УДК 549.01

МИНЕРАЛЫ ЗОЛОТА И СЕРЕБРА В ЗОНЕ ВТОРИЧНОГО СУЛЬФИДНОГО ОБОГАЩЕНИЯ (рудопроявление Крутое, Северо-Восток России)

Н. Е. Савва¹, Г. А. Пальянова², Е. Е. Колова¹

¹Северо-Восточный комплексный научно-исследовательский институт ДВО РАН, г. Магадан E-mail: <u>savva@neisri.ru</u>

> ²Институт геологии и минералогии СО РАН, г. Новосибирск E-mail: <u>palyan@uiggm.nsc.ru</u>

Исследован благороднометалльный минеральный парагенезис, включающий самородное серебро, акантит, ютенбогаардтит, петровскаит и высокопробное золото с гидрогетитом, лимонитом, азуритом, халькозином и ковеллином, образующийся в зоне вторичного сульфидного обогащения золото-серебряного эпитермального рудопроявления Крутое. Разработана физикохимическая модель образования минералов золота и серебра в зоне гипергенеза, учитывающая особенности состава первичных руд, рудовмещающих пород и природных вод.

Ключевые слова: Au-Ag-содержащие минеральные ассоциации, ютенбогаардтит, петровскаит, акантит, высокопробное золото, самородное серебро, гипогенный генезис, термодинамическое моделирование.

введение

Для создания физико-химической модели образования минералов золота и серебра в зоне гипергенеза необходимы детальные минералогические исследования и сопоставление первичных гипогенных и вторичных гипергенных продуктов минералообразования. Рудопроявление Крутое выбрано для этих целей не случайно. В зоне его окисления установлены признаки вторичного сульфидного обогащения с образованием вторичного продуктивного парагенезиса. Минералы золота и серебра на исследуемом объекте представлены Аи-Ад твердыми растворами разной пробности, акантитом, ютенбогаардтитом и петровскаитом. Изученное рудопроявление является аналогом золото-серебряных эпитермальных низкосульфидных месторождений, связанных с интрузивными комплексами медно-порфировых систем (Hayba et al., 1986; White, Hedenquist, 1995). Pa3витая зона окисления на исследуемом объекте и широкое распространение в ней гидрогетита, лимонита, азурита, халькозина и ковеллина позволяют отнести его к месторождениям, на которых сульфиды золота и серебра имеют гипергенный генезис (Пальянова, Савва, 2007).

Поведение золота и серебра в экзогенных процессах изучено во многих работах (Диман, 1977; Королева и др., 1984; Man, 1984; Webster, 1986; Плюснин и др., 1999; Дутова и др., 2006; и др.). Однако в них не рассмотрена возможность образования сульфидов золота и серебра в природных системах. Потенциальным источником серы для ютенбогаардтита и петровскаита могут быть пирит, пирротин, арсенопирит, галенит, сфалерит и халькопирит, поскольку золото и серебро в большинстве коренных месторождений заключено именно в этих минералах или находится в ассоциации с ними. Такой механизм образования Аи-Аg сульфидов при окислении сульфидов железа в зоне гипергенеза обсуждался ранее (Barton, 1980; Castor, Sjoberg, 1993; Greffié et al., 2002; и др.) и обоснован термодинамически (Савва, Пальянова, 2007). Цель данного исследования – изучить Au-Ag минерализацию рудопроявления Крутое, используя традиционные минералогические и геохимические методы, а также разработать на основе термодинамического моделирования физико-химическую модель, объясняющую поведение золота и серебра в зоне вторичного сульфидного обогащения золото-серебряных эпитермальных месторождений и возможность образования гипергенных ассоциаций, содержащих ютенбогаардтит и петровскаит.

ОБЩАЯ ХАРАКТЕРИСТИКА КОНИ-ПЬЯГИНСКОЙ МЕТАЛЛОГЕНИЧЕСКОЙ ЗОНЫ

Район исследований относится к внутренней зоне Северо-Западного сектора Тихоокеанского подвижного пояса. В региональном плане он на-

[©] Савва Н. Е., Пальянова Г. А., Колова Е. Е., 2010

ходится в пределах Охотско-Чаунской металлогенической провинции (Умитбаев, 1986). Основной структурой территории является Кони-Пьягинское магматогенное поднятие протяженностью более 200 км при ширине 30-50 км (рис. 1). Его центральная и южная части сложены осадочными и вулканогенно-осадочными образованиями триасово-юрско-раннемелового возраста, которые по литолого-фациальным и формационным особенностям схожи с образованиями Южно-Тайгоносской складчатой системы (Белый, 1978; Чехов, 2000). Здесь же, в осевой части поднятия, обнажается прибрежный ряд интрузий, выделяемых многими исследователями в Тауйско-Пьягинский интрузивный комплекс (Воробьев, 1988; Жуланова и др., 2007).

Структура рассматриваемой территории характеризуется блоковым строением (рис. 2). Тектонические нарушения контролируют расположение интрузивных тел раннемелового, реже – позднемелового возраста и сопровождаются зонами окварцевания, пропилитизации и сульфидизации. Площадь выходов на поверхность интрузивных образований в Кони-Пьягинской металлогеничес-кой зоне занимает около 30% территории.

Средненский массив является наиболее крупным интрузивным телом в Кони-Пьягинской металлогенической зоне (площадь выхода около 2000 км²) (см. рис. 1). Основная его часть сложена диоритами и гранодиоритами, служащими «рамой» для Си-Мо-порфирового оруденения, пространственно и генетически связанного со штоками и дайками гранодиорит-порфиров, кварцевых диорит-порфиритов и эксплозивных брекчий. Время формирования Средненского массива было длительным; оно охватывало интервал $136\pm 5-100\pm 5$ млн лет и завершилось образованием Си-Мо-порфировых руд, датированных в $100\pm 5-90\pm 5$ млн лет (Жуланова и др., 2007).

В пределах п-вов Кони и Пьягина установлено 17 медно-, золото- и серебросодержащих рудных проявлений, 10 из которых сосредоточены в Средненском массиве и его экзоконтактовых зонах (см. рис. 1).

Рис. 1. Геологическое строение п-овов Кони и Пьягина (по данным Геологической карты масштаба 1:1 500 000, гл. ред. М. Е. Городинский, 1980): 1 – юрские осадочно-вулканогенные комплексы – песчаники, алевролиты, аргиллиты, базальты; 2 – раннемеловые (апт, альб) вулканогенные комплексы – песчаники, алевролиты, базальты и их туфы; 3 – раннемеловые гранитоидные массивы: 1 – Северо-Западный, 2 – Антаринский, 3 – м. Кирас, 4 – Аргаскич, 5 – м. Павловича, 6 – Средненский, 7 – Пьягина, 8 – Накат, 9 – Кекурный; 4 – неогенчетвертичные рыхлые образования; 5–8 – рудные проявления и их геохимические профили (в скобках даны названия рудопроявлений и их номера на схеме): 5 – Си-Мо (1 – Лора, 2 – Прямой, 3 – Рябиновый, 4 – Антаринское, 5 – Павловича (Викинг), 6 – Япон, 7 – Тальниковый), 6 – Аи-Те-Ві (8 – Южный, 9 – Рыжик), 7 – Аи-Аg-Вi-Cu(Se) (10 – Крутой, 11 – Горелый), 8 – Аи-сульфидный-(Fe-Cu) (12 – Гурон); 9 – зоны сульфидизации; 10 – площадь распространения золотоносных россыпей; 11 – разрывные нарушения установленные (*a*) и предполагаемые (*б*). На врезке – географическое положение района исследований

