УДК 551.243+551.2

Кендирбаева Дж.Ж. Институт сейсмологии НАН КР, г.Бишкек, Кыргызстан

О СВЯЗИ ГИДРОГЕОЛОГИЧЕСКОГО МОНИТОРИНГА ВОСТОЧНОГО ПРИИССЫКУЛЬЯ С СЕЙСМИЧНОСТЬЮ: ОБЗОР И АНАЛИЗ ПРОБЛЕМЫ

Аннотация: На основе обзора научных взглядов по использованию геохимических моделей рассмотрено поведение физико-химических параметров термоминеральных вод (TMB) Восточного Прииссыкулья. Повышение напряжённого состояния земной коры приведено в качестве одного из факторов, формирующих предвестниковые и постсейсмические эффекты в термоминеральных водах Восточного Прииссыкулья, а трещинообразование, нарушающее Р-Т условия в системе «порода-разлом-TMB», является непосредственным участником данного процесса.

Ключевые слова: Южно-Чуйская сейсмогенерирующая зона, гидрогеологический мониторинг, водоносных горизонты и водонапорные системы, режим водоотбора, периодов сейсмического затишья, геохимические компоненты, фоновые значения.

ЧЫГЫШ ЫСЫК-КӨЛДҮН ГИДРОГЕОЛОГИЯЛЫК МОНИТОРИНГИНИН СЕЙСМИКАЛУУЛУК МЕНЕН БАЙЛАНЫШЫ ТУУРАЛУУ: ПРОБЛЕМАНЫН БАЯНДАМАСЫ ЖАНА ТАЛДОО ЖҮРГҮЗҮҮ

Кыскача мазмуну: Геохимиялык моделдерди пайдалануу боюнча илимий көз караштардын баяндамасынын негизинде Чыгыш Ысык-Көлдүн термоминералдык сууларынын (ТМС) физикалык-химиялык параметрлеринин жүрүм-туруму караштырылган. Жер кыртышынын чыңалган абалынын жогорулоосу Чыгыш Ысык-Көлдүн термоминералдык сууларындагы алдыдагы билдиргич жана сейсмикалык эффектерди калыптандыруучу факторлордун бири катары келтирилген, ал эми «тек-жараңка-ТМС» системасындагы Р-Т шарттарын бузуп жаткан жараңка түзүү – тике катышуучу болуп эсептелет.

Негизги сөздөр: Түштүк-Чүй сеймогенерациялоочу зонасы, гидрогеологиялык мониторинг, суу алып жүрүүчү горизонттор жана суу басым менн атылып чыгуу системалары, суу тандоо режими, сейсмикалык тынчып калуу мезгилдери, геохимиялык компонеттер, фон маанилери.

RELATION OF HYDROGEOLOGICAL MONITORING OF THE EASTERN ISSYK-KUL WITH SEISMICITY: PROBLEM'S REVIEW AND ANALYSIS

Abstract: Based on a review of scientific approaches to the geochemical models use the behavior of physical-chemical parameters of thermomineral waters (TMW) of the Eastern Issyk-Kul has studied. Enhancing of stress state of the Earth's crust is shown as one of the factors forming the predictive and post-seismic effects of thermomineral waters of the Eastern Issyk-Kul, and cracking which disruptes the P-T conditions of the 'rock-fault-TMW " system, is a direct participant of this process.

Keywords: South Chui seismogenic zone, hydrogeological monitoring of aquifers and waterpressure system, water intake mode, periods of seismic quiescence, geochemical components, the background values.

Общая геодинамическая обстановка и линейно вытянутая локализация очагов землетрясений свидетельствуют о том, что для повышения достоверности прогноза землетрясений необходимо отделить предвестники с надёжными признаками от «помех», связанных с ходом естественного режима подземных вод. По [9], землетрясения средней силы рассматриваются как результаты воздействия деформационных волн на современные зоны деструкции литосферы, в которых интервал между событиями исчисляется по шкале реального времени, являющееся мгновением относительно геологической эволюции межструктурных единиц.

Необходимо подчеркнуть, что в результате изменения деформационно-напряжённого состояния земной коры происходит как раскрытие ранее залеченных трещин, так и образование новых микропор. Об этом свидетельствуют результаты экспериментов [8], которые проводились для объяснения механизма возникновения кратковременных и долговременных геохимических аномалий, связанных с подготовкой землетрясений. А именно, были обоснованы особенности стационарного и нестационарного эманирования горных пород с установленным кларковым содержанием радиоактивных элементов, например, гранодиориты, порфириты и фельзиты, а также образцы урановой смолки с повышенными радиоактивными свойствами.

