УГЛЕРОДИЗАЦИЯ И ГЕОХИМИЧЕСКАЯ СПЕЦИАЛИЗАЦИЯ ГРАФИТОНОСНЫХ ПОРОД СЕВЕРНОЙ ЧАСТИ ХАНКАЙСКОГО ТЕРРЕЙНА, ПРИМОРЬЕ

© 2010 г. А. И. Ханчук, Л. П. Плюснина, В. П. Молчанов, Е. И. Медведев

Дальневосточный геологический институт ДВО РАН 690022 Владивосток, просп. 100-летия, 159 e-mail: makarovo38@mail.ru Поступила в редакцию 04.05.2008 г.

Рассмотрены проявления региональной углеродизации в метаморфических комлексах рифейского возраста северной части Ханкайского террейна. Использование различных методов физико-химического анализа позволило установить повышенные концентрации $(10^{-4}-10^{-6}$ мас. %) золота и элементов платиновой группы (ЭПГ) во всех петрографических разностях пород этого комплекса. По данным рентгено-флюоресцентного анализа описан широкий диапазон геохимически разнотипных редких и рассеянных элементов: Ti,V, Ni, Cr, Pt, Pd, Re, Rh, Os, Ir, Cu, Hg и Au, Ag, Ta, Nb, Sr, Rb, Zr, La, W, Sn, Pb, Zn. На диаграмме Rb/Sr–Ba выделяются поля анатектических гранито-гнейсов, биотитовых гранитов, лампрофиров, графитизированных кристаллосланцев, черных сланцев, скарнов и кварц-графитовых метасоматитов. Изотопный состав углерода в графите из метаизверженных пород, лампрофиров и кристаллосланцев амфиболитовой фации метаморфизма отвечает величине $\delta^{13}C = -8.5-8.7$, что допускает эндогенный источник углерода. В черных сланцах зеленосланцевой фации изотопный состав углерода иной: $\delta^{13}C = -19.9-26.6$, характерный для органогенного происхождения углерода. Содержание благородных металлов в них в среднем на порядок меньше, чем в графитизированных кристаллосланцах. Сделан вывод о связи благороднометальной минерализации с проявлением процесса региональной углеродизации.

КРАТКОЕ ОПИСАНИЕ ОБЪЕКТА ИССЛЕДОВАНИЙ

На площади Ханкайского террейна широко распространены метаморфические и осадочные комплексы пород протерозойско-кембрийского возраста, вмещающие в северной части целый ряд известных ранее месторождений графита. По данным геолого-разведочных работ здесь выделен Лесозаводской графитоносный район общей площадью 1900 км² и три графитоносных узла: Тамгинский – 400 км², Тургеневский – 225 км² и Иннокентьевский – 100 км² (рис. 1). В.П. Солоненко [1] отметил, что Уссурийский графитоносный район является одним из крупнейших графитоносных районов России. В пределах всего комплекса установлен ранний этап регионального метаморфизма низкоградиентного широкозонального типа в условиях амфиболитовой и эпидот-амфиболитовой фаций, возраст которого составил 730 млн. лет. Поздний этап регрессивного метаморфизма от гранулитовой до зеленосланцевой фации связан с коллизионными событиями на рубеже кембрия и ордовика [2]. Месторождения графита приурочены к зонам интенсивного рассланцевания в пределах мощного коллизионного пояса складчатых и сдвиговых деформаций.

В данной работе наиболее детально рассмотрен Тургеневский графитоносный узел, расположенный в пределах Ружинского палеодиапира. В ядре этой купольной структуры эрозионным срезом вскрыт сложный комплекс пород уссурийской серии, метаморфизованных в условиях амфиболитовой и эпидот-амфиболитовой фаций. Комплекс сложен переслаиванием гранат-биотит-полевошпатовых, биотит-кварц-полевошпатовых кристаллосланцев и плагиогнейсов с мраморами и согласными инъекциями биотитовых и лейкократовых очковых гранито-гнейсов. Мрамора на контакте с гранитогнейсами скарнированы. Отмечается присутствие маломошных (до 1 м) согласных со сланцеватостью даек лампрофиров габбро-диоритового состава шелочного (калиевого) уклона. Представленные здесь все литологические разности подвержены процессам наложенной графитизации в виде дисперсных фаз, мономинеральных жил и линзовидных включений. В кристаллосланцах графит ориентирован согласно слоистости, в то время как в гранито-гнейсах и лампрофирах преобладают секущие прожилки и линзовидные скопления. Содержание углерода варьирует от долей процента до 39 мас. %. Химические составы перечисленных разностей представлены в табл. 1. Уникальность объекта исследований состоит в том, что все распространенные здесь различные типы пород обнаруживают высокий уро-

Рис. 1. Карта расположения площадной графитизации в северной части Ханкайского террейна. Масштаб 1 : 200000 (составлена по материалам Приморского геологического управления).