Fig. 1. Schematized geologic structures of Koni Peninsula and Pjaghin Peninsula (Geologic Map, scale 1:1 500 000, chief edited by M. E. Gorodinsky, 1980): 1 – Jurassic sedimentary-volcanic sequences – sandstone, siltstone, argillite and basalt; 2 – early Cretaceous (the Aptian and Albian) volcanics – sandstone, siltstone, andesite, basalt and their tuffs; 3 – early Cretaceous granitoid massifs: 1 – Severo-Zapadny, 2 – Antarinsky, 3 – Kiras Cape, 4 – Argaskich, 5 – Pavlovich Cape, 6 – Srednensky, 7 –Pjaghin, 8 – Nakat, 9 – Kekurny; 4 – Neogene-Quaternary unconsolidated rocks; 5–8 – ore occurrences and their geochemical profiles (the names and numbers are given in parentheses): 5 – Cu-Mo (1 – Lora, 2 – Pryamoi, 3 – Ryabinovy, 4 – Antarinskoe, 5 – Pavlovich (Viking), 6 – Yapon, 7 – Talnikovy), 6 – Au-Te-Bi (8 – Yuzhny, 9 – Ryzhik), 7 – Au-Ag-Bi-Cu(Se) (10 – Krutoi, 11 – Gorely), 8 – Au-sulfide-(Fe-Cu) (12 – Guron); 9 – sulfidization zones; 10 – distribution of gold placers; 11 – faulting structures: identified (*a*) and suggested (δ). The study area is shown on the inset map

Рис. 2. Геолого-структурная схема рудопроявления Крутое (по данным Геологической карты масштаба 1:25 000, сост. С. А. Шубин, 2005 г.): 1, 2 – раннемеловые вулканогенно-осадочные образования соответственно пьягинской и поперечненской толщи: 1 – слои лав андезитов и базальтов; 2 – слои туфов андезитов и базальтов; 3 – четвертичные нивально-гляциальные образования; 4 – раннемеловые субвулканические образования (дациты, габбро); 5 – меловые дайки различного состава; 6 – заверенные горными выработками жилы различного состава; 7 – зоны интенсивного прожилкования разного состава; 8 – метасоматоз различного состава: *а* – контактовый, *б* – слабопроявленный; 9, 10 – тектонические нарушения заверенные (9) и предполагаемые (10); 11 – геологические границы

Fig. 2. Schematized geologic structure of Krutoe Lode (Geologic Map, scale 1:25 000, made by S. A. Shubin, 2005): 1, 2 – early Cretaceous volcanic-sedimentary sequences: Pjaghinskaya and Poperechnenskaya rocks: 1 – andesite and basalt lavas; 2 – andesite and basalt tuffs; 3 – Quaternary niveoglacial landforms; 4 – early Cretaceous subvolcanics (dacite, gabbro); 5 – Cretaceous dikes of different composition; 6 – different mining-proven veins; 7 – different intense stringer lodes; 8 – different metasomatism: a – contact, δ – insignificant; 9, 10 – tectonic dislocations: confirmed (9) and suggested (10); 11 – geologic boundaries

В краевой северо-восточной части массива находятся Cu-Mo-порфировые объекты, далее в турмалин-мусковитовых грейзенах, обрамляющих массив, размещаются допорфировые Au-Te-Bi рудопроявления, а в экзоконтакте плутона локализуются допорфировые Au-сульфидные и постпорфировые Au-Ag объекты, в том числе и исследуемое рудопроявление Крутое.

ОБЩАЯ ХАРАКТЕРИСТИКА РУДОПРОЯВЛЕНИЯ КРУТОЕ

Рудопроявление Крутое расположено в 20 км на запад от месторождения Лора в экзоконтактовой зоне Средненского интрузивного массива и приурочено к участку сочленения зон крупных разломов меридионального и северо-западного направления (см. рис. 1). Рудное поле сложено преимущественно вулканогенными образованиями среднего и основного состава поперечненской и пьягинской толщ раннемелового возраста, которые вдоль северозападных нарушений прорваны субвулканическими и интрузивными телами преимущественно основного, редко кислого составов (см. рис. 2).

На площади участка широко распространены эпидот-хлоритовые и пирит-серицит-кварцевые метасоматические изменения. Интенсивность метасоматоза крайне неравномерная. Изменения вдоль нарушений северо-западного направления часто сопровождаются зонами прожилкования либо кварцевыми жилами и прожилками. Мощность зон метасоматитов от первых сантиметров до 100 м, максимальная протяженность до 2 км. Количество сульфидов в них от 5 до 10%. Пирит-серицит-кварцевые метасоматиты содержат Au – от 0,03 до 1,2 г/т и Ag – до 8,0 г/т.

К полосе метасоматитов приурочена рудная прожилково-жильная зона сульфидно-кварцевого состава мощностью до 90 см, в которой содержания Au достигают 26,8, Ag – 266,8 г/т. В северной части рудной зоны вскрыта халькопирит-кварцевая жила мощностью до 0,6 м, линзовидной (будинной) морфологии. Халькопирита в жиле до 40%. Анализ бороздовых проб показал содержания в ней Au до 385,7 г/т, Ag – 1114,7 г/т и Cu до 0,4%.

В шлиховом ореоле наряду с другими минералами присутствуют *единичные знаки самородного золота* размером 0,05–0,6 мм пластинчатой, листовидной и комковидной формы с налетами гидроксидов Fe.

МИНЕРАЛЬНЫЙ СОСТАВ РУД

При детальном минералогическом изучении в рудах установлено 20 минеральных видов. Наиболее распространенные рудные минералы – пирит и халь-

N⁰	Содержание химических элементов, мас. %						Commen		
п/п	Fe	Cu	S	Zn	Se	Ag	Au	Сумма	
Акантит									
1	0,1	0,1	13,9	0,0	0,1	85,4	0,3	99,9	
2	0,1	0,0	13,8	0,0	0,1	86,0	0,4	100,6	
3	0,1	0,0	13,9	0,0	0,0	84,8	0,6	99,4	
4	0,4	0,2	14,0	0,0	0,0	85,2	0,3	100,1	
5	2,6	0,2	14,6	0,0	0,0	84,0	0,2	101,6	
	Высокопробное золото								
1	1,0	0,0	0,0	0,0	1,2	9,7	87,1	99,0	
2	1,2	0,0	0,1	0,0	1,1	10,4	88,0	100,8	
3	1,4	0,0	0,1	0,0	2,3	7,7	88,0	99,5	
4	0,8	0,0	0,0	0,1	2,1	9,2	87,0	99,2	
5	1,1	0,0	0,0	0,0	1,2	9,7	87,0	99.0	
6	1,8	0,1	0,0	0,0	1,9	8,7	86,7	99,2	
7	1,8	0,0	0,0	0,0	1,7	9,2	86,8	99,5	
Аи-Ад сульфиды									
1	0,9	0,0	7,4	0,0	0,6	60, 7	28,9	98,5	
2	1,2	0,1	7,8	0,0	0,0	70,0	19,0	98,1	
3	0,6	0,3	9,3	0,0	0,4	74,5	14,8	99,9	
4	0,4	0,0	6,7	0,0	0,7	62,2	30,8	100,8	
5	4,4	0,1	4,6	0,0	1,1	34,2	54,2	98,6	
6	1,1	0,3	7,8	0,0	0,0	70,0	19,0	98,2	

Таблица 1. Результаты рентгеноспектрального анализа минералов рудопроявления Крутое *Table 1.* The X-ray data for Ag and Au minerals from Krutoe Lode

Примечание. Рентгеноспектральный анализ выполнен в лаборатории рентгеноспектрального анализа СВКНИИ ДВО РАН, на микроанализаторе «САМЕВАХ», аналитик М. И. Парфенов. Аналитические линии и эталоны: СиКа – эталон – CuFeS (34,5 – Cu; 30,5 – Fe; 34,5 – S); FeKα – эталон – FeS₂ (46,55 – Fe); SeKα – эталон – PbSe (27,6 – Se); ZnKα – эталон – ZnS (67,1 – Zn); AgLα – эталоны – сплавы с Ag и Au различного состава.

