблица 3 (продолжение)

		Ho	цальные						
№ nn		NP1	l		NP	2	Тип	Количество	
	STK	DP	SLIP	STK	DP	SLIP	подвижки	станций	
1	180	70	120	301	36	36	5	22	
2	115	80	15	211	12	12	5	28	
3	0	70	0	270	160	160	1	34	
4	145	45	140	266	53	53	5	37	
5	110	85	160	202	5	5	1	25	

Примечание: Тип подвижки в очаге землетрясений: 1- сдвиго-надвиговый, 5 – сдвиговый.

На спектре смещения P и S волн выделяются характерные: две крайние (f₁ и f₂) частоты и угловая (f₀) частота, а также промежуточные частоты. Из промежуточных частот можно выделить ряд преимущественных частот с относительными максимумами спектральной плотности. Спектры смещений позволяют определить сейсмический момент Мо, радиус круговой площадки разрыва R [9], длину разрыва L в очаге и другие параметры землетрясения.

Сейсмический момент:

Mo =4
$$\pi$$
 r V³_{p/s} ρ U_o /(θ S_a), (2)

где r= $\sqrt{(h^2+\Delta^2)}$ – гипоцентральное расстояние, h – глубина землетрясения, Δ – эпицентральное расстояние, V_{p/s} – скорость продольных или поперечных волн, ρ – плотность горной породы, U_o – спектральная плотность (нм·сек), θ = 0.64 –влияние направленности излучения очага, S_a – влияние эффекта увеличения амплитуды колебания при выходе на дневную поверхность. Значение S_a берётся из существующей таблицы в соответствии с углом выхода сейсмического луча i =arccos (h/r).

Радиус круговой площадки разрыва:

$$R = Vs K_{p/s} / 2 \pi f_{o p/s}, \qquad (3)$$

где Vs – скорость поперечных волн, f_{o p/s} – угловая частота Р или S волн, K _{p/s} – параметр, учитывающий скорость распространения разрушения Vr при различных моделях [9], [10] относительно скорости S или P волн (таблица 4).

Таблица 4

[9]	Vr = 0.9Vs	Kp =3.36	Ks = 2.34
[10]	Vr = 0.6Vs	Kp =188	Ks =1.32
[10]	Vr = 0.9Vs	Kp =2.07	Ks =1.38

Длина разлома [5]:

 $L = 2 V_s / [f_o (V_s / Vr - Cos\theta)], \quad (4)$

где V_s –скорость S волн, Vr - скорость распространения разрушения, f_o – угловая частота, θ - угол между направлением распространения разрушения и путём пробега сейсмического луча.

Следует отметить, что частоты спектра смещения, в том числе угловые, являются выражением ассоциации разрывов в очаге. Для каждой частоты можно определить параметры соответствующего разрыва: сейсмический момент Мо (H·м), радиус круговой площадки разрыва R (м), длину разлома L, а также величину моментной магнитуды Mw [15], [19].

На рисунке 2 приведены спектры смещения поперечных волн (компонент северюг) землетрясения 16.01.2004 г. с K=12.2, записанные на широкополосной сейсмической станции «Карагай-Булак» (КВК) сети КNЕТ, которая расположена на эпицентральном расстоянии 32 км. Отмечены две крайние (f_1 = 1.95 гц и f_2 =8.1 гц) частоты, 127 промежуточные характерные частоты и соответствующие значения сейсмического момента Мо разрывов в очаге. Крайние частоты находятся, соответственно, в низкочастотной области спектра в виде горизонтального плато и в высокочастотной области, где спектральная плотность резко падает. Угловая частота f_0 = 5.22 Гц, находится между величинами f_1 и f_2 .

Рисунок 2. Спектр смещения S волн (компонент север – юг) землетрясения 16.01.2004 г., K=11.8, для станции «Карагай-Булак», расположенной на эпицентральном расстоянии Δ=32 км.

В таблице 5 приведены преимущественные частоты с относительно пиковыми значениями спектральной плотности и соответствующие значения сейсмических моментов, моментной магнитуды, радиусов круговой площадки разрывов, длина разломов. Радиусы круговой площадки разломов R_B по Brune [9], R_{MI} и R_{MII} по Madariaga [10] в соответствии с таблицей 5.