вень углеродизации, вплоть до образования углеродистых метасоматитов. Наивысшая степень графитизации наблюдается в малых интрузивных телах гранитов, прорывающих описываемый комплекс. Источником углерода в магматических протолитах могли быть как глубинные восстановленные флюи-

УГЛЕРОДИЗАЦИЯ И ГЕОХИМИЧЕСКАЯ СПЕЦИАЛИЗАЦИЯ

Окис-	02-3	03-3	04-17	04-40	04-13	04-77*	04-7a	04-101*	02-1	02-4	04-27**	06-14**
лы	кристаллосланцы		черные сланцы		скарны		лампрофиры		гранито-гнейсы		плагиограниты	
SiO ₂	37.74	38.56	81.26	68.30	17.85	34.60	51.30	52.07	70.82	66.50	67.90	67.99
TiO ₂	0.19	0.32	0.42	0.75	0.25	0.38	1.16	1.04	0.22	0.05	0.14	0.09
Al_2O_3	12.03	8.95	7.20	12.32	2.48	5.86	21.31	19.29	12.61	12.33	17.27	13.75
Fe ₂ O ₃	0.29	2.18	2.20	4.33	0.20	3.17	3.39	7.57	0.58	1.81		
FeO	5.50	0.85	0.34	0.62	2.16	0.35	6.05	1.76	_	_	1.45	4.16
MnO	0.03	0.06	0.01	сл	0.11	0.05	0.03	0.10	0.02	0.01	0.02	0.12
MgO	0.58	2.16	0.40	0.80	3.01	1.49	1.78	4.01	0.32	0.62	4.90	0.92
CaO	0.20	2.51	0.18	сл	42.31	20.57	1.95	1.30	3.04	0.28	3.04	4.04
Na ₂ O	0.93	1.83	0.47	0.63	0.24	0.59	2.61	2.67	0.95	1.90	2.70	4.35
K ₂ O	3.03	1.58	2.20	3.31	0.61	0.99	6.75	7.31	7.90	6.38	1.47	2.38
P_2O_5	_	_	0.12	0.23	сл	сл	0.12	0.29	_	_	0.06	н/о
H_2O^-	0.59	сл	0.22	0.10	сл	0.62	0.21	сл	0.10	_	н/о	н/о
H_2O^+	3.73	5.97	2.11	3.69	1.59	3.63	2.59	1.47	0.98	2.45	н/о	н/о
С	36.47	34.57	3.24	4.52	28.81	27.89	0.33	0.77	2.08	7.33	1.70	0.84
Σ	98.11	99.54	100.37	100.37	99.62	100.19	99.92	99.87	99.48	99.58	100.65	98.64

Таблица 1. Химические составы пород Ружинского и Тамгинского участков (мас. %)

* Породы Тамгинского участка;

** Рентгено-флюоресцентный анализ, остальные данные силикатного анализа (аналитик Ж.А. Щека).

ды, так и первично рассеянный магматический углерод. Установлены следующие соотношения графита с минералами в графитизированных гранитогнейсах и плагиогнейсах: графит кристаллизуется одновременно с другими фазами, образуя взаимные прорастания с кварцем и биотитом. Наблюдаются как пересечения скоплений биотита графитовыми прожилками, так и секущие прожилки биотита в графите, что свидетельствует о синметаморфическом образовании графита.

В изученном комплексе отсутствуют проявления гидротермальной сульфидизации, характерной для большинства известных черносланцевых комплексов. Под микроскопом отмечены лишь акцессорные выделения микрокристаллов пирита и арсенопирита. Особого внимания заслуживает дизьонктивная тектоника описываемой площади. Дислокации и трещины, широко развитые на территории месторождений Тургенево-Тамгинской группы, хорошо маркируются тектонической графитовой глинкой, прдставляющей графитовый милонит, в котором обнаруживаются обломки графит-серицит-кварцевых сланцев [1].

В последние годы появились данные о связи процессов углеродизации с благородно-метальной (БМ) минерализацией [3]. В связи с этим определение содержания золота и платины было выполнено нами в пределах Ружинского разреза, расположенного севернее д. Тургенево и вскрытого карьером для добычи щебня [4]. Установленные здесь высокие концентрации золота и платины послужили ос-

ГЕОХИМИЯ № 2 2010

новой для проведения более тщательных аналитических исследований пород объекта на золото и элементы платиновой группы (ЭПГ). Целью данной работы является изучение связи графитизации с минерализацией БМ и описание геохимической специализации графитоносных пород изученного объекта.

МЕТОДЫ И РЕЗУЛЬТАТЫ АНАЛИЗА БЛАГОРОДНЫХ МЕТАЛЛОВ

Низкие содержания ЭПГ в углеродсодержащих породах, отсутствие самостоятельных минеральных выделений платиноидов обусловливают значительные трудности их анализа и ограничивают круг методов, пригодных для аналитики. Площадное проявление графитизации пород Ханкайского террейна еще более осложняет данную проблему из-за высокой устойчивости графита к окислительному разложению, необходимому для выделения и освобождения БМ. В связи с этим при исследовании пород Ружинского участка было использовано несколько методов физико-химического анализа.

Первые определения повышенных содержаний золота и платины в изученных породах были выполнены физическим методом ионной масс-спектрометрии (IMS) в Институте микроэлектроники и высокочистых веществ РАН (Черноголовка). Данный метод впервые применен для анализа непроводящих веществ благодаря использованию ионного источника тлеющего разряда на базе полого катода

№ обр.	Au	Pt	Метод анализа*	Порода		
02-1	40	н/о	ICP-AES	Гранито-гнейс с графитом		
02-3	13	4	IMS	Гранито-гнейс с графитом		
02-3	30	н/о	ISP-AES	То же		
03-1a	5	16	IMS	Гранито-гнейс		
03-3	3	6.7	IMS	Гранат-биотит-графито- вый сланец		
03-5	5	52	IMS	Лампрофир		
04-7a	12	20	IMS	Эндоскарн с дисперсным графитом		
04-7a	1.04	1.15	AA	То же		
04-7б	12	14	IMS	Скарнированный мрамор		
04-7б	0.16	1.51	AA	То же		
04-17	7.2	5	IMS	Серицит-кварц-графито- вый сланец		
04-17	0.66	1.30	AA	То же		
04-29	15	18	IMS	Лампрофир		
04-29	0.46	1.28	AA	То же		
04-40	17	24	IMS	Серицит-кварц-графито- вый сланец		
04-40	0.18	1.29	AA	То же		
04-9	2.2	3.3	IMS	Черный сланец, Тамга		
04-9	0.14	0.82	AA	То же		

Таблица 2. Содержание золота и платины в графитсодержащих породах Ружинского разреза (г/т)

Примечание. н/о – не определялось.