копирит. Рентгеноспектральным анализом в окисленных рудах установлено наличие Au-Ag сульфидов и селенистого высокопробного золота (табл. 1).

Общий список и последовательность отложения минералов приведены в табл. 2.

ГИПОГЕННЫЕ МИНЕРАЛЫ Аи И Ад

Самородное золото исследовалось в аншлифах, пробах-протолочках и шлихах (Колова, Савва, 2004б). Микроскопическими наблюдениями установлены две его разновидности – гипогенное и гипергенное. Гипогенное золото составляет около 40%. Оно тесно ассоциирует с кварцем и пиритом, образуя монокристалические и дендритовидные обособления размером 0,01–1 мм (рис. 3). Внутренняя структура характеризуется как монозернистая, с гипергенными высокопробными каймами и тонкими просечками, а также зональная и пятнистая. Массовые замеры пробности самородного золота (204 измерения) проводили

Рис. 3. Морфология и внутренняя структура самородного золота и самородного серебра рудопроявления Крутое: 1–3 – самородное золото удлиненной, уплощенной, дендритообразной, комковидной интерстициальной формы и монокристаллы кубоктаэдрического габитуса, увел. ×4; 4–8 – внутренняя структура самородного золота, выявленная травлением, увел. ×20: 4 – слабозональная, каемчатая, пятнистая; 5 – монозернистая, слабозональная; 6 – слабопятнистая, с просечками высокопробного золота; 7 – каемчатая, слабогранулированная; 8 – монозернистая, агрегат дендритообразной морфологии; 9 – самородное серебро таблитчатой, ленточной и дендритообразной формы, ув. ×4; 10 – самородное серебро ленточной морфологии, расположенное в каверне кварца, выполненной гидрослюдами, увел. ×20; 11 – самородное серебро глобулярной и дендритообразной морфологии в минеральной ассоциации с акантитом, размер зерна 1,0 мм; 12, 13 – минеральные срастания самородного серебра (ув. ×20) с акантитом (12) и гидроксидами железа (13)

Fig. 3. Morphologic characters and inner structure of native gold and native silver from Krutoe Lode: 1-3 – elongated, flattened, dendritic and cloddy interstitial native gold, and monocrystals of cub octahedral habit, ×4 magnification; 4-8 – inner structure of native gold shown by etching, ×20 magnification: 4 – weak zonal, bordered, spotty; 5 – monogranular, weak zonal; 6 – low-spotty, with high-fineness gold strings; 7 – bordered, low-granular; 8 – monogranular, aggregated dendritic morphology; 9 – tabular, ribbon and dendritic native silver, ×4 magnification; 10 – ribbon native silver hosted in a quartz cavern composed of hydromica, ×20 magnification; 11 – globular and dendritic native silver in association with acanthite, grain size 1.0 mm; 12, 13 – mineral intergrowths of native silver, ×20 magnification: 12 – with acanthite, 13 – with iron hydroxide

Таблица 2. Последовательности минералообразования и степень распространенности минералов на рудопроявлении Крутое

Table 2. Mineral-forming sequences and distribution of minerals in Krutoe Lode

Нинералыгидротермально-метасоматическийСтадиягицергенныйКварц23Кварц123Сладот123Кварц111Эпидот111Опидот111Карбонат111Гидрослюды111Карбонат111Пиротин111Арсенопирит111Маказит111Пирит111Кубанит111Сфалерит111Блеклая руда111Онаросиное золото111Самородное серебро111Ковеллин111Ковеллин111Ковеллин111Кантит111Ковеллин111Кантит111Ковеллин111Кантит111Кантит111Ковеллин111Кантит111Кантит111Кантит111Кантит11Кантит11Кантит11Кантит1 <th></th> <th></th> <th></th>					
Кварц Стадия гипергенный 1 2 3 Кварц — — — Эпидот — — — — Улорит — — — — — Гидрослюды — — — — — — — — — — — — … <td>Минералы</td> <td>гидроте</td> <td></td>	Минералы	гидроте			
1 2 3 Кварц — — — Эпидот — — — — Хлорит — — — — — — — — — — — — — — — …	минералы		гипергенный		
Кварц Эпидот		1	2	3	
Эпидот Хлорит Гидрослюды Карбонат	Кварц				
Хлорит — — — — — — — — — — — — — — — — — … </td <td>Эпидот</td> <td></td> <td></td> <td></td> <td></td>	Эпидот				
Гидрослюды	Хлорит				
Карбонат	Гидрослюды				
Пирротин — — Арсенопирит — — Марказит — — Пирит — — Халькопирит — — Кубанит — — Сфалерит — — Галенит — — Блеклая руда — — Энаргит — — Акантит — — Самородное золото — — Кобеллин — — Кобеллин — — Кобеллин — — Кобеллин — — Малахит — — Азурит — — Англезит — —	Карбонат				
Арсенопирит — — — Марказит — — — — Пирит — — — — — — — — — — — — — — …	Пирротин				
Марказит	Арсенопирит				
Пирит — _ <td>Марказит</td> <td></td> <td></td> <td></td> <td></td>	Марказит				
Халькопирит Кубанит	Пирит				
Кубанит	Халькопирит				
Сфалерит — — Галенит — — Блеклая руда — — Энаргит — — Акантит — — Самородное золото — — Самородное серебро — — Аи-Ад сульфиды — — Гидроксиды Fe — — Ковеллин — — Халькозин — — Малахит — — Азурит — — Англезит — —	Кубанит				
Галенит	Сфалерит				
Блеклая руда	Галенит				
Энаргит — …<	Блеклая руда				
Акантит	Энаргит				
Самородное золото	Акантит				
Самородное серебро — _	Самородное золото				
Аи-Ад сульфиды Image: Constraint of the synthesis of the synthesyntex of the synthesynte of the synthesynte of the syn	Самородное серебро				
Гидроксиды Fe	Au-Ag сульфиды				
Ковеллин	Гидроксиды Fe				
Халькозин — _ <th_< td=""><td>Ковеллин</td><td></td><td></td><td></td><td></td></th_<>	Ковеллин				
Малахит Image: Composition of the system <	Халькозин				
Азурит ——— Скородит ——— Англезит ———	Малахит				
Скородит — — — — — — — — — — — — — — — — — — —	Азурит				
Англезит —	Скородит				
	Англезит				

Примечание. Минералы: _____ распространенные, _____ второстепенные, _____ редкие.