таолица з	Т	аблица	5
-----------	---	--------	---

IIc	07070	Спектральная	Сейсмический	Monumuno	Рад	иус круг	овой	Длина
97	iciora	плотность	момент	магнитуда	площадки разло		юма, м	разлома
	Гц	м сек	Мо, Н∙м	Mw	R _B	R _{MI}	R _{MII}	L _i , км
f_1	1.95	0.002057	1.96E+17	5.49	691.7	390.2	407.9	3.34
f_3	2.19	0.000936	8.93E+16	5.26	615.9	347.4	363.2	2.98
f_4	2.44	0.00111	1.06E+17	5.32	552.8	311.8	326.0	2.67
f5	2.83	0.000987	9.41E+16	5.28	476.6	268.9	281.1	2.30
f_6	2.92	0.000912	8.7E+16	5.26	461.9	260.6	272.4	2.23
f7	3.07	0.000457	4.36E+16	5.06	439.4	247.8	259.1	2.12
f_8	3.32	0.000368	3.51E+16	5.00	406.3	229.2	239.6	1.96
f9	3.61	0.000333	3.17E+16	4.97	373.6	210.8	220.4	1.81
f_{10}	3.75	0.000356	3.4E+16	4.98	359.7	202.9	212.1	1.74
f_{11}	3.95	0.000368	3.51E+16	5.00	341.5	192.6	201.4	1.65
f ₁₂	4.44	0.000354	3.37E+16	5.98	303.8	171.4	179.2	1.47
f_{13}	5.32	0.000309	2.95E+16	4.95	253.5	143.0	149.5	1.23
f_{14}	5.71	0.00036	3.43E+16	4.99	236.2	133.3	139.3	1.14
f ₁₅	6.83	0.00024	2.29E+16	4.87	197.5	111.4	116.5	0.95
f_2	8.1	0.000172	1.64E+16	4.78	166.5	93.9	98.2	0.81
			\sum Mo(f1:f2)					
			8.72E+17	5.93				∑Li=28.4
$\mathbf{f}_{\mathbf{o}}$	5.22	0.002057	1.96E+17	5.49	258.4	145.8	152.4	1.25

Сумма сейсмических моментов характерных 127 частот спектра смещений S волн, выражающих соответствующие разрывы, составляет - \sum Mo(f1:f2) =3.65E+18 H·м. При этом моментная магнитуда Mw = 6.31.

Сумма сейсмических моментов преобладающих 15 частот, выражающих соответствующие разрывы, составляет ∑Мо(f1:f2) =8.72E+17 Н·м. При этом моментная магнитуда Мw =5.93. Сумма длины преобладающих разрывов составляет 28.4 км.

Сейсмический момент угловой частоты f_o составляет Mo = 1.96E+17 H·м, а моментная магнитуда Mw =5.49. По данным HRV (Гарвардского университета), Mo = 2.37E+16 H·м, Mw =4.8

На рисунке 3 приведён спектр смещения S-волн (компонент север – юг) землетрясения 08.11.2006 г. с K=12.1, записанные на широкополосной сейсмической станции «Карагай-Булак» (КВК) сети КNET, которая расположена на эпицентральном расстоянии 35.7 км.

Рисунок 3. Спектр смещения S-волн на станции «Карагай-Булак» (KBK), расположенной на эпицентральном расстоянии $\Delta = 35.7$ км

Отмечены две крайние частоты, 37 характерные частоты и угловая частота. В таблице 6 приведены преимущественные частоты смещений S волн с относительно пиковыми значениями спектральной плотности и соответствующие значения сейсмических моментов, моментной магнитуды, радиусов круговой площадки разрывов, длина разломов.