Одним из основных научных результатов этих исследований является выявление по концентрации радона закономерной связи между эманирующей способностью горных пород и размером контактирующих частиц, а именно, чем мельче размеры образца, тем больше выход радона в воду. Авторы [8] на этом основании заключили, что в периоды сейсмической активизации долговременные радоновые (читай газовые) аномалии в подземных водах возможны в TMB из трещин в кристаллических породах, тогда как таковые в осадочных образованиях маловероятны.

В то же время, экспериментальными работами ИФЗ АН СССР [8] показано, что при воздействии вибрационных источников при звуковых частотах от 5 до 50 Гц, давлении от 1 до 10 Па и плотности потока энергии в 0.1 Вт/м² происходит повышение или снижение уровня подземных вод в скважинах глубиной 123-321м в зависимости от расстояния и состава водовмещающих пород. Также при этих же параметрах воздействий обнаружено увеличение метана и его гомологов в подпочвенном воздухе, превышающее фоновые в 2-10 раз. Данные изменения связывают с механо-химическими процессами, происходящими при деструкции пород под воздействием звуковых колебаний и явлений сорбции-десорбции.

Поэтому перед нами возникла необходимость оценки структурных факторов контроля сейсмического процесса и его составляющих, локализующих очаги землетрясений на всех иерархических уровнях, сконцентрированных внутри земных напряжений, где горная порода представляет собой твёрдое тело, неоднородно пронизанное разного рода микротрещинами и зияющими нарушениями.

При этом, как сам процесс подготовки землетрясений, так и фиксируемые эффекты с предвестниковыми признаками отражают изменение деформационно-напряжённого состояния земной коры, а факторы, реально ответственные за существующее равновесие в системе «горная порода-подземные воды», имеют различные толкования.

До сих пор мы имеем дело с алгебраической суммой концентрационных значений в TMB, заведомо попадающей при механической корреляции с сейсмической активизацией в рамки субъективной интерпретации. Выявление геохимических и гидродинамических признаков при изучении проблемы сейсмической активизации производится посредством анализа вариационных кривых путём сопоставления их не только с подземными толчками, но и экзогенными явлениями.

Для этого на примерах произошедших землетрясений, эпицентры которых расположены непосредственно в районе исследований, рассмотрены аномальные концентрации в ТМВ, выходящих из различных геолого-геохимических разрезов и типов гидрогеологических структур.

В этом плане Иссык-Кульская впадина, являющаяся закрытой межгорной депрессией со взбросо-сдвиговыми и надвиговыми границами с Кунгейским и Тескейским гидрогеологическими массивами, представляет наибольшую научную ценность. Так, кровля фундамента на востоке- в эпицентральных зонах Сары-Камышского (1970) и Сары-жазского (2013) землетрясений- залегает на глубине 10-15 км и сложена разнообразными породами по составу, возрасту и генезису [7]. Также здесь помимо большой скученности эпицентров сейсмических событий, приуроченных к зонам пересечения Предтескейского разлома с поперечными разрывами, из трещин и пластов выведены ТМВ с общирным и разнообразным набором физико-химических показателей.

О подобных случаях с уникальным материалом могут служить временные ряды ТМВ двух скважин на участке «Джеты-Огуз», находящихся в непосредственной близости по отношению к эпицентральной зоне данного сейсмического толчка.

К сегодняшнему дню сейсмогидрогеологический мониторинг в Восточном Прииссыкулье действует на базе четырёх пунктов наблюдений и от каждого из них поступает набор информации для исследования «дыхания» земных недр, способный отражать тектонические особенности структур в зависимости от глубины циркуляции (от 120 до 1200-1500 м) и литологической представленности вмещающей среды- метаморфических пород и терригенных образований (таблица 1, рисунок 1).

Таблица 1

№№ СКВ.	Глубины скважин, м	Название и ин-лы глубин посадки фильтров (м) ТМВ	Литологический состав водовмещающих пород		
6634	1500	Кара-Ой, 1350-1500	Терригенные образования плиоцена, представленные чередующимися конгломератами песнаниками и		
1754	1500	Каракол, 1240-1520	гравелитами с прослоями паттумов и		
1543	1500	Каджи-Сай, 1340-1500	алевритов.		
б-к	163	Джеты-Огуз 70-160	Карбонатные образования верхнего карбона с глинистым цементом.		
20	520	400-520	На контакте метаморфических пород верхнего ордовика и каледонских интрузий.		