на модернизированном приборе ПООС-1 с высокой стабилизацией ФЭУ и источника света, внутренний стандарт – пирит из руд Березовского месторождения, эталонированный в Международной комиссии по рудной микроскопии. Обработка результатов измерения проведена по программе «GOLD», созданной С. В. Прейсом. Примерно 45% золота размером более 0,3 мм и 21% золота размером 0,08–0,3 мм имеет пробность около 751– 800‰. Разброс пробности по всей выборке небольшой – от 625 до 975‰.

Самородное золото в рудах участка «Крутое» выделилось в два этапа: 1-й – гидротермальный, с кварцем, эпидотом, пиритом, галенитом; 2-й – гипергенный, одновременно с образованием лимонита, вторичных минералов меди и серебра.

Акантит в рудах отмечается в срастании с халькопиритом, самородным серебром и галенитом. Для него характерны интерстициальные обособления в кварце, в ассоциации с халькопиритом. Размер зерен 0,05–0,07 мм. Включения самородного серебра и галенита приурочены к центральной части зерен. Реже самородное серебро образует в акантите эмульсионную вкрапленность.

МИНЕРАЛЫ ЗОНЫ ГИПЕРГЕНЕЗА

По данным геолого-съемочных работ, гипергенное минералообразование происходило в неогенголоценовое время. С неогеновым периодом в Кони-Пьягинской металлогенической зоне связано заложение Накхатанджинской впадины, формирование золотоносных кор выветривания, зон окисления и вторичного сульфидного обогащения руд, а также толщ керамических и кирпичных глин. Их образованию способствовали климатические условия (повышенная влажность и соленость воздуха, резко меняющиеся температуры), обусловленные близостью моря и расположением этой территории на границе перехода океан – континент.

Основные особенности рассматриваемого района – медно-молибденовый металлогенический профиль, связанный с порфировым типом оруденения, сульфидно-вкрапленный характер рудной минерализации и тонкие включения золота в сульфидах железа и меди. Этот тип в сочетании с золотоносными зонами сульфидизации является наиболее распространенным. При выветривании, в процессе окисления сульфидов тонкое золото высвобождается и вовлекается в процессы вторичного обогащения в зоне окисления. Повышенная сульфидность руд обеспечивает эффективное протекание этого процесса.

Среди минералов зоны гипергенеза развиты:

гидроксиды железа, распространенные повсеместно. Наиболее четко различаются по форме выделений лимонит и гидрогетит. Лимонит слагает рыхлые массы, заполняющие трещины и межзерновое пространство, а также оторочки вокруг гидрогетита с реликтами пирита. Гидрогетит образует натечные формы, псевдоморфно замещает пирит, зачастую содержит мелкую вкрапленность золота. Гидроксиды железа отлагаются по трещинам в породе, образуют псевдоморфозы по пириту, халькопириту и окрашивают кварц и породы в бурый, рыжий цвет;

минералы меди (азурит, халькозин, ковеллин) по сравнению с лимонитом распространены меньше. Развиваются в виде кайм, пленок и по плоскостям спайности в халькопирите;

Рис. 4. Тонкие минеральные смеси ютенбогаардтита с акантитом, самородным золотом и гидроксидами железа в интерстициях (*a*-*в*) и тонких трещинах кварца (*г*)

Fig. 4. Fine mineral mixtures of yutenbogaardite with acanthite, native gold and iron hydroxides in interstitial (a-e) and thin-fractured quartz (e)

золото-серебряные сульфиды установлены в губчатых агрегатах, где, распадаясь, образуют гипергенное золото (рис. 4). Обособления таких агрегатов имеют очертания неправильной формы размером до 1,5 мм. Данные микрозондового анализа составов золото-серебряных сульфидов, акантита и самородного золота приведены в табл. 3. Содержащаяся в составе золото-серебряных сульфидов примесь железа может свидетельствовать об их гипергенном происхождении, так как агрегат имеет губчатое строение, а лимонит наиболее интенсивно развивается в зоне окисления;

гипергенное самородное золото отлагается в кварце в интерстициях и тонких извилистых трещинах в ассоциации с Au-содержащим акантитом. По данным микрорентгеноспектрального анализа, оно содержит Se – от 1,1 до 2,3; Fe – до 1,8; Ag – от 7,7 до 10,4; Au – от 86,7 до 88,0 мас.%: (см. табл. 3). В этой ассоциации самородное золото образует агрегаты размером от 0,08–2 до 3 мм. Преобладает золото размером 1,5 мм губчатой и хлопьевидной структуры. Селенистое золото имеет розоватую и оранжево-желтую окраску. В отдельных случаях в интерстициях кварца отмечается ассоциация самородного золота с гипергенными минералами меди и мелкими включениями галенита;

гипергенное самородное серебро и акантит. В зоне окисления руд происходит вторичное обогащение как золотом, так и серебром. Это подтверждено отбором шести проб из рыхлого лимонитизированного материала в надрудной зоне участка «Крутой» (бортовые пробы). Максимальная концентрация Аg в руде 266,8 г/т, а в продуктах выветривания возрастает почти в 3 раза, составляя около 900 г/т.

Самородное серебро, так же как и самородное золото, исследовалось в аншлифах, пробах-протолочках и шлихах (Колова, Савва, 2004а). Гипергенные самородное серебро и акантит отмечаются в ассоциации с лимонитом и вторичными минералами меди, обладают глобулярной морфологией частиц (см. рис. 3.9, 3.10) и характеризуются низким содержанием примесей (акантит – Σ Se, Fe, Cu, Au < 1 мас. % (см. табл. 3), самородное серебро – более 99 мас. %, из примесей присутствуют S, Fe, Au). По строению глобули рыхлые, хлопьевидные, в центральной части содержат реликты акантита. Подобные формы описаны С. С. Двуреченской (2001) для зоны окисления Дукатского месторождения. Отмечаются также срастания гипергенного акантита с самородным серебром и гидроксидами железа (см. рис. 3.11, 3.12). Акантит занимает осевую часть агрегатов и обрастает серебром. Не исключено, что глобулярная морфология частиц связана с сульфат-редукционной деятельностью бактерий. Размер глобулей 0,3–2,0 мм, с преобладанием фракции < 1 мм.

ПОСЛЕДОВАТЕЛЬНОСТЬ МИНЕРАЛООБРАЗОВАНИЯ

Сочетание минералогического и текстурного анализа руд позволяет наметить три этапа их формирования: **метасоматический, гидротермальный и гипергенный** (Колова, Савва, 2008). Первые два этапа являются следствием формирования Средненского массива, в том числе и внедрения его поздних (Си-содержащих) фаз. На основании пространственно-временных взаимоотношений минералов для I этапа минералообразования установлена ассоциация: магнетит + эпидот + хлорит + гидрослюда + халькопирит, а для II этапа – кварц + пирит + халькопирит + пирротин + электрум.

На III этапе происходит разрушение минералов железа, меди, золота и серебра с формированием гипергенных минеральных ассоциаций: акантит + Au-Ag сульфиды + высокопробное золото и самородное серебро + гидроксиды железа + ковеллин + халькозин.