*АА – спектрофотометр АА-6200, ICP-AES – атомно-эмиссионная спектроскопия, IMS – ионный масс-спектрометр.

[5]. Результаты анализа IMS показаны в сравнении с определениями концентраций золота и платины в этих пробах на атомно-эмиссионном спектрометре с индукционно-связанной плазмой и на атомном абсорбере, выполненными в Аналитическом Центре ДВГИ (табл. 2). Данные последнего метода анализа, требующего длительной химпробоподготовки с разложением проб в сильных окислительных средах, оказываются значительно ниже значений, полученных IMS.

Чтобы подтвердить связь БМ с углеродистым веществом, был выполнен анализ растворов, полученных при растворении силикатной составляющей в царской водке и НГ. В такие растворы переходят все компоненты за исключением графита, остающегося в осадке. Анализ растворов осуществлен на спектрофотометре АА-6200, показавшем низкие концентрации золота при отсутствии платины и палладия в пределах чувствительности прибора. Последующее длительное разложение прокаленных при 600°С графитовых осадков в HClO₄ и HF позволило определить содержание в них золота до 16.8, платины до 14.15 и палладия до 5.67 г/т в отдельных пробах (табл. 3).

Полученные данные свидетельствуют о тесной связи БМ с графитом и о существенных потерях металлов в результате эмиссии летучих металлоорганических комплексов. В связи с этим для разложения "упорных" графитсодержащих пород был использован метод окислительного фторирования с помощью BrF₃ и KBrF₄, разработанный в Институте неорганической химии СО РАН [6]. Достоинством этого метода является высокая селективность и степень извлечения объектов анализа. В результате анализа 24 проб Ружинского разреза установлено присутствие широкого спектра благородных металлов (в г/т): Au - 0.021-3.57, Ag - 0.2-4.41, Pt - 0.04-3.56, Pd - 0.02-0.55, Ir - 0.002-0.055, Os - 0.011-0.09, Ru – 0.007–0.2, Rh – 0.001–0.74. Впоследствии в дубликатах этих же проб определялось содержание золота с помощью нейтронно-активационного анализа (НАА) в Институте химии ДВО РАН. Навеска проб для анализа составляла 0.5 кг. Результаты этого анализа в сравнении с предыдущим показаны в табл. 4, где, за исключением нескольких проб, отмечается хорошая сходимость полученных содер-

Таблица 3. Содержание благородных металлов (г/т) в пробах, фракционированных на растворимую силикатную часть и графит в осадке

N⁰	Au*		Графит**		ΣAu	Содержание	Π
		Au	Pt	Pd	ZAU	С, мас. %	Порода
02/1	0.73	16.68	8.68	5.67	17.41	35	Графитовый метасоматит
02/3	0.56	2.83	2.15	0.99	3.39	~4.7	Плагиогнейс с графитом
02/4	0.61	4.18	2.39	1.23	4.79	~ 6.3	Гранито-гнейс
03/1a	_	2.56	4.14	3.31	2.56	5.6	Графитовый метасоматит
03/3	0.1	5.37	14.15	7.31	5.47	30	Гранат-биотит-графитовый сланец
03/5	1.26	0.04	4.46	1.24	1.30	29	Лампрофир

* Содержание Au в растворенной силикатной части определено на спектрофотометре AA-6200.

** Содержание Au, Pt и Pd в графите, прокаленном при 600°C, с последующим разложением и окислением в HF и $HClO_4$ (в течение 30 суток).

жаний золота в пределах ошибок данных методов. Однако максимальные концентрации золота в отдельных пробах устанавливаются только по результатам НАА.

Приведенные выше данные (табл. 2-4) отражают значительное расхождение величин концентрации золота и платины в изученных породах по данным разных методов анализа. Основные погрешности аналитики связаны с химпробоподготовкой. Различия в содержаниях ЭПГ наблюдаются даже в пределах одной пробы [7, 8]. При этом имеют место потери как за счет выделения летучих металлоорганических комплексов [9], так и не полного вскрытия графита в ряде случаев. Оптимальные содержания золота и платины установлены физическими методами, не требующими предварительной химпробоподготовки. Однако анализ металлов методом IMS происходит из малой твердой навески (до 100 мг), что приводит к завышению концентраций металлов при пересчете на тонну руды и, как следствие, затрудняет его применение для оценки общих запасов металлов. В то же время, этот метод рационально использовать при поиске скрытого оруденения на больших площадях развития углеродсодержащих пород.

Обобщая результаты анализа БМ в изученном комплексе, можно отметить, что самые высокие концентрации Au и Pt наблюдаются в кристаллосланцах и лампрофирах; в гранито-гнейсах и скарнах Pt отмечается избирательно. Палладий встречен во всех породах на среднем уровне 0.02–0.65 г/т. Родий преобладает в лампрофирах, где его содержание достигает 5.30 г/т, в черных сланцах и гранито-гнейсах оно составляет не более 0.01 г/т. Для сравнения были рассмотрены черные сланцы, граниты и диопсид-гроссуляровые скарны митрофановской серии в окрестностях Тамгинского графитового месторождения (табл. 5), в которых уровень концентрации золота, платины и палладия определяется величинами 10⁻⁵-10⁻⁶ мас. %. При этом БМ отмечаются во всех литологических разностях пород, однако, максимальные содержания получены в графитизированных скарнах, что вызвало к ним определенный интерес. С помощью электронного микроскопа в протолочках были отмечены золотины размером до1 мм, но, несмотря на более высокое содержание в скарнах платины, обнаружить самостоятельные минеральные фазы ЭПГ не удалось, как и в породах Ружинского разреза.