ТМВ Восточного Прииссыкулья (из кадастра Госгеолагентства КР)

Все пункты наблюдений ТМВ «Каракол», «Каджи-Сай» и «Джеты-Огуз» выведены самоизливающимися скважинами, пробуренными в первом случае в Восточно-Иссыккульской флексурно-разрывной зоне, а остальные из основной зоны дробления Предтескейского разлома, т.е. находятся в сейсмически активных зонах (рисунок 2).

В их режиме, постоянно испытывающем колебательный ход земной поверхности, отражается чувствительность к любому изменению окружающей среды. Поскольку «помехи, осложняющие влияния роли сейсмичности, отчётливых границ не имеют, то скачкообразность изменений в режиме физико-химических показателей ТМВ были проанализированы с учётом многоаспектности путей и источников их поступления, а наблюдаемый информационно-поисковый набор как суммарный эффект внешних и внутри- земных факторов, т.к.

химические свойства ионов, потянув за собой концентрационные изменения, приводят к избыткам и осаждению в виде соединений, создающих сложную обстановку.

При проведении исследования было проанализировано пространственно-временное распределение эпицентров землетрясений, произошедших в 2015 году. За этот период [3] в районе Восточного Прииссыкулья ($\varphi = 42-43^{0}$ и $\lambda = 78-79^{0}$) зафиксированы 12 (двенадцать) сейсмических событий с энергетическими классами от 7.1 до 10.4 и гипоцентрами, расположенными на глубинах от 9 до 30 км [4]. Из них очаги 2-х землетрясений с энергетическим классом около 10.4 расположены на глубине 18 км, а для 4-х толчков с К \approx 8.2-8.4 от 9-12 до 24 км, тогда как гипоцентры с К \approx 7.6-7.7 находятся на глубине от 19 до 30 км (таблица 3). Эпицентры 4-х землетрясений находятся на севере региона.

Рисунок 1. Схема Восточного Прииссыкулья с эпицентрами землетрясений и пунктами наблюдений.

Таблица 3

	с/число	Координаты		неский с ния, К _R	Н,км	ие до сения 1)
NeNe II/II	Год/ме	φ	λ	Энергетич клас землетрясе	Глубина,	Расстоян землетря L(км
1	2015/03/10	42 ⁰ 51'	77° 59'	9.1	19	$50^1 - 65^2$
2	2015/04/29	42° 27'	78° 26'	7.6	19	$5^1 - 20^2$
3	2015/05/06	42° 59'	78 19	7.7	17	
4	2015/06/12	42°24	78º 26'	10.4	18	$10^1 - 16^2 - 105^3$
5	2015/07/03	42° 38'	77° 34'	10.1	18	$65^2 - 70^4$
6	2015/07/24	42° 59'	78° 32'	7.8	23	$55^1 - 80^2$
7	2015/08/09	42° 55'	78° 36'	8.2	24	50 ¹ -73 ²
8	2015/09/20	42° 52'	77° 52'	7.6	29	$60^1 - 70^2 - 73^4$
9	2015/09/21	42° 15'	78° 14'	7.6	30	$30^1 - 5^2 - 87^3$

Выборка из каталога землетрясений за 2015 год

10	2015/09/28	42° 07'	77° 41'	7.6	17	73 ¹ -53 ² -40 ³ - 75 ⁴
11	2015/10/01	42° 18'	78° 55'	8.1	9	48 ¹ -54 ²
12	2015/10/22	42° 52'	77°° 57'	8.4	12	56 ¹ -68 ² -78 ⁴

Примечание: Расстояние от эпицентров землетрясений 73¹ -53²-40³- 75⁴ до пунктов наблюдений- ТМВ-¹Каракол; ² Джеты-Огуз; ³Каджисай; ⁴Кара-Ой.

Эпицентры этих сейсмических событий нанесены на геолого-тектоническую основу Восточного Прииссыкулья, на рисунке 2 видно, что эпицентры землетрясений в пространственном выражении распределены в широтном направлении и приурочены к зонам пересечения Южно- и Восточно-Иссык-Кульских сейсмогенных зон с поперечными разрывами.

Рисунок 2. Тектоническая основа и распределение эпицентров землетрясений, произошедших в 2015 году.

Поведение геохимических показателей и гидродинамических параметров ТМВ Восточного Прииссыккулья приводится ниже с привязкой к землетрясениям с К≥ 7,1 2015 года. В нашем распоряжении имеются режимные данные, охватывающие периоды активизации и релаксации около 15 сильных (М≥5) сейсмических событий с эпицентрами, находящимися от 30 до 300км.