Таблица 6

Цастота		Спектральная	Сейсмический	Morristan	Ради	ус круг	овой	Длина
940	Tora	плотность	момент	магнитуда	площа,	разлома		
Г	`ц	м сек	Мо, Н∙м	Mw	R _B	R _{MI}	R _{MII}	L ₁ , км
f1	3.12	8.54E-05	9.71E+15	4.62	455.0	256.7	268.3	2.20
f3	3.41	3.56E-05	4.05E+15	4.37	416.3	234.8	245.5	2.01
f4	3.71	1.9E-05	2.16E+15	4.19	382.7	215.9	225.7	1.85
f5	4	1.77E-05	2.01E+15	4.17	354.9	200.2	209.3	1.72
f6	4.19	1.32E-05	1.5E+15	4.08	338.8	191.1	199.8	1.64
f7	4.58	1.32E-05	1.5E+15	4.08	310.0	174.9	182.8	1.50
f8	5.46	1.11E-05	1.26E+15	4.03	260.0	146.7	153.3	1.26
f9	5.66	6.41E-06	7.29E+14	3.88	250.8	141.5	147.9	1.21
f10	6.25	8.28E-06	9.42E+14	3.95	227.1	128.1	134.0	1.10
f11	6.44	8.28E-06	9.42E+14	3.95	220.4	124.4	130.0	1.07
f2	6.64	1.32E-05	1.5E+15	4.08	213.8	120.6	126.1	1.03
			\sum Mo(f1:f2)					
			2.48E+16	4.92				∑Li=16.6
fo	4	8.54E-05	9.71E+15	4.62	354.9	200.2	209.3	1.72

Сумма сейсмических моментов характерных промежуточн 37 частот спектра смещений S-волн (выражающих соответствующие разрывы) составляет $\sum Mo(f1:f2) = 5.24E+16$ H·м, а моментная магнитуда Mw = 5.08.

Сумма сейсмических моментов преобладающих 11 частот (выражающих соответствующие разрывы) составляет ∑Mo(f1:f2) =2.48E+16 Н·м и моментная магнитуда Мw =4.92. Сумма длины преобладающих разрывов составляет 16.6 км.

Сейсмический момент угловой частоты Mo =9.7E+15 H·м, моментная магнитуда Mw=4.62. По данным HRV, Mo =2.07E+16 H·м, Mw =4.8

На рисунке 4 приведён спектр смещения S-волн землетрясения 06.06.2007 г. с K=12.2 на станции «Карагай-Булак» (КВК), расположенной на эпицентральном расстоянии 36.5 км.

Частота, Гц

Рисунок 4. Спектр смещения S-волн (компонент север-юг) землетрясения 06.06.2007 г. с К=12.2 на станции «Карагай-Булак» (КВК).

На спектре отмечены две крайние частоты, 28 промежуточные характерные частоты и угловая частота смещения S-волны.

В таблице 7 приведены преимущественные частоты смещений S волн с относительно пиковыми значениями спектральной плотности и соответствующие значения сейсмических моментов, моментной магнитуды, радиусов круговой площадки разрывов, длина разломов.

Таблица ′	7
-----------	---

Частота Спектр		Спектральная плотность	Сейсмический Момент	Магнитуда	Раді плоша	иус круго	вой ома. м	Длина разлома
	Гц	А, м сек	Мо, Н∙м	Mw	R _B	R _{MI}	R _{MII}	L ₁ , км
f1	1.46	0.000651	1.03E+17	5.31	939.2	529.8	553.9	4.54
f3	1.75	0.000324	5.13E+16	5.11	783.5	442.0	462.1	3.79
f4	2.14	0.000265	4.19E+16	5.05	640.8	361.5	377.9	3.10
f5	2.34	0.000206	3.25E+16	4.97	586.0	330.6	345.6	2.83
f6	2.73	0.000348	5.51E+16	5.13	502.3	283.3	296.2	2.43
f7	3.02	0.000234	3.7E+16	5.01	454.0	256.1	267.8	2.20
f8	3.22	0.000299	4.72E+16	5.08	425.8	240.2	251.1	2.06
f9	3.9	0.000158	2.49E+16	4.90	351.6	198.3	207.3	1.70
f2	4.1	0.000242	3.82E+16	5.02	334.4	188.7	197.2	1.62
			\sum Mo(f1:f2)					
			4.31E+17	5.72				∑Li=24.27
fo	2.73	0.000651	1.03E+17	5.31	502.3	283.3	296.2	2.43

Сумма сейсмических моментов характерных 28 частот спектра смещений S волн, выражающих соответствующие разрывы, составляет ∑Mo(f1:f2) =8.42E+17 H·м и моментная магнитуда Mw =5.88.