ГЕОХИМИЯ И МИНЕРАЛОГИЯ

В графитизированных породах Ружинского разреза, вскрывающего ядро купольной структуры, данными рентгено-флюоресцентного анализа 50 проб, установлен широкий спектр редких и рассеянных элементов (Ba, Rb, Sr, Ga, Ta, Nb, Zr, Ti, Cr, V, Ni, Mn, Cu, Zn, Pb, W, La, Re, Pt, Ag, Au, Ru, Rh и др.) (табл. 6). Наиболее высокие содержания

ГЕОХИМИЯ № 2 2010

Таблица 4. Содержание золота в графитоносных породах
Ружинской площади (г/т) по данным нейтронно-актива-
ционного анализа (НАА) и атомно-эмиссионной спек-
троскопии (АЭС) с предварительным фторидным разло-
жением

№ образца	HAA	АЭС	Порода
04-1	≤0.8	0.51	Плагиогнейс
04-1б	1.8	0.71	Графитовый прожилок в пла- гиогнейсе
04-2a	≤0.7	0.636	Биотитовый гранитогнейс
04-3	≤0.2	0.198	Пироксеновый скарн
04-3a	≤1.0	0.876	Лампрофир
04-5	2.6	0.2	»
04-7a	≤1.1	1.18	»
04-13	≤0.3	0.143	Скарноид
04-16	0.9	1.89	Черный сланец
04-27	≤1.4	_	Плагиогнейс
04-28	≤0.7	0.23	»
04-29	15.2	1.73	Лампрофир
04-33	0.4	0.774	Гранито-гнейс
04-35	0.4	0.767	Плагиогнейс
04-40	0.4	1.82	Аспидный сланец
04-68	14.2	н/о	Графитовый метасоматит
04-73	0.8	0.03	Эндоскарн
04-74	2.1	0.112	Плагиогнейс графитизиро- ванный
04-75	1.6	_	»
04-77	≤0.5	0.05	Скарноид
04-78	≤0.4	0.044	Гранито-гнейс
04-80	0.9	0.37	Эндоскарн с графитом
04-81	1.7	0.043	»
04-101	≤1.2	0.57	Лампрофир
04-107	6.8	0.29	Мрамор с графитом до 7 %
04-107к	17.1	0.29	Мрамор с графитом до 30 %
04-108	0.5	1.01	Жильный кварц

Примечание. Анализы НАА выполнены в Институте химии ДВО РАН (Иваненко В.В), анализы АЭС выполнены в институте неорганической химии СО РАН, Новосибирск (Митькин В.Н.)

этих элементов характерны для лампрофиров, в которых суммарное содержание, включая также Hf, Tb, Th, Y, U, Er, отсутствующих в других литологических разностях пород, достигает 1 мас. %. Наряду с ними в изученных породах присутствуют летучие компоненты: F - 100-400 г/т, Cl - 40 г/т, $P_2O_5 - 0.48$ мас. %, что свидетельствует о возможной реализации газотранспортных реакций.

Поскольку повышенные содержания ЭПГ были отмечены в дайках лампрофиров, нами были предприняты попытки определить минералы-концен-

Компонент	Содержан	ие мас. %	Число	Типы пород		
Romionem	min	iin max		тишнород		
Rh	0.005	0.025	49	лампрофиры, граниты, скарны, черные сланцы		
Re	0.00002	0.034	48	»		
Os	0.007	0.039	47	»		
SrO	0.01	1.30	50	»		
Rb ₂ O	0.0002	0.12	50	»		
NiO	0.0007	0.025	39	»		
BaO	0.006	0.61	50	»		
La ₂ O ₃	0.025	0.048	50	»		
Ga ₂ O ₃	0.002	0.12	42	»		
HfO ₂	0.002	0.015	18	лампрофиры, плагиогнейсы		
V ₂ O ₅	0.001	0.31	35	»		
WO ₃	0.003	0.039	5	скарны		
MoO ₃	0.03	0.19	4	»		
ZnO	0.0001	0.03	14	гранито-гнейсы, скарны		
CeO ₂	0.027	0.094	13	лампрофиры, плагиогнейсы		
Er ₂ O ₃	0.017	0.025	7	скарны и кварц-графитовые жилы		
Tb_4O_7	0.002	0.006	5	гранито-гнейсы		
Ir	0.02	0.039	7	лампрофиры, плагиогнейсы		

Таблица 5. Содержание редких и рассеянных элементов в метаморфических породах Ружинского разреза по данным рентгено-флюоресцентного анализа (мас. %)

Таблица 6. Содержание золота, платины и палладия в графитизированных породах Ружинского и Тамгинского участков ($n \times 10^{-6}$ мас. %)

№ обр.	Au	Pt	Pd	Порода
04-6	4.56	8.28	3.21	лампрофир
04-13	1.30	4.93	10.4	скарн
04-17	17.10	9.03	3.89	черный сланец
04-18	61.0	11.10	13.40	скарн
04-33	1.93	9.25	1.00	гранито-гнейс
04-35	21.20	4.45	18.00	скарн
04-77	7.50	32.10	1.91	скарн
04-80	2.19	23.10	1.24	эндоскарн
04-85	6.65	5.46	1.53	мрамор
04-87	6.44	17.80	1.39	скарн
04-88	2.25	9.21	6.80	гранит
04-107	2.16	5.15	2.34	скарн
06-14	2.63	1.15	1.90	гранит

Примечание. Анализы выполнены на спектрофотометре Shimadzu AA-6800 в режиме электротермической атомизации с чувствительностью: Au -2.2×10^{-7} , Pd -3.5×10^{-8} , Pt -6.9×10^{-7} %.