								Содер:	жание,	%							
Тип породы	SiO_2	Al_2O_3	Fe ₂ O ₃ общ.	MnO	OgM	CaO	Na ₂ O	K ₂ 0	TiO ₂	P_2O_5	Cu	Чd	uZ	Ag	ΝN	CI	S
Базальт (пьягинская толща)	47,71	16,76	14,98	0,28	3,49	9,17	3,74	0,12	1,80	0,19	0,01	0,0008	0,013	1 -1 0 ₋₂	4.10^{-7}	0,005	0,03
Андезибазальт (то же)	53,34	16,86	12,60	0,28	4,66	6,69	3,56	0,08	1,20	0,11							
Базальт (попереченская толща)	50,51	21,18	9,75	0,16	3,31	10,44	3,12	0,12	0,92	0,08							
Гранодиорит (Средненский массив)	66'29	15,59	4,72	0,06	2,19	4,18	3,68	2,09	0,52	0,10	0,002	0,002	900'0	·2·10_•	2.10_7	0,024	0,04
Туф дацита (мэлдэкская толша)	69,20	14,25	4,20	0,09	0,96	3,40	3,65	1,12	0, 49	0,07							
Примечание. Составы, используемые	в расчетах	к в качесті	ве модельн	HbIX, OTME	ж мнана	ш мынди	мотфиц										

Table 3. Water-bearing rock composition data used as model standards, according to (Савва, 2002 г.; Краткий..., 1977)

Таблица 3. Составы водовмещающих пород района исследований по данным (Савва, 2002 г.; Краткий..., 1977)

ТЕРМОДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Упрощенная «гипергенная» модель формирования ютенбогаардтита и петровскаита в рамках системы H₂O – Fe – Au – Ag – S – Na – Cl была разработана ранее для месторождения Улахан (Савва, Пальянова, 2007). В настоящей работе мы попытались учесть влияние состава руд, рудовмещающих пород и природных вод на поведение золота и серебра в условиях зоны окисления. Термодинамические расчеты выполнены исходя из условий: температура 25°С и давление 1бар. Состав модельной системы был расширен до 16 элементов: Si - Al - Na - K - Mg - Fe - Cu - Pb - Zn -Au-Ag-S-C-Cl-H-О. В модельный состав атмосферных осадков были введены дополнительные концентрации Cl⁻, SO $_4^{2-}$, Na⁺ и K⁺ по аналогии с повышенными содержаниями таковых в атмосферных осадках близлежащих морских территорий Дальнего Востока (Чудаева и др., 2008). Парциальное давление кислорода ($pO_2 = 0.2$ бар) и углекислого газа атмосферы (pCO₂ = 0,01 бар) соответствовало 2,5 \cdot 10⁻⁴ m O_{2aq} и 3 \cdot 10⁻⁴ m CO_{2aq}. В табл. 3 приведены составы водовмещающих пород – базальта, андезибазальта, гранодиорита и дацита, характерных, по данным Саввы (2001 г.), для исследуемого района исследований (см. рис. 2). При моделировании были использованы составы водовмещающих пород. Фоновые количества Pb, Zn, Cu, Cl, S, Ag и Au были введены в состав «модельных» пород в соответствии с данными (Краткий...., 1977).

Учтенные в расчетах твердые минеральные фазы и растворенные водные частицы исследуемой системы, а также источники их термодинамических данных приведены в работах (Пальянова, Савва, 2007, 2009). Термодинамическое моделирование выполнено с помощью компьютерного программного комплекса «HCh» (Shvarov, Bastrakov, 1999) и внешнего модуля ELECTRUM, рассчитывающего коэффициенты активности Аи и Ад для неидеальных Au-Ag твердых растворов (Пальянова, 2008). При моделировании использовался метод «степени протекания реакции» (Helgeson, 1979). Некоторые методические приемы заимствованы из работ (Шварцев, 1998; Пальянова и др., 2003; Крайнов и др., 2004). Мы также придерживаемся точки зрения этих авторов, согласно которой в условиях зоны гипергенеза система вода - порода характеризуется равновеснонеравновесным состоянием: она неравновесна с эндогенными (первичными) минералами и равновесна с теми или иными вторичными минералами, формирующимися на разных стадиях преобразования пород. При этом для каждой стадии характерна определенная ассоциация вторичных минералов и определенный химический состав вод. По правилу Гиббса в исследуемой нами системе максимальное число фаз достигает 14 (13 твердых фаз + водный раствор), что соответствует нонвариантному равновесию, малореальному для

природных процессов, хотя и возможному на поздних стадиях взаимодействия и при более высоких P-T параметрах.

Вначале рассчитывались составы «трещинножильных» растворов, образующиеся в результате циркуляции атмосферных вод в дренируемых породах разного модельного состава. Степень взаимодействия вода/порода задавали разным соотношением R/W в интервале от 10⁻⁶ до 10 (R – количество породы, г; W – 1000 г воды, R/W – отношение, отражающее количество породы, прореагировавшей с раствором). Далее моделировали взаимодействие атмосферных вод, а также «трещинных» растворов с минералами продуктивной гидротермальной стадии при разных соотношениях M/W (M – суммарное количество минералов, г; W – 1000 г воды; М/W – отношение, отражающее количество минералов, прореагировавших с раствором). В соответствии с данными детального минералогического изучения руд рудопроявления Крутое минералы продуктивной гидротермальной стадии были заданы в следующих весовых соотношениях: кварц (93,2%) + пирит (5%) + халькопирит (1%) + сфалерит (0,5%) + галенит (0,1%) + электрум ($N_{Au} = 500$, Au - 0,05, Ag - 0,05) + акантит (0,1%). Далее рассмотрим несколько наиболее вероятных сценариев образования Аи-Ад минерализации на рудопроявлении Крутое в зоне гипергенеза.

Составы вод (в моль/1кг Н₂О) и вторичных минеральных ассоциаций, образующиеся при взаимодействии базальта с 1 кг атмосферных вод (25°С, 1 бар) в зависимости от соотношений R/W приведены в табл. 4. В составе вторичных твердых фаз при малых R/W (10-5-10-4) присутствуют диаспор + гетит или каолинит + гетит, при более высоких значениях R/W (>10-4) возможно пересыщение водного раствора по отношению к кварцу, слюдам, хлоритам, цеолитам, К-Na полевым шпатам, эпидоту, кальциту и волластониту (R/W = 10, нонвариантное равновесие). Появление рудных минералов – оксидов меди и цинка – возможно при R/W (10⁻³–1). Сульфиды железа, меди, свинца и цинка и самородное серебро появляются в составе вторичных минералов только при высоких R/W.

Среди сульфидов доминируют халькопирит и сфалерит. Отметим что при повышенных фоновых содержаниях Au, Ag, Cu, Pb и Zn в породах возможно образование избыточных фаз этих металлов при более низких значениях R/W.