Сумма сейсмических моментов преобладающих 9 частот, выражающих соответствующие разрывы, составляет ∑Mo(f1:f2) =4.31E+17 Н·м сек, моментная магнитуда Mw =5.72. Сумма длины преобладающих разрывов составляет 24.27 км.

Сейсмический момент угловой частоты f_0 составляет Mo =1.03E+17 Hm, а моментная магнитуда Mw =5.31. По данным HRV, Mo =3.8E+16 H·м, Mw =5.0.

На рисунке 5 приведён спектр смещения поперечных волн (компонент восток – запад) землетрясения 03.02.2010 г. с К=12.6 на широкополосной сейсмической станции «Кызарт» (КZA) сети КNET, расположенной на эпицентральном расстоянии 50.8 км. На спектре отмечены две крайние частоты, 28 промежуточные характерные частоты и угловая частота смещения S-волны.

Рисунок 5. Спектр смещения поперечных волн (компонент восток – запад) землетрясения 03.02.2010 г. с К=12.6 на широкополосной сейсмической станции «Кызарт».

На спектре отмечены две крайние частоты, 92 промежуточные характерные частоты и угловая частота смещения S волны.

В таблице 8 приведены преимущественные частоты смещений S-волн с относительно пиковыми значениями спектральной плотности и соответствующие значения сейсмических моментов, моментной магнитуды, радиусов круговой площадки разрывов, длина разломов.

Таблица 8

		Спектраль.	Сейсмичес.		Радиус круговой площадки			Длина
Частота плотность		момент	Магнитуда	разлома, м			разлома	
Γц		А м сек	Мо, Н∙м	Mw	R _B	B R _{MI} R _{MII}		L ₁ , км
f1	1.07	0.001556	9.88E+17	5.81	1490.4	840.8	879.0	7.21
f3	1.36	0.000941	5.97E+17	5.82	1172.6	661.5	691.6	5.67
f_4	1.8	0.00052	3.3E+17	5.65	886.0	499.8	522.5	4.28

f ₅	2.14	0.000354	2.25E+17	5.53	745.2	420.4	439.5	3.60
f ₆	2.53	0.000301	1.91E+17	5.49	630.3	355.6	371.7	3.05
f7	2.78	0.000219	1.39E+17	5.40	573.7	323.6	338.3	2.77
f ₈	2.97	0.000164	1.04E+17	5.31	537.0	302.9	316.7	2.60
f9	3.36	0.000115	7.3E+16	5.21	474.6	267.7	279.9	2.30
f ₁₀	3.75	0.000211	1.34E+17	5.38	425.3	239.9	250.8	2.06
f ₁₁	4.05	9.18E-05	5.82E+16	5.14	393.8	222.1	232.2	1.90
f ₁₂	4.44	8.08E-05	5.13E+16	5.11	359.2	202.6	211.8	1.74
f ₁₃	4.98	7.33E-05	4.65E+16	5.08	320.2	180.6	188.9	1.55
f ₁₄	5.32	8.26E-05	5.24E+16	5.11	299.8	169.1	176.8	1.45
f_2	5.51	0.000116	7.35E+16	5.21	289.4	163.3	170.7	1.40
			\sum Mo(f1:f2)					
			2.66E+18	6.25				∑Li=41.58
fo	2	0.001556	9.88E+17	5.96	289.4	163.3	470.3	3.86

Сумма сейсмических моментов характерных 92 частот спектра смещений Sволн, выражающих соответствующие разрывы, составляет $\sum Mo(f1:f2) = 1.026E+19 \text{ H} \cdot \text{M}$ и моментная магнитуда Mw =6.61.

Сумма сейсмических моментов преобладающих 14 частот, выражающих соответствующие разрывы, составляет $\sum Mo(f1:f2) = 2.66E+18$ H·м, а моментная магнитуда Mw =6.25. Сумма длины преобладающих разрывов составляет 41.58 км.