траторы ЭПГ. Для этой цели был использован микрозондовый анализ на приборе CamScan MV 2300 с размером зонда 157-200 nm в ИЭМ РАН (Черноголовка). Результаты расчетов, выполненных по программе INCA Energy 200, приведены в табл. 7 для ряда минералов (обр. 03-5). Выделения самостоятельных минеральных фаз платиноидов обнаружить не удалось. Но оказалось, что во всех измеренных зернах магнетита присутствует платина, причем устанавливается положительная корреляция концентраций Pt и REE в магнетите, что исключает случайный характер замеров. Наличие платины в магнетите не сопровождается микровключениями ее собственных минералов при чувствительности анализа на Pt порядка $n \times 10^{-4}$ мас. %. Во всех других фазах, включая акцессорные монацит, торит и ортит, присутствие Pt не было обнаружено. Золото было отмечено только в гиперстене. Присутствие Pt и Аи в магнетите и гиперстене предполагает их магматический источник.

Лампрофиры габбро-диоритового состава с повышенным содержанием калия и титана образуют серию маломощных даек, отличающихся по минеральному составу. Наиболее редки оливин-гиперстен-биотитовые лампрофиры, содержащие гранат и единичные зерна хромсодержащей шпинели (данные рентгеновского анализа), в которых по данным IMS установлено максимальное содержание Pt до 52 г/т. Они отличаются высоким содержа-

120

ГЕОХИМИЯ № 2 2010

Рис. 2. Диаграмма концентраций Sr и Rb (г/т) в породах Ружинского и Тамгинского участков (А – кристаллосланцы и черные аспидные сланцы, С – лампрофиры, D – гранито-гнейсы и граниты, F – скарны и кварц-графитовые жилы).

нием акцессорных минералов – циркона, апатита, монацита, магнетита. В пироксенах обычна примесь Ti, V, Cr, Mn.

Далее встречаются гранат-гиперстен-диопсидбиотитовые лампрофиры с невысоким содержанием кварца до 3%. Они также изобилуют акцессорными минералами. Другой тип лампрофиров диоритового состава с содержанием кварца до 15% имеет диопсид-биотит-плагиоклазовый состав с обилием акцессорного F-апатита, магнетита, пирита, циркона с содержанием U, Th и Hf до 0.40 ат. %, ортита, содержащего La – 0.80, Ce – 1.76, Pr – 0.14, Nd – 0.56 и Sm – 0.10 ат. %, фосфорсодержащего ураноторита ($Th_{0.54}U_{0.27}Ca_{0.10}Zr_{0.06}Y_{0.02}$)_{0.99}Si_{0.9}P_{0.10}, фосфатов редких земель (P – 15.60, La – 5.55, Ce – 7.90, Pr -0.54, Nd - 1.76, U - 0.03 ат. %) (данные микрозондового анализа). В этих лампрофирах отмечено достаточно высокое суммарное содержание благородных металлов. Анализ содержания редких и рассеянных элементов во всех разностях графитизированных пород отмечает постоянное присутствие следующих элементов: Zr, Sr, Ga, La, Ba, Rb, Ni, Ti, V, Cr, Ta u Nb. Повышенные содержания Ti, V, Ni, Сr, Си характерны для комплексов пород, расположенных в коллизионных зонах, где флюидный поток захватывает материал нижней коры и верхней мантии. Влияние глубинного базитового очага выражается во внедрении даек лампрофиров габбродиоритового состава и привносе глубинными флюидами Ti, Ni, V, Cr, Cu и таких металлов как платина, ЭПГ и, вероятно, золото.

Наибольшими вариациями концентраций в зависимости от состава пород обладают Ва, Rb и Sr. B связи с этим были построены диаграммы Rb/Sr и Rb/Sr—Ba (рис. 2, 3). Наиболее показательна последняя диаграмма, на которой четко различаются поля графитизированных кристаллосланцев амфиболитовой фации и черных сланцев зеленосланцевой фации. Высокие аномальные содержания Ва в **Рис. 3.** Диаграмма Rb/Sr–Ba (г/т) в породах Ружинского и Тамгинского участков (а – черные сланцы, в – кристаллосланцы (плагиогнейсы), с – лампрофиры, d – граниты Тамгинского участка, е – гранитогнейсы Ружинского карьера, f – скарны и кварц-графитовые жилы).

черных сланцах достигают 4000 г/т. Такие концентрации характерны для современных морских осадков и описаны в современных диатомовых илах Алеутского и Мексиканского желобов [10]. Следует отметить, что черные сланцы митрофановской серии отличаются высоким содержанием кремния до 81.26 мас. % и сложены преимущественно кварцем и тонко дисперсным графитом с подчиненным количеством серицита, хлорита и полевых шпатов. Это позволяет предположить кремнистые органические илы морского происхождения в качестве их протолита. Метаморфическое преобразование последних выражается в сланцеватой текстуре, присутствии серицита и хлорита и наличии графитовых и более крупнозернистых полевошпат-кварцевых сегрегаций в результате метаморфической собирательной перекристаллизации.