Активизация сейсмичности в Каджисайском блоке завершается 28 сентября 2015 года подземным толчком с К \approx 7,6 (рисунок 2). Как видно из таблицы 3 и рисунков 2,3, между интенсивностью, глубинами и времени землетрясений какие-либо связи отсутствуют, но по сезонности наибольшая сейсмическая активизация приходится на летнее время.

Рисунок 3. Временное распределение интенсивности землетрясений.

ТМВ по скважинам на площади *Джеты-Огуз* неоднозначно реагируют на сейсмические события, несмотря на близкое месторасположение (рисунок 4).

Рисунок 4. Вариационные кривые ТМВ «Джеты Огуз» скв. 6 и 20 за 2015 год.

Теперь о значениях pH, находящихся в течение октября 2015 года на уровне 8.4-8.6, понизившись к началу ноября до 7.8, они сохранили свои значения до конца месяца того же

года, не включая мелких отклонений, после которых произошла стабилизация около фона 8.2-8.4. Вариационные кривые по величинам pH среды ярко свидетельствуют о роли качественного состояния водовмещающей среды: относительная стабильность временных рядов по всем сезонам года, иногда нарушается, причём амплитуды колебания в скв. 20 больше при быстром возврате в прежнее состояние, чем по скв. 6, где свойственна мигающая частота на фоне слабых всплесков. Также средние концентрации компонентов, свидетельствуя о сезонной цикличности, постоянно колеблются, но с затуханием колебаний в скв. 20, возникает реакция скв. 6, которая определяется нарушением самой карбонатной системы при изменении P-T условий разнородно за счёт неоднородной подвижности ионов.

Так, в этих скважинах действительно разделяются периоды квазиустойчивого и неустойчивого состояния. В целом, высокие коэффициенты парной корреляции характеризуют стабильность режима, находящуюся в условиях квазиустойчивого режима, на фоне которых единичные пики по амплитуде колебания в проявлениях внезапного отклонения совпадают с периодом активизации в земной коре. Для такого рода гидрогеологического состояния характерен низкий коэффициент корреляции, колеблющейся от 0.204 до 0.2132, а также в повторяющемся ходе дисперсии чётко отмечаются как предвестниковые, так и постсейсмические эффекты.

ГДО «Каракол» функционирует с октября 2012 года. Здесь замеряются температура и дебит ТМВ, причём в этой наблюдательной скважине (рисунок 5), вскрывшей субтермы, начиная с января 2016 года налажены химические анализы макрокомпонентовгидрокарбонатов, карбонатов, углекислого газа, кальция и магния.

Рисунок 5. Вариационные кривые временных рядов ГДО «Каракол».

По ГГХС «Каджи-Сай» за 2014-2015 гг. величины pH (рисунок 6), стабильно находящиеся в слабощелочных условиях (7.8), в первой половине декабря плавно спускаются до верхней границы нормальной среды (7.4-7.5), а 16 декабря 2015 года достигают минимума (7.2-7.1).

При этом температура снижается от 55 до 53.5°С, но стабилизировалась на уровне $+54^{\circ}$ С, тогда как содержание CO₂ сначала ступенчатым образом (рисунок 5), затем мелкими миганиями повышается от 4.8-5.0 до 7.2-8.1, достаточно долго сохраняя это положение. В этой скважине концентрации гидрокарбонатов и кальция проявляют, в большинстве случаев, относительную стабильность, т.е. амплитуды их колебаний не превышают 1%, хотя в их поведениях чётко видны противофазные скачки, отличающиеся по контрастности: повышение CO₂ гораздо больше, нежели понижение в HCO₃⁻ первого полугодия, хотя со второй половины июня превалируют мелкие импульсы (рисунок 6).

Так, одними из основных действующих сил в возникновении геохимических и гидродинамических эффектов являются по работе [3] упругие колебания ультразвукового диапазона, т.е. они генерируются непосредственно вблизи пункта наблюдений, а [1]

предлагают вынос газо-химических компонентов по зонам глубинных разломов из области очага землетрясения и выжимание поровых вод из скелета вмещающих пород.

Ответная реакция системы «горная-порода-разрывы-подземные воды» на воздействие деформационных процессов, благодаря нарушению существующего порядка в концентрациях ионов, а также разрывам химических связей и цепных реакций в зонах структурных дефектов и новых поверхностей контакта, прослеживается избытком одних и недостатком других определяемых макрокомпонентов, формирующихся различными их структурно-чувствительными свойствами.

В целом вышеописанное позволяет предположить, что накапливаемая энергия напряжённо-деформационных процессов, завершившись в одной трещинной зоне, плавно переходит в другие потенциальные зоны, где слияние локальных напряжений выражается в сейсмических толчках.