Сейсмический момент угловой частоты Мо =9.88Е+17 Н·м, моментная магнитуда Мw =5.96.

На рисунке 6 приведён спектр смещения поперечных волн (компонент север – юг) землетрясения 25.12.2006 г. с К=14.2 на широкополосной сейсмической станции «Улахол» (ULHL) сети KNET, расположенной на эпицентральном расстоянии 24.2 км.

Рисунок 6. Спектр смещения S-волны (компонент север – юг) Кочкорского землетрясения 25.12.2006 г. на станции «Улахол», расположенной на эпицентральном расстоянии 24.2 км.

В таблице 9 приведены характерные частоты и соответствующие значения сейсмического момента разрывов очага землетрясения.

Таблица 9

		Спектра			
Uactorii F	п	ПЛОТН			
частоты, гц		Нм∙ сек	м. сек	Мо, Н∙м	
f1	0.78	7854368.0	0.007854	5.16E+17	
f3	0.83	5498338.0	0.005498	3.61E+17	
f4	0.88	3419691.0	0.00342	2.25E+17	
f5	0.93	2824447.0	0.002824	1.86E+17	
f6	0.98	977581.5	0.000978	6.42E+16	
f7	1.03	3594469.0	0.003594	2.36E+17	
f8	1.07	1583396.0	0.001583	1.04E+17	
f9	1.12	1435622.0	0.001436	9.43E+16	
f10	1.17	2526860.0	0.002527	1.66E+17	
f11	1.22	1687491.0	0.001687	1.11E+17	
f12	1.27	1504840.0	0.001505	9.89E+16	
f13	1.32	2189805.0	0.00219	1.44E+17	
f14	1.37	1976036.0	0.001976	1.3E+17	
f15	1.42	2645545.0	0.002646	1.74E+17	
f16	1.46	2041506.0	0.002042	1.34E+17	
f17	1.51	1494936.0	0.001495	9.82E+16	
f18	1.56	2548975.0	0.002549	1.67E+17	
f19	1.61	1021955.0	0.001022	6.71E+16	
f20	1.66	3338121.0	0.003338	2.19E+17	
f21	1.71	997523.8	0.000998	6.55E+16	
f22	1.76	490038.6	0.00049	3.22E+16	
f23	1.81	2881521.0	0.002882	1.89E+17	
f24	1.86	2666848.0	0.002667	1.75E+17	
f25	1.90	1966291.0	0.001966	1.29E+17	
f26	1.95	2487017.0	0.002487	1.63E+17	
f27	2.00	1560004.0	0.00156	1.02E+17	
f28	2.05	491726.2	0.000492	3.23E+16	
f29	2.10	2816390.0	0.002816	1.85E+17	
f30	2.15	2713594.0	0.002714	1.78E+17	
f31	2.20	1144660.0	0.001145	7.52E+16	
f32	2.25	2611556.0	0.002612	1.72E+17	
f33	2.29	1532116.0	0.001532	1.01E+17	
f34	2.34	116818.9	0.000117	7.67E+15	
f35	2.39	857226.4	0.000857	5.63E+16	
f36	2.44	2409339.0	0.002409	1.58E+17	
f37	2.49	1324082.0	0.001324	8.7E+16	
f38	2.54	1342123.0	0.001342	8.82E+16	
f39	2.59	466509.9	0.000467	3.06E+16	
f40	2.64	1020976.0	0.001021	6.71E+16	
f41	2.69	243018.4	0.000243	1.6E+16	
f42	2.73	1440572.0	0.001441	9.46E+16	
f43	2.78	1262514.0	0.001263	8.29E+16	
f44	2.83	742331.2	0.000742	4.88E+16	