Кристаллосланцы гнейсовидного облика состоят из биотита, плагиоклаза (An₄₅), диопсида, граната с подчиненным количеством (менее 5%) зеленой роговой обманки и кварца. Биотит-плагиоклазовые сланцы лепидогранобластовой структуры, состоящие из плагиоклаза, кварца и четко ориентированных по сланцеватости биотита и графита, практически представляют собой плагиогнейсы. Этот термин для краткости использован нами в табл. 2—4. Графитизация в них проявлена неравномерно, отмечаются прослои существенно графитового состава, наряду с которыми присутствуют участки биотит-полевошпатовых сланцев, практически не графитизированных.

По Rb/Sr отношению различаются также анатектические гранито-гнейсы Ружинского карьера и нижнепалеозойские аляскитовые и биотитовые плагиограниты Тамгинского разреза. Анатектические гранито-гнейсы имеют очковую структуру с крупными порфиробластами микроклина (до 1.5 см) и более редкими выделениями граната андрадит-гроссулярового состава. Развитие в них

121

Элемент	Монацит	Mgt	Mgt	Mgt	Mgt	Гиперстен	Гиперстен
Na	0.19	0.14	0.12	0.19	0.33	0.38	0.36
Mg	_	0.24	0.20	0.43	0.36	0.18	0.17
Al	0.48	0.09	0.07	_	_	2.17	2.02
Si	3.87	2.74	2.33	2.68	2.26	19.53	18.07
Р	7.29	0.01	0.01	_	_	0.39	0.17
Cl	0.17	0.18	0.16	0.09	0.08	0.36	0.34
Κ	0.22	0.03	0.03	0.03	0.04	0.13	0.12
Ca	9.14	0.73	0.64	0.53	0.46	3.06	2.84
Ti	0.29	0.05	0.04	0.10	0.09	0.02	0.02
Cr	_	_	_	0.16	0.15	0.15	0.14
Mn	_	0.20	0.19	0.07	0.06	_	_
Fe	5.08	69.97	61.92	69.71	61.37	34.74	32.43
Sr	0.24	0.11	0.10	_	_	_	_
La	3.92	0.35	0.32	0.49	0.44	_	_
Ce	1.55	0.12	0.11	0.27	0.23	0.08	0.17
Pr	0.46	_	_	0.06	0.05	0.32	0.39
Nd	1.20	_	_	0.26	0.24	0.48	0.45
Pt	_	0.09	0.08	0.20	0.17	_	_
Pb	0.24	0.36	0.32	0.26	0.22	0.55	0.51
Au	—	—	-	-	-	0.15	0.13
Th	39.32	_	_	0.20	0.10	0.52	0.48
0	26.35	24.05	32.94	24.05	33.28	36.55	40.99
U	_	_	0.45	_	_	—	_
Сумма	100.01	99.46	99.58	99.78	99.91	99.76	99.80

Таблица 7. Химический элементный состав монацита, магнетита (Mgt) и гиперстена по данным микрозондового анализа (мас. %)

процессов фельдшпатизации и биотитизации происходит при участии гранитизирующих флюидов калиевой направленности. Их отличает крайне низкое содержание рубидия и высокая степень катаклаза по сравнению с гранитами. Характерно, что графитизация в гранито-гнейсах проявлена весьма интенсивно вплоть до формирования углеродистых метасоматитов, состоящих преимущественно из графита и кварца с примесью пренита и цоизита.

Лампрофиры отличаются от остальных изверженных пород повышенным содержанием Ва, однако, более низким, чем в черных сланцах. При этом наблюдается прямая корреляция между содержанием в них Ва и К. По данным микрозондового анализа самые высокие содержания Ва до 1.15 ат. % отмечены в биотите.

Известно, что Sr обычно связан с карбонатными фазами, и на диаграмме Sr-Rb четко отбивается поле скарнов по оптимальному содержанию Sr, в то время как черные сланцы обладают наименышими его содержаниями, совпадая на диаграмме с полем гранито-гнейсов и лампрофиров по концентрации Rb. Таким образом, наиболее показательной для представления изученных пород является диаграмма Rb/Sr—Ba.

Установленное на диаграмме Rb/Sr–Ba различие геохимических полей черных сланцев митрофановской серии и графитизированных кристаллосланцев уссурийской серии подтвердилось данными изотопного анализа углерода из графитов этих пород. Изотопный состав углерода черных сланцев характеризуется величинами δ^{13} С (отнесенными к стандарту PDB) в диапазоне от –19.9 до –26.5 ‰. Подобные значения указывают на органическую природу углерода и характерны для осадочного углерода рифейских раннепалеозойских отложений

122

[3]. Кристаллосланцы, гранито-гнейсы и лампрофиры содержат углерод однородного изотопного состава δ^{13} C -8.5-8.7 % (при воспроизводимости анализа в пределах ±0.1 ‰). Высокая изотопная однородность углерода указывает на отсутствие в этих породах углерода биогенного происхождения. Подобные величины характеризуют эндогенный источник углерода, что подтверждается обильным развитием графита вдоль зон дислокаций, трещиноватости, оперяющих глубинные разломы. В пользу происхождения углерода при глубинной дегазации говорит развитие в графите глобулярных микроструктур, установленных в изученных породах с помощью сканирующего атомно-силового микроскопа Solver (институт химии ДВО РАН) (рис. 4). Конденсация углеродистых газов при охлаждении способствует образованию глобулярных микроструктур в процессе перехода из газообразного состояния в твердое [11].