Составы «базальтовых» растворов по мере увеличения R/W меняются от хлоридно-гидрокарбонатно-натриевых к хлоридно-сульфатно-кремнисто-натриевым. Их pH варьирует от слабокислых – близнейтральных (pH = 5,1–5,8, R/W = 10^{-5} – 10^{-4}) к щелочным (до pH = 11,5, R/W = 10). Общая минерализация не превышает 1г/1000 г H₂O. Максимальные суммарные концентрации основных элементов в «базальтовых» водах достигают значений для Na – $10^{-1.5}$, K – $10^{-4.2}$,

Рис. 5. Составы равновесных минеральных ассоциаций (*a*, *b*, *d*) и водных растворов (*б*, *c*, *e*) (в мольных %), образующиеся в зоне окисления при взаимодействии: *a*, *б* – гранодиорита с 1 кг атмосферных вод при разных соотношениях R/W (0,0001 и 10); *b*, *c* – минералов продуктивной гидротермальной стадии с атмосферными водами в зависимости от соотношений M/W; *d*, *e* – минералов продуктивной гидротермальной стадии с водами, сформировавшимися при R/W = 10^{-4} в системе гранодиорит – атмосферная вода (25° C, 1 бар)

Fig. 5. The composition of equilibrium mineral assemblages (*a*, *e*, *d*) and water solutions (*b*, *c*, *e*), mole per cent, which are forming in oxidation zone through interaction of the following: *a*, *b* – granodiorite with 1 kg meteoric water, with different R/W (0.0001 and 10); *e*, *c* – productive hydrothermal stage minerals with meteoric water depending on M/W; *d*, *e* – productive hydrothermal stage minerals with water forming in R/W = 10^{-4} conditions of granodiorite – meteoric water system (25° C, 1 bar)

 $Mg - 10^{-5,1}$, $AI - 10^{-6,3}$, $Si - 10^{-1,7}$, $Pb - 10^{-5,4}$ и Zn - 10^{-5,1} m. Максимальные суммарные содержания Fe, Cu, Ag и Au значительно ниже и составляют соответственно $10^{-7,6}$, $10^{-7,4}$, $10^{-7,0}$ и $10^{-8,7}$ m.

В растворах доминируют Na⁺, K⁺, Ca⁺⁺, CaCO₃, AlO₂⁻, Mg⁺⁺, PbO⁰, Pb⁺⁺, HZnO₂⁻, Zn⁺⁺, HFeO₂⁻, Fe(OH)₃. Основными формами переноса золота и серебра являются Ag⁺, Ag(CO₃)₂⁻⁻, AgCl, AuOH⁰, Au(OH)₂⁻ (при R/W > 1 преобладают комплексы AgHS⁰, AuHS⁰, Au(HS)₂).

На рис. 5, а, б приведены составы растворов и вторичных минеральных ассоциаций, образующиеся при взаимодействии гранодиорита с 1 кг атмосферных вод при температуре 25°С и давлении 1 бар в зависимости от соотношений R/W. Coставы «гранодиоритовых» растворов в целом близки к составам «базальтовых». Максимальные концентрации основных элементов в «гранодиоритовых» водах достигают следующих значений: Na – 10^{-1,7}, K – 10^{-3,8}, Mg – 10^{-6,3}, Al – 10^{-6,9}, Si – 10^{-2,4}, Pb – 10^{-5,0} и Zn – 10^{-5,3} m. Содержания Fe, Cu, Ag и Au не превышают соответственно 10-8,5, 10-7,4, 10-7,3 и 10-8,6 m. Различия состоят в том, что для «гранодиоритовых» растворов характерны более низкие содержания некоторых элементов, а также пониженная щелочность (pH = 10,8 при R/W = 10). На рис. 5,6 и б' показаны составы растворов, формирующиеся при значениях R/W = 0,0001 и R/W = 10. По мере инфильтрации раствора через гранодиорит хлоридно-гидрокарбонатно-натриевые воды (R/W = 0,0001) сменяются хлоридно-сульфатно-кремнистонатриевыми (R/W = 10), как и в случае «базальтовых» растворов. В составе вторичных минералов, образующихся в результате гранодиорит/ атмосферные воды в отличие от системы базальт/ атмосферные воды присутствуют только кварц, альбит-микроклин, хлорит и эпидот, а среди рудных минералов доминирует пирит. Появление самородного серебра также возможно при R/W > 1 либо при более низких значениях в зависимости от величины превышения кларковых концентраций благородных металлов.

На рис. 5, в показаны составы вторичных минеральных ассоциаций, образование которых возможно при взаимодействии минералов (М) продуктивной гидротермальной стадии с 1 кг атмосферных вод (25° С, 1 бар) в зависимости от соотношений М/W. По мере увеличения М/W в составе минеральных ассоциаций возможно появление хлораргирита, который сменяется ютенбогаардтитом, акантитом и высокопробным золотом (пробность выше 800‰). Кислотность растворов варьирует в интервале pH 3,0–5,8, при этом и хлоридно-гидрокарбонатно-натриевые растворы при низких М/W сменяются сульфатно-железистыми растворами при высоких соотношениях М/W (рис. 5, ϵ).

При взаимодействии кислых «гранодиоритовых» (рис. 5, *a*) или «базальтовых» (табл. 4) вод (формирующихся при низких соотношениях поро $da/вода - R/W = 10^{-6} - 10^{-4}$) с минералами продуктивной гидротермальной стадии также возможно появление хлораргирита, ютенбогаардтита, акантита и высокопробного золота в составе вторичных минеральных ассоциаций (рис. 5, *д*). Растворы характеризуются преимущественно сульфатно-железистым составом при высоких соотношениях M/W (рис. 5, e). В случае участия щелочных «гранодиоритовых» (рис. 5, а) или «базальтовых» (см. табл. 4) вод, формирующихся при высоких соотношениях R/W > 10⁻⁴, минералы золота и серебра представлены только акантитом и самородным серебром. Эти растворы являются щелочными и характеризуются хлоридно-сульфатно-кремнисто-натриевым составом.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Результаты термодинамического моделирования показали возможность образования ютенбогаардтита и высокопробного золота в зоне окисления при растворении и переотложении первичных минералов (самородного золота, акантита, халькопирита, пирита, галенита, сфалерита и других сульфидов) продуктивных парагенезисов под воздействием атмосферных и «трещинно-жильных» вод, формирующихся по водовмещающим породам рудопроявления Крутое. Появление гипергенных минералов – сульфидов золота и серебра и высокопробного золота, а также гетита может, по-видимому, происходить в окислительных условиях в результате следующих реакций с участием природных вод и минералов ранних гидротермальных стадий:

$$\mathbf{Au_xAg_{1-x}} + \mathbf{FeS_2} + (1,5+x)H_2O + (2,25+1,5x)O_2 \rightarrow \mathbf{FeOOH} + 0,5(1-x)\mathbf{Ag_2S} + \mathbf{XAu} + (1+x)HSO_4^- + (1+x)H^+ \quad (3)$$

(жирным шрифтом отмечены твердые фазы).

Согласно реакциям (1–3) происходит окисление пирита и сульфидизация Au-Ag твердых растворов. Для того чтобы проходила реакция 1 с образованием ютенбогаардтита, необходимо, чтобы мольная доля золота в Au-Ag твердом растворе превышала x > 0,25 (или пробность золота $N_{Au} > 350\%$). Появление петровскаита возможно при x < 0,5, а акантита при любом x. Образование серебра, видимо, может происходить по реакции:

$$Ag_{2}S + H_{2}O + 2O_{2} = HSO_{4} + H^{+} + 2Ag.$$
 (4)

Таблица 4. Равновесные	составы вод и твердых фаз, образующиеся при вза	аимодействии базальта с 1 кг
атмосферных вод, в зав	исимости от соотношений R/W (25°C, 1 бар)	
T 11 (F. 111		· · · · · · · · · · · · · · · · · · ·

Table 4. Equilibrium compositions of water and solid phases, which are forming through basalt interacting with 1 kg meteoric water, as R/W (25°C, 1 bar)