f45	2.88	1142879.0	0.001143	7.51E+16
f46	2.93	275173.7	0.000275	1.81E+16
f47	2.98	722566.0	0.000723	4.75E+16
f48	3.03	591483.6	0.000591	3.89E+16
f49	3.08	1301493.0	0.001301	8.55E+16
f50	3.13	400227.1	0.0004	2.63E+16
f51	3.17	491340.9	0.000491	3.23E+16
f52	3.22	1389262.0	0.001389	9.13E+16
f53	3.27	665715.0	0.000666	4.37E+16
f54	3.32	684748.4	0.000685	4.5E+16
f55	3.37	855027.1	0.000855	5.62E+16
f56	3.42	1085334.0	0.001085	7.13E+16
f57	3.47	765269.2	0.000765	5.03E+16
f58	3.52	786325.1	0.000786	5.17E+16
f59	3.56	601333.8	0.000601	3.95E+16
f60	3.61	91436.33	9.14E-05	6.01E+15
f61	3.66	761904.1	0.000762	5.01E+16
f62	3.71	897666.5	0.000898	5.9E+16
f63	3.76	406854.6	0.000407	2.67E+16
f64	3.81	730121.8	0.00073	4.8E+16
f65	3.86	742951.6	0.000743	4.88E+16
f66	3.91	730777.8	0.000731	4.8E+16
f67	3.96	397165.1	0.000397	2.61E+16
f68	4.00	1073855.0	0.001074	7.05E+16
f69	4.05	968481.2	0.000968	6.36E+16
f70	4.10	867925.5	0.000868	5.7E+16
f71	4.15	870125.9	0.00087	5.72E+16
f72	4.20	359892.2	0.00036	2.36E+16
f73	4.25	242944.8	0.000243	1.6E+16
f74	4.30	702435.6	0.000702	4.61E+16
f75	4.35	821510.7	0.000822	5.4E+16
f76	4.39	247752.1	0.000248	1.63E+16
f77	4.44	694749.9	0.000695	4.56E+16
f78	4.49	1035137.0	0.001035	6.8E+16
f79	4.54	531823.2	0.000532	3.49E+16
f80	4.59	944705.9	0.000945	6.21E+16
f81	4.64	393271.9	0.000393	2.58E+16
f82	4.69	278754.2	0.000279	1.83E+16
f83	4.74	72295.65	7.23E-05	4.75E+15
f84	4.79	574168.3	0.000574	3.77E+16
f85	4.83	634142.5	0.000634	4.17E+16
f86	4.88	104591.6	0.000105	6.87E+15
f87	4.93	461854.1	0.000462	3.03E+16
f88	4.98	574923.8	0.000575	3.78E+16
f89	5.03	409272.9	0.000409	2.69E+16
f90	5.08	583271.9	0.000583	3.83E+16
f91	5.13	1180508.0	0.001181	7.76E+16
f92	5.18	565949.2	0.000566	3.72E+16
f93	5.22	492875.6	0.000493	3.24E+16
L	1		'	

f94	5.27	815115.7	0.000815	5.35E+16
f95	5.32	479506.0	0.00048	3.15E+16
f96	5.37	750586.9	0.000751	4.93E+16
f97	5.42	910789.2	0.000911	5.98E+16
f98	5.47	555887.8	0.000556	3.65E+16
f99	5.52	660140.9	0.00066	4.34E+16
f100	5.57	691947.2	0.000692	4.55E+16
f101	5.62	88882.46	8.89E-05	5.84E+15
f102	5.66	103483.3	0.000103	6.8E+15
f103	5.71	182091.3	0.000182	1.2E+16
f104	5.76	881575.3	0.000882	5.79E+16
f105	5.81	604852.7	0.000605	3.97E+16
f106	5.86	806999.8	0.000807	5.3E+16
f2	5.91	1046640.0	0.001047	6.88E+16
				8.31E+18
fo	1.41	7854368.0	0.007854	5.16E+17

В таблице 10 приведены преимущественные частоты смещений S-волн с относительно пиковыми значениями спектральной плотности и соответствующие значения сейсмических моментов, моментной магнитуды, радиусов круговой площадки разрывов, длина разломов.