Графит в породах ядра термокупольной структуры содержит обильные включения рудных и акцессорных минералов: самородного золота, магнетита, самородной меди, цинка, висмута, Cu-Sn и Cu-Sn-Fe интерметаллидов, Y-Th-P фаз, биотита, пирита и арсенопирита. Электронный анализ наиболее крупной золотины сферической формы (с диаметром до 1 мм) обнаружил значительные колебания состава в разных точках: Au -100-79.3, Ag - 0-22.02, CuO -0-2.2 ат. % (рис. 5). Внутри этой золотины вскрыто включение чешуйки графита, анализ которого также обнаружил неоднородность состава: С - 57.92-71.25, Au - 0.46-17.40, O - 28.2-30.3, Cl - 0.25-2.06, K-0-2.05, Ca-0-1.70, Si-0-1.70, Al-0-1.70 at. %. Неоднородность состава золота и графита, наличие в составе графита примеси кислорода и хлора свидетельствует об их одновременной кристаллизации из газовой фазы. Подтверждением такого заключения является обнаружение нанотрубки углеродистого состава на золотине, зафиксированной с помощью электронной микроскопии высокого разрешения (рис. 6). На снимке виден переход углеродистой матрицы с примесью петрогенных компонентов в нанотрубку чистого графита с идиоморфными четкими контурами. Это одно из первых реальных подтверждений существования нанотрубок углерода в природных соединениях золота. Наблюдаемое укрупнение кристаллов золота и графита является результатом собирательной перекристаллизации в ходе регионального метаморфизма. Интересно отметить, что о возможном сублимационном характере образования графита в углеродистых метасоматитах Тургеневского месторождения писал в свое время В.П. Солоненко [1].

Слабое развитие процессов окисления и сульфидизации, восстановительный режим газотранспортных реакций, осуществляющих эмиссию углерода и металлов в процессе глубинной дегазации,

Рис. 4. Глобулярная микроструктура графита в углеродистом метасоматите по гранито-гнейсам Ружинского карьера.

обусловили отсутствие собственных минеральных форм платиноидов в изученных породах. Возможность переноса металлов и в том числе ЭПГ в процессе дегазации магмы подтверждена измерениями газовых конденсатов на вулкане Кудрявый (остров Итуруп). В составе газового конденсата определено присутствие Re - 210, Os - 0.907, Au - 2.4, Pt - 0.07 и Ru - 0.009 мг/т. Помимо этого в сублиматах рентгеновской фотоэлектронной спектроскопией установлены гидроксокомплексы Pt и металл-хлорорганические комплексы тяжелых металлов [12].

Рис. 5. Сфероидальная форма самородного золота с включением графитовой чешуйки.

ГЕОХИМИЯ № 2 2010

Рис. 6. Нарастание углеродистой нанотрубки на кристалл самородного золота в скарнах Тамгинского участка.

ЗАКЛЮЧЕНИЕ

Полученные данные свидетельствуют об активном участии углерода в процессе рудообразования. В изученных породах выделяется два типа графитовой минерализации: равномерно рассеянная в дисперсной форме и переотложенная высокотемпературными флюидами в зонах дробления и катаклаза с развитием прожилков, гнезд и мономинеральных скоплений. Большинство исследователей приходит к выводу о поступлении углерода в составе газовой фазы глубинных эманаций [13]. Существует мнение, что черные сланцы фиксируют периоды катастрофического усиления дегазации ядра Земли [14]. Охлаждение поднимающихся высокотемпературных углеродсодержащих флюидов стимулирует кристаллизацию графита согласно реакции СН₄ + O₂ = = C + 2H₂O. Окисление углеводородов способствует поглощению кислорода, что обусловливает высокий восстановительный потенциал. Этот процесс объясняет широкое развитие включений в графите самородных металлов, интерметаллидов Cu-Sn-Fe, описанных как в породах Ханкайского террейна [7], так и в других регионах [15, 16 и др.]. Для объяснения условий образования в рудах самородных металлов и интерметаллидов была привлечена гипотеза газоконденсатной кристаллизации в среде восстановительных газов предположительно водородуглеводородного состава [17]. Подобные, существенно углеводородные флюиды могут быть переносчиками ряда рудных металлов, присутствующих в виде металлорганических соединений с серой, хлором и другими летучими соединениями. Присутствие хлора, отмеченное нами выше в графите углеродистых метасоматитов Ружинского разреза, подтверждает эту возможность. Зоны трансформации миграционных форм углерода и металлов определяют геохимическую специализацию и металлогению вмещающих комплексов.

Серьезные проблемы возникают при изучении оруденения платиноидов в углеродсодержащих породах, не образующих собственных минералов. Установленные аномальные концентрации ЭПГ в графитсодержащих породах различного состава являются результатом воздействия глубинных флюидных потоков. Благодаря способности к хемосорбции углеродистое вещество может служить концентратором металлофулеренов вплоть до проявления гидротермальных процессов сульфидизации и окисления, приводящих к освобождению ЭПГ в виде самостоятельных минеральных фаз. Металлофулерены известны по эспериментальным данным и обладают уникальными химическими свойствами - исключительной термической и химической устойчивостью при температурах выше 600°С и высокой миграционной способностью [18]. Одним из интересных морфопризнаков в пользу газоконденсатной гипотезы является способность самородного золота, серебра и других элементов образовывать сфероиды и глобули, которые являются продуктом заполнения протогазовых включений в углеродистой матрице.

Данные, приведенные в табл. 2–6, показывают, что аномально повышенные концентрации по сравнению с средними содержаниями золота и ЭПГ в земной коре фиксируются во всех литологических разностях пород Ружинского и Тамгинского месторождений графита. Скорее всего, это можно объяснить региональным развитием углеродизации в ходе тектоно-магматической активизации Ханкайского террейна. Сопряженность участков распространения графитизации с зонами дислокаций и тектонитов фиксирует зоны тектономагматической активизации. Повсеместное проявление графитизации во всех литологических разностях пород позволяет сделать вывод, что процессы региональной графитизации совпадают с проявлением регионального метаморфизма, связанного с коллизионными событиями на рубеже кембрия и ордовика [7].