	-			-			-	
Log (R/W)	-5	-4	-3	-2	-1	0	1	
	Твердая фаза, г							
Кварц	_	_	-1,81	_	_	1,00	1,94	
Мусковит	—	—	-1,51	_	_	_	—	
Каолинит	—	-2,37	-	_	_	_	—	
Эпидот	_	_	_	-0,85	0,41	1,60	2,56	
Хлорит	_	_	-1,87	-0,87	0,13	1,13	2,13	
Альбит	_	_	_	_	0,08	1,44	2,49	
Микроклин	_	_	_	-1,48	-0,97	-0,13	0,85	
Ломонтит	_	_	_	-0,66	-0,59	-	_	
Гейландит	_	_	-1,86	-0,42	0,57	-	_	
Кальцит	_	_	_	-5,21	-	-	_	
Диаспор	-3,71	_	_	_	-	-	_	
Тенорит	_	_	-5,01	-3,91	-2,90	-1,90	_	
Цинкит	_	_	_	-4,06	-2,91	-1,81	_	
Пирит	_	_	_	_	_	_	-1,16	
Галенит	_	_	_	-	-	-	-2,03	
Сфалерит	_	_	_	_	-	-	-0,71	
Халькопирит	_	_	_	_	-	-	-0,54	
Гетит	-3,78	-2,78	-1,78	-0,85	0,08	0,97	2,00	
Самородное	_	_	_	_	_	_	-3.98	
серебро							-5,70	
		Водн	ая фаза, м	оль/кг H ₂ O			r	
ΣSi	-5,10	-4,33	-3,93	-3,21	-2,29	-1,97	-1,68	
ΣΑΙ	-8,18	-9,26	-7,67	-7,20	-6,32	-6,71	-6,94	
ΣΝα	-3,52	-3,51	-3,38	-2,82	-2,11	-1,79	-1,48	
ΣΚ	-3,87	-3,87	-4,23	-4,38	-5,23	-4,96	-4,69	
ΣMg	-6,06	-5,06	-8,52	-10,76	-12,34	-12,26	-12,20	
ΣFe	-9,86	-9,92	-9,93	-9,90	-9,73	-9,64	-7,64	
ΣPb	-10,41	-9,41	-8,41	-7,41	-6,41	-5,41	-15,26	
Zn	-8,70	-7,70	-6,70	-6,04	-5,31	-5,11	-11,85	
ΣCu	-8,80	-7,80	-7,45	-7,45	-7,44	-7,43	-13,27	
ΣΑυ	-13,69	-12,69	-11,69	-10,69	-9,69	-8,69	-16,58	
ΣAg	-12,03	-11,03	-10,03	-9,03	-8,03	-7,03	-10,45	
$\Sigma SO_4^{}$	-4,17	-4,18	-4,17	-4,12	-3,80	-3,01	-2,53	
$\Sigma H_2 S$	_	_	_	_	_	_	-4,45	
ΣCl	-3,52	-3,52	-3,52	-3,52	-3,50	-3,35	-2,75	
ΣHCO ₃	-3,52	-3,52	-3,53	-3,54	-3,54	-3,55	-3,55	
pH	5,06	5,76	8,76	10,28	11,15	11,34	11,50	
Eh (V)	0.93	0.89	0,72	0,63	0,57	0,56	-0,50	

Примечание. Прочерк – не образуются.

В формировании гипергенных минералов зоны вторичного сульфидного обогащения возможно участие «базальтовых» и «гранодиоритовых» вод, составы которых существенно меняются по мере увеличения интенсивности водообмена порода/ вода. При участии слабокислых «гранодиоритовых» (см. рис. 5, б) или «базальтовых» (см. табл. 4) вод, образующихся при низких соотношениях $R/W = 10^{-6} - 10^{-4}$, за счет растворения и переотложения минералов продуктивной гидротермальной стадии в составе гипергенных ассоциаций также возможно появление ютенбогаардтита, акантита и высокопробного золота (см. рис. 5, д). Самородное серебро или самородное серебро с акантитом (см. рис. 3.9-3.12), по-видимому, образуются при участии щелочных «гранодиоритовых» (см. рис. 5, а) или «базальтовых» (см. табл. 4) вод, формирующихся при высоких соотношениях R/W > 10⁻⁴.

Подобный генезис сульфидов золота и серебра возможен в зонах гипергенеза многих эпитермальных месторождений, для которых характерна ассоциация этих минералов с гетитом, лимонитом, ярозитом и другими вторичными минералами. Ютенбогаардтит и петровскаит установлены в окисленных рудах месторождений Улахан (Савва, 1996; Савва, Пальянова, 2007), Дорожное, Агатовское, Школьное, Клине, Игуменовское, Кучукан, Солнечное, Печальнинское, Агатовское (Альшевский, 2001), Задержнинское и Бадран (Анисимова и др., 2008), Понгкор (Greffié et al., 2002; Warmada et al., 2003) и ряд других. Сульфиды золота и серебра обнаружены в рудах золотосеребряных эпитермальных месторождений Камчатки, однако их генезис не совсем ясен (Округин, 2009). Au-Ag сульфиды, по-видимому, имеют более широкую распространенность на эпитермальных месторождений, чем считалось ранее.

ЗАКЛЮЧЕНИЕ

Разработана физико-химическая модель образования минералов золота и серебра в зоне гипергенеза рудопроявления Крутое, учитывающая особенности состава первичных руд, рудовмещающих пород и природных вод, а также составы растворов, формирующихся в результате их взаимодействия. Золото и серебро, присутствующие в сульфидах железа, меди, свинца и цинка в изоморфной форме или в виде примесей собственных минералов, в условиях зоны окисления весьма мобильны и могут переотлагаться с образованием высокопробного золота, ютенбогаардтита и акантита. Самородное серебро или самородное серебро с акантитом, по-видимому, образуется при участии щелочных «гранодиоритовых» или «базальтовых» вод, формирующихся при высоких степенях взаимодействия атмосферных вод с водовмещающими породами рудопроявления Крутое.

ЛИТЕРАТУРА

Альшевский А. В. Сульфидные минералы золота на Северо-Востоке России: нахождение, особенности состава и генезиса // Проблемы геологии и металлогении Северо-Востока Азии на рубеже тысячелетий. Т. 2. Металлогения : материалы XI сессии СВО ВМО. – Магадан : СВКНИИ ДВО РАН, 2001. – С. 135–138.

Андреева Н. В., Давыдов И. А., Люскин А. Д. Главный этап интрузивного магматизма Северного Приохотья и его возраст по результатам изотопного датирования // Магматизм и оруденение Северо-Востока России. – Магадан : СВКНИИ ДВО РАН, 1997. – С. 175–191.

Анисимова Г. С., Кондратьева Л. А., Лескова Н. В. Сульфидные соединения золота и серебра в золоторудных месторождениях Восточной Якутии // Отеч. геология. – 2008. – № 5. – С. 24–32.

Белый В. Ф. Формации и тектоника Охотско-Чукотского вулканогенного пояса. – М. : Наука, 1978. – 213 с.

Двуреченская С. С. Гипергенные минералы серебряных месторождений. – М.: ЦНИГРИ, 2001. – 258 с. Диман Е. Н. О химической гипотезе переноса и отложения золота в зоне окисления кварц-золоторудных месторождений // ДАН СССР. – 1977. – Т. 235, № 4. – С. 932–935.

Дутова Е. М., Букаты М. Б., Неволько А. И. и др. Гидрогенное концентрирование золота в аллювиальных россыпях Егорьевского района (Салаир) // Геология и геофизика. – 2006. – № 3. – С. 364–376.

Жуланова И. Л., Русакова Т. Б., Котляр И. Н. Геохронология и геохронометрия эндогенных событий в мезозойской истории Северо-Востока Азии. – М. : Наука, 2007. – 358 с.