Таблица 10

Частота Гц		Спектральная	Сейсмический	Марцитула	Радиус круговой площадки			Длина
		плотность	момент	тат нит уда	разлома			разлома
		А м сек	Мо, Н∙м	Mw	R _B , м	R _{MI} , м	R _{MII} , м	L ₁ , км
f_1	0.78	0.007854	5.16E+17	5.78	1710.19	964.72	1008.57	8.27
1	,02	0.003594	2.36E+17	5.55	1307.79	737.73	771.26	6.32
1,17		0.002527	1.66E+17	5.45	1140.13	643.15	672.38	5.51
1	,41	0.002646	1.74E+17	5.46	946.06	533.68	557.93	4.57
1	,56	0.002549	1.67E+17	5.45	855.10	482.36	504.29	4.13
1	,66	0.003338	2.19E+17	5.53	803.58	453.30	473.91	3.89
	1,8	0.002882	1.89E+17	5.48	741.08	418.05	437.05	3.58
1	,95	0.002487	1.63E+17	5.44	684.08	385.89	403.43	3.31
2,14		0.002714	1.78E+17	5.47	623.34	351.63	367.61	3.01
2,24		0.002612	1.72E+17	5.46	595.51	335.93	351.20	2.88
2	2,44	0.002409	1.58E+17	5.43	546.70	308.40	322.41	2.64
2	2,73	0.001441	9.46E+16	5.28	488.63	275.64	288.16	2.36
3	,07	0.001301	8.55E+16	5.25	434.51	245.11	256.25	2.10
3	,22	0.001389	9.13E+16	5.27	414.27	233.69	244.31	2.00
3	,41	0.001085	7.13E+16	5.20	391.19	220.67	230.70	1.89
3	,71	0.000898	5.90E+16	5.15	359.55	202.83	212.05	1.74
4	,05	0.000968	6.36E+16	5.17	329.37	185.80	194.24	1.59
4	,49	0.001035	6.80E+16	5.19	297.09	167.59	175.21	1.44
5	,12	0.001181	7.76E+16	5.23	260.54	146.97	153.65	1.26
5,41		0.000911	5.98E+16	5.15	246.57	139.09	145.41	1.19
f_2	5.9	0.001047	6.88E+16	5.19	226.09	127.54	133.34	1.09
			\sum Mo(f ₁ :f ₂)					∑Li=64.77
			3.08E+18	6.29				
fo	1.41	0.007854	5.16E+17	5.77	946.06	533.68	557.93	4.57

Сумма сейсмических моментов характерных 106 частот спектра смещений Sволн, выражающих соответствующие разрывы, составляет ∑Mo(f1:f2) =8.31E+18 H·м и моментная магнитуда Mw =6.54.

Сумма сейсмических моментов преобладающих 21 частот, выражающих соответствующие разрывы, составляет ∑Мо(f1:f2) =3.08E+18 Н·м, а моментная магнитуда Мw =6.29. Сумма длины преобладающих разрывов составляет 64.7 км.

Сейсмический момент угловой частоты Mo=5.16E+17 H·м, моментная магнитуда Mw=5.77. По данным HRV, Mo = 6.99E+17 H·м, Mw = 6.99.

Заключение

- Установлено, что в зоне активного разлома происходит динамическая сегментация в соответствии с иерархией сейсмических циклов. В сегменте формируются аномальные и межаномальные (барьерная) области с различными плотностями сейсмогенных разрывов. При скачкообразном (быстром) разрушении «барьерной» области начинается формирование очага, проявляются флюиды, процессы частичного плавления, изменяются РТ – условия среды и образуются сейсмические волны.
- Определены скорости сейсмических волн Vp, Vs, Vp/Vs, Vf, а также вероятное значение плотности среды в пределах очага. Отмечено, что жёсткость среды не постоянная величина µ=3x10¹¹ дин/см² (условно принятая), а различна в разных очагах.
- 3. Спектральный анализ поперечных (сдвиговых) и продольных сейсмических волн очага позволил выделить множество характерных частот: крайние, угловая, промежуточные, а также определить по этим частотам параметры (радиус круговой площади, длину) множества разрывов в очаге и соответствующие спектры сейсмического момента, моментной магнитуды. Сумма сейсмических моментов отдельно взятых разрывов представляет собой сейсмический момент (Mo) очага землетрясения. По сумме сейсмического момента определяется полная моментная магнитуда (Mw) землетрясения.
- 4. Основные параметры землетрясения, его магнитуда и энергия зависят от количества, типов, размера, сейсмического момента разрывов в очаге и скорости разрушения среды в динамике сегментации активного разлома, а также степени активизации сейсмических циклов.
- 5. Отмечено, что современная модель очага землетрясения может быть создана на основе изучения спектров сейсмических волн очага, определения скоростей волн, вероятной плотности и жёсткости среды, параметров ассоциации разрывов в очаге и спектра сейсмического момента.