Считаем необходимым привести в качестве примера данные по скв. 915 ТМВ «Аламедин» (рисунок 7), где отмечены импульсы Р-Т условий, а в неглубокой скважине наблюдается понижение уровня на 5 см и повышение дебита (л/сек) от 1.5783 до 1.6128, сопровождавшиеся в первой скважине колебаниями избыточного давления (кгс/см²) от 86.2 до 84.4 кгс/см².

Данная картина отмечена накануне землетрясения с K =10.1, произошедшего на расстоянии около 300 км 03.07.2015 г. Так, практически перед землетрясениями с $K_R \ge 8.0$, произошедшими в 2015 г., на фоне сезонной цикличности появляются колебания с различными амплитудами и формами, что, возможно, связано со сложной природой развития тектонических блоков, индивидуальными реакцией пунктов наблюдений разнородными проявлениями гидрогеохимических эффектов.

Рисунок 6. Вариационные кривые временных рядов «Каджи-Сай».

Рисунок 7. Временной ход подземных вод «Аламедин» за 2015 год.

В связи с этим, с нашей позиции вышеприведённые научные выкладки лишь качественно объясняют кратковременные скачки, проявляющиеся в подземных водах, а относительно устойчивые аномалии длительностью от десяти суток до нескольких месяцев, нередко фиксируемые в содержаниях газов и нарушении карбонатного равновесия, не укладываются в рамки фильтрации и механического выжимания поровых растворов. Также соотношение [2] дополнительной порции газо-химических компонентов в них с термофлуктуационными процессами не имеет реальной основы, т.к. возможность существования идеально твёрдых тел в природных условиях, тем более в нижних частях земной коры, практически равна нулю, о чём объективно замечает [8], что горные породы начинают разрушаться гораздо позже, нежели твёрдые тела.

Действительно, в соответствии с современным представлением о геохимической модели функционирования в сейсмогенных структурах процессы микродеформаций и трещинообразования представляются как генератор колебания переменной частоты, которое, достигнув в регистрирующей системе собственной частоты, вызывает резонансный эффект, приводя к увеличению эффекта их внедрения из других зон.

Эти сведения нам дают основание полагать о реальном существовании флюидальных систем по разломам Восточного Прииссыккулья, проникающих до глубоких частей земной коры, хвосты которых, достигающие дневной поверхности в виде ТМВ, рассматриваются как эпицентры древних подземных толчков, с очагами которых и сегодня продолжаются обмен энергией и веществами.

Литература

- 1. Барсуков В.Л., Беляев А.А., Бокалдин Ю.А. и др. Геохимические предвестники землетрясений. М.: Наука, 1992. С. 213.
- 2. Бутягин П.Г. Разупорядочение структуры и механохимические реакции в твёрдых телах. //Успех химии. 1984. -№ 11. –С.1769-1789.
- 3. Деформационные волны Земли: концепция, наблюдения и модели // Геология и геофизика. 2005. Т.46. № 11. С. 1176-1190.

- 4. Каталог землетрясений за 2014-15 гг. Бишкек. Институт сейсмологии НАН КР. 2015.
- 5. Кендирбаева Дж.Ж., Гребенникова В.В. Основные результаты гидрогеологических исследований для прогноза сильных землетрясений на территории Северного Тянь-Шаня. // «Вестник Института сейсмологии НАН КР». 2013, №2. С. 33-43.
- 6. Кендирбаева Дж.Ж Основные принципы регионального анализа гидрогеологической системы Кыргызстана как источника информации прогноза землетрясений. // «Вестник Института сейсмологии НАН КР». 2014, №2. –С. 65-69.
- 7. Мамыров Э., Маханькова В.А., Берёзина А.В., Молдобекова С., Хан В.В. Прогноз вероятного места сильных землетрясений на территории Кыргызстана. // «Вестник Института сейсмологии НАН КР». №1, 2013. –С. 59-71.
- 8. Мусин Я.А., Идрисова С., Кабо В.А. Выделение радона горными породами в воду в зависимости от температуры вод. //Комплексные исследования по прогнозу землетрясений в Киргизии. –Бишкек: «Илим» 1991.-С. 65-81.
- 9. Прогноз землетрясений. Физические аспекты прогноза сейсмических явлений. –Душанбе-Москва, 1984. –Т. 4. С.380.
- 10. Шерман С.И. Сейсмический процесс и прогноз землетрясений. //Тектонофизическая концепция. Новосибирск: Академическое изд-во «Гео», 2014.

Рецензент: д.ф.-м.н. Муралиев А.М.