В рудовмещающем комплексе присутствуют следующие признаки, характерные для месторождений благородных металлов в зонах мантийно-корового диапиризма: приуроченность к горст-антиклинальным структурам, значительный вертикальный масштаб графитовой минерализации, развитие гранитоидов различного состава и даек лампрофиров, концентрация в породах геохимически разнотипных элементов, тесная ассоциация благородных металлов с графитом. Эти признаки характерны для месторождений, относимых к флюидно-магматическому генетическому типу [18, 19].

Значительные трудности для аналитики ЭПГ представляет неоднородность распределения предполагаемых кластерных форм нахождения ЭПГ в графите. В связи с этим одной из важнейших задач является разработка методов извлечения наноиндивидов золота и платиноидов, значительная часть которых находится в ультрадисперсном состоянии в углеродистом веществе.

Авторы выражают искреннюю благодарность доктору ф.-м.н. Г.Г. Сихарулидзе, д.х.н. В.Н. Митькину, д.х.н. В.В. Иваненко, Ж.А. Щеке и В.Ф. Заниной за выполненные анализы золота и платиноидов в породах Ханкайского террейна. Микросьемка графита и самородного золота выполнена на сканирующем электронном микроскопе В.Г. Курявым (институт химии ДВО РАН) и П.П. Сафроновым (ДВГИ ДВО РАН).

Работа осуществлялась при поддержке проекта президиумом ДВО РАН (06-2-CO-08-029).

СПИСОК ЛИТЕРАТУРЫ

- 1. Солоненко В.П. Геология месторождений графита Восточной Сибири и Дальнего Востока. М. Изд-во геол. литер. 1951. 382 с.
- Мишкин М.А., Ханчук А.И., Журавлев Д.З., Лаврик С.И. Первые данные о Sm-Nd систематике метаморфических пород Ханкайского массива // ДАН. 2000. Т. 374. С. 813–815.
- 3. Галимов Э.М., Миронов А.Г., Жмодик С.М. Природа углеродизации высокоуглеродизированных пород Восточного Саяна // Геохимия. 2000. № 4. С. 355–360.
- 4. Ханчук А.И., Плюснина Л.П., Молчанов В.П. Первые данные о золото-платиноидном оруденении в углеродистых породах Ханкайского массива, Приморье // ДАН. 2004. Т. 397. № 4. С. 524–529.

5. *Сихарулидзе Г.Г.* Ионный источник с полым катодом для элементного анализа твердых тел // Массспектрометрия. 2004. Т. 1. № 1. С. 21–30.

- Mitkin V.N., Galizky A.A., Korda T.M. Some observations on the determination of gold and the platinum-Group elements in black shales // Geostandards Newsletter. 2000. V 24. P. 227–240.
- Ханчук А.И., Плюснина Л.П., Молчанов В.П., Медведев Е.И. Благородные металлы в высокоуглеродистых метаморфических породах Ханкайского террейна, Приморье // Тихоокеанская геология. 2007. Т. 26. № 1. С. 70–80.
- 8. Миронов А.Г., Жмодик С.М., Колесов Г.М. и др. Элементы платиновой группы в золото-сульфидных и полиметаллических рудах Саяно-Байкальской складчатой области и возможные формы нахождения платины и палладия в сульфидах // Геол. рудн. мест. 2008. Т. 50. № 1. С. 47–66.
- 9. Варшалл Г.М., Велюханова Т.К., Корочанцев А.В. О связи сорбционной емкости углеродистого вещества по отношению благородных металлов с его структурой // Геохимия. 1995. № 8. С. 1191–1199.
- Plank T., Langmuir C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle // Chem. Geol. 1998. V. 145. P. 325–394.
- 11. Юшкин Н.П., Павлишин А.И., Асхабов А.М. Ультродисперсное состояние минерального вещества и проблемы наноминералогии // Минер. Журнал. Киев. 2003. Т. 25. № 4. С. 7–31.
- Yudovskaya M.A., Tessalina S., Distler V.V. et al. Behavior of highly-siderophile elements during magma degassing // Chem. Geol. 2008. V. 248. P. 318- 341.
- Жмодик С.М., Миронов А.Г., Агафонов Л.В., Жмодик А.С. и др. Углеродизация гипербазитов Восточного Саяна и золото-палладий-платиновая минерализация // Геология и геофизика. 2004. Т. 45. № 2. С. 228–243.
- Маракушев А.А. Черносланцевые формации как показатель периодов катастрофического развития Земли // Платина России. Т. IV. М., 1999. ЗАО "Геоинформмарк". С. 183–194.
- Летников Ф.А., Савельева В.Б., Аникина Ю.В., Смагунова М.М. Высокоуглеродистые тектониты-новый тип концентрирования золота и платины // ДАН. 1996. Т. 347. № 6. С. 795–798.
- 16. Данилова Ю.В., Шумилова Т.Г., Данилов Б.С. О формах концентрирования рудных элементов в высокоуглеродистых метасоматитах // ДАН. 2006. Т. 410. № 6. С. 795–798.
- 17. Рябчиков И.Д., Новгородова М.И. Восстановительные флюиды в гидротермальном рудообразовании // ДАН.1981. Т. 258. № 6. С. 1453–1456.
- 18. Винокуров С.Ф., Новиков Ю.Н., Усатов А.В. Фуллерены в геохимии эндогенных процессов // Геохимия. 1997. № 9. С. 937–944.
- Иванкин П.Ф., Назарова Н.И. Методика изучения рудоносных структур в терригенных толщах. М., Недра. 1988. 251 с.

125

ГЕОХИМИЯ № 2 2010