Литература

- 1. MjachkinV.I., Brace W.F., Sobolev G.A., Dieterich J.H. Two models for earthquake forerunners. Pure Appl.Geophys. 1975,113, pp. 169-181.
- 2. Scholz C.H., Sykes L. R., Aggarwai Y.P. Earthquake prediction: A physical basis.Science, 1973,181, p. 803.
- 3. Anderson L.D., Whitcomb J.H. The dilatancy-diffusion model of earthquake prediction. Stanford University Publ., Geol. Sci. 1973, Vol.13, p.417.
- 4. Aki K. The use of Love waves for the study of earthquake mechanism. J. Geophys. Res., 1960, 65, pp. 323-31.
- 5. Касахара К. Механика землетрясений. М.: Мир. 1985. Стр. 264.
- 6. Aki K. Generation and propagation of G waves from the Niigata earthquake of June 16 1964. Part 2. Estimation of earthquake moment, released energy, and stress- strain

drop from the G-wave spectrum. Bull. Earthq. Res. Inst., Tokyo University, 1966, 44, pp. 73-88.

- 7. Scholz C.H. The mechanics of earthquake and faulting. Cambridge University press. 2002, p.471.
- 8. Burridge R., Knopoff L. Model and theoretical seismicity. Bull. Seismol. Soc Am., 1964, 54, pp. 1875-88.
- 9. Brune J. N. Tectonics stress and the spectra of seismic shear waves from earthquakes. J.Geophys. Res., 1970, 75, pp. 4997-5009.
- 10. Madariaga R. Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am. 1976, 66: pp. 636-666.
- 11. Duda S.J., Kaiser D. Spectral magnitudes, magnitude spectra, and earthquake quantification: the stability issue of the corner period and of the maximum magnitude for a given earthquake. // Tectonophysics. 1989, v.1/3. P. 205-219.
- 12. Omuraliev M., Omuralieva A. Late Cenozoic tectonics of the Tien Shan. Bishkek: Ilim, 2004, 166 p.
- 13. Журков С.Н Кинетическая концепция прочности твердых тел.//Вестник АН СССР, 1968, №3, с. 46-52.
- 14. Соболев Г.А., Завьялов А.Д. О концентрационном критерии сейсмогенных разрывов. //ДАН СССР, 1980, т.252 №1, с. 69-71.
- 15. Омуралиев М., Омуралиева А., Молдобекова С. Динамическая сегментация активных разломов и модель развития очага землетрясений Тянь-Шаня. Сборник материалов четвертого международного симпозиума 15-20 июня 2008 г. "Геодинамика внутриконтинентальных орогенов и геоэкологические проблемы". Москва-Бишкек, 2009, с. 446-452.
- 16. Омуралиев М., Омуралиева А. Сейсмическое излучение в близких зонах от землетрясений по данным локальной сети сейсмических станций. //Известия НАН Кыргызской Республики, 2006, №1, с. 34-43.
- 17. Омуралиева А., Омуралиев М., Джумабаева А. Локальная скоростная 3D неоднородность зоны Южно-Кочкорского разлома, её сейсмичность и Кочкорское землетрясение Тянь-Шаня 2006 г. //Известия НАН Кыргызской Республики, 2009, №2, с. 32-46.
- 18. Омуралиев М., Омуралиева А. (КG) Способ определения глубин землетрясений вблизи цифровых сейсмических станций и тонких скоростных 3D неоднородностей участка литосферы в области очагов. Патент KG661C1, 2004.
- 19. Kanamori H. The energy release in great earthquakes. //J. Geophys. Res.1977, 82, pp. 2981-2987.

Рецензент д.ф.-м.н. Муралиев А.М.