Колова Е. Е., Савва Н. Е. Самородное серебро из эпитермальных руд Кони-Пьягинской металлогеничес-кой зоны // Минералогия во всем пространстве сего слова : материалы Х съезда РМО / отв. ред. Ю. Б. Марин. – СПб. : Изд-во СПбГУ, 2004а. – С. 140–141.

Колова Е. Е., Савва Н. Е. Селенистое золото в рудном проявлении Си-Мо металлогенической зоны // Золото Сибири и Дальнего Востока: геология, геохимия, технология, экономика, экология : тез. третьего Всерос. симпозиума с междунар. участием, Улан-Удэ, 21–25 сент. 2004 г. / отв. ред. А. В. Татаринов. – Улан-Удэ : Изд-во БНЦ СО РАН, 2004б. – С. 181–183.

Колова Е. Е., Савва Н. Е. Соотношение медномолибден-порфирового и золотого оруденения на п-овах Кони и Пьягина (Северное Приохотье) // Вестн. СВНЦ ДВО РАН. – 2008. – № 4. – С. 2–15.

Королева Г. П., Ломоносов И. С., Карпов И. К. Физико-химическая модель гидрогенного концентрирования золота в зоне гипергенеза // ДАН СССР. – 1984. – Т. 278, № 3. – С. 732–734.

Крайнов С. Р., Рыженко Б. Н., Швец В. М. Геохимия подземных вод: теоретические, прикладные и экологические аспекты. – М. : Наука, 2004. – 678 с.

Краткий справочник по геохимии. – М. : Недра, 1977. – 184 с.

Округин В. М. О полихронности и полигенности эпитермальных месторождений // Вулканизм и геодинамика : материалы IV Всерос. симп. по вулканологии и палеовулканологии, 22–27 сент. 2009 г. – П.-Камчатский, 2009. – С. 23.

Пальянова Г. А. Физико-химические особенности поведения золота и серебра в процессах гидротермального рудообразования / ред. А. С. Борисенко. – Новосибирск : СО РАН, 2008. – 221с.

Пальянова Г. А., Савва Н. Е. Некоторые сульфиды золота и серебра: состав, минеральные ассоциации, условия образования // Хим. технология. – 2007. – Т. 8, № 9. – С. 411–421.

Пальянова Г. А., Савва Н. Е. Особенности генезиса сульфидов золота и серебра месторождения Юное (Магаданская область, Россия) // Геология и геофизика. – 2009. – Т. 50, № 7. – С. 759–777.

Пальянова Г. А., Смирнов С. З., Дублянский Ю. В. Роль инфильтрационных вод в образовании вторичных минералов в вадозной зоне горы Яка (Невада, США): термодинамический анализ // Там же. – 2003. – Т. 44, № 8. – С. 753–768.

Плюснин А. М., Миронов А. Г., Беломестнова Н. В. и др. Микрокинетические закомерности поведения благородных металлов в экзогенных условиях (экспериментальные данные) // Геохимия. – 1999. – № 9. – С. 1304– 1312. Савва Н. Е. Электрум-акантит-ютенбогаардтитовый минеральный тип золото-серебряного оруденения в трубчатых некках риолитов // Минералогия и генетические особенности месторождений золота и серебра. – Магадан : СВКНИИ ДВО РАН, 1996. – С. 66–81.

Савва Н. Е. Вопросы региональной минералогии Кони-Пьягинской металлогенической зоны : отчет о НИР. – Фонды СВКНИИ ДВО РАН, 2002 г. – 213 с.

Савва Н. Е., Пальянова Г. А. Генезис сульфидов золота и серебра на месторождении Улахан (Северо-Восток России) // Геология и геофизика. – 2007. – Т. 48, № 10. – С. 1028–1042.

Сидоров А. А., Томсон И. Н., Савва Н. Е. и др. О соотношении порфировых месторождений с их жильными сателлитами // ДАН. – 2006. – Т. 409, № 6. – С. 859–864.

Умитбаев Р. Б. Охотско-Чаунская металлогеническая провинция (строение, рудоносность, аналоги). – М. : Наука, 1986. – 286 с.

Чехов А. Д. Тектоническая эволюция Северо-Востока Азии (окраинно-морская модель). – М. : Науч. мир, 2000. – 204 с.

Чудаева В. А., Чудаев О. В., Юрченко С. Г. Особенности химического состава атмосферных осадков на юге Дальнего Востока // Водные ресурсы. – 2008. – Т. 35, № 1. – С. 60–71.

Шварцев С. Л. Гидрогеохимия зоны гипергенеза. – М.: Недра, 1998. – 366 с.

Barton P. B. The Ag-Au-S system // Econ. Geology. – 1980. – Vol. 75. – P. 303–316.

Поступила в редакцию 09.11.2009 г.

Castor S. B., Sjoberg J. J. Uytenbogaardtite, Ag₃AuS₂, in the Bullford mining district, Nevada // Canadian Miner. – 1993. – Vol. 31. – P. 89–98.

Greffié C., Bailly L., Milési J.-P. Supergene Alteration of Primary Ore Assemblages from Low-Sulfidation Au-Ag Epithermal Deposits at Pongkor, Indonesia, and Nazareco, Perú// Economic Geology. – 2002. – Vol. 97, No. 3. – P. 561– 571.

Hayba D. O., Bethke P. M., Heald P. et al. Geologic, mineralogic and geochemical characteristics of volcanichosted epithermal precious metal deposits // Rev. Econ. Geology. – 1986. – Vol. 2. – P. 129–167.

Helgeson H. C. Mass transfer among minerals and hydrothermal solutions // Geochemistry of hydrothermal ore deposits / ed. H. L. Barnes. – Wiley ; New-York, 1979. – P. 568–610.

Man A. W. Mobility of gold and silver in lateritic weathering profiles: some observations from Western Australia // Economic Geology. – 1984. – Vol. 79, No. 1. – P. 38–49.

Shvarov Yu. V., Bastrakov E. HCh: a software package for geochemical equilibrium modeling: User's Guide (AGSO RECORD 1999/y). – Canberra : Australian Geological Survey Organisation, Dept. of Industry, Science and Resources, 1999. – 57 p.

Webster J. G. The solubility of gold and silver in the system $Au - Ag - S - O_2 - H_2O$ at 25°C and 1 atm // Geochim. Cosmochim. Acta. - 1986. - Vol. 50. - P. 1837-1845.

White N. C., Hedenquist J. W. Epithermal gold deposits: styles, characteristics and exploration // SEG Newsletter. – 1995. – No. 23. – P. 8–13.

GOLD AND SILVER MINERALS WITHIN SULFIDE ENRICHMENT AREA (Krutoe Lode, Northeastern Russia)

N. E. Savva, G. A. Paljanova, E. E. Kolova

A mineral paragenesis of noble metals is examined including native silver, acanthite, yutenbogaardite, petrovskaite, and high-fineness gold with hydrogoethite, limonite, azurite, chalcocite, and covellite. This noble metal paragenesis is reported from sulfide enrichment area of Krutoe gold-silver lode of epithermal nature. A physicochemical model is developed representing gold and silver minerals forming within hypergenesis area, with due considerations for compositional character of primary ore, ore hosting rocks and natural water.

Key words: Au-Ag mineral assemblages, yutenbogaardite, petrovskaite, acanthite, high-fineness gold, native silver, hypogenesis, thermodynamic modeling.