УДК 553.411.08:552.1

ФИЗИКО-ХИМИЧЕСКОЕ МОДЕЛИРОВАНИЕ МИНЕРАЛООБРАЗОВАНИЯ НА ЗОЛОТОРУДНЫХ МЕСТОРОЖДЕНИЯХ (система Fe – As – S – Na – Cl – H,O)

Н. В. Вилор¹, Л. А. Казьмин², Л. А. Павлова¹

¹Институт геохимии им. А. П. Виноградова СО РАН, г. Иркутск E-mail: vilor@igc.irk.ru

²Научно-исследовательский геотехнологический центр ДВО РАН, г. Петропавловск-Камчатский E-mail: kazmin@igc.irk.ru

При создании численной физико-химической модели формирования золото-кварц-сульфидного оруденения кварц-пирит-арсенопиритового минерального типа проведен расчет термодинамических констант твердых минеральных фаз и компонентов раствора в системе Fe – As – S – Na – Cl – H₂O. Вычислены термодинамические функции миналов мышьяковистого пирита с привлечением данных анализа минералообразования. В водных и сульфидных гидротермальных рассчитана последовательность образующихся парагенезисов с арсенопиритом при пошаговой эволюции раствора, насыщенного по отношению к арсенопириту и при прохождении этого раствора через пиритовую матрицу. Установлены области устойчивости мышьяковистого пирита.

Ключевые слова: арсенопирит, As-пирит, гидротермальный раствор, физико-химическое моделирование, минералообразование.

введение

Достижения в изучении геохимии рудогенеза при исследованиях на гидротермальных месторождениях золото-кварцевой, золото-сульфиднокварцевой и сульфидно-прожилковой рудных формаций основаны на эффективном использовании вычислительной техники с применением полных, надежных и непротиворечивых баз данных по многим параметрам (Chudnenko et al., 1995; Shock et al., 1997; Karpov et al., 2002). Ряд важнейших золоторудных месторождений, выделяющихся крупнейшими запасами, к которым относятся гиганты Олимпиада, Наталка, Нежданинское (Константинов и др., 2000; Сафонов, 2003), рудные объекты Верхне-Колымского и Верхне-Селемджинского рудных районов (Горячев и др., 2008), золоторудные гиганты Узбекистана и Киргизии (Конеев и др., 2008), относятся к весьма распространенному кварцево-жильному или кварц-сульфидно-прожилковому пирит-арсенопиритовому минеральному типу. На них пирит (**py**) и арсенопирит (**asp**) являются главными, основными и концентраторами, и носителями золота различной дисперсности в присутствии меньшего количества других сульфидов. Поэтому изучение «тонких» деталей формирования данного безусловно важнейшего парагенезиса и особенно с выяснением условий появления такой распространенной металлоносной фазы, как мышьяковистый пирит (As-py), имеет непосредственное приложение в оперативном создании численных моделей минералообразования в конкретных условиях температур, давлений и концентраций на исследуемых месторождениях.

Ассоциация пирита и арсенопирита

Начиная с работ Л. Кларка (1966), У. Кречмара и С. Скотта (Kretschmar, Scott, 1976), в системе Fe – As – S рассматриваются 3 основных поля устойчивости Fe-минералов: пирита FeS2, арсенопирита FeAsS и леллингита FeAs₂ (lo). На фазовой диаграмме между составами FeAs, - FeS, отсутствует смесимость, а на уровне мольной доли мышьяка 0,5 (As/As + S) располагается узкий интервал составов собственно арсенопирита FeAsS (Тюкова, Ворошин, 2007). Твердый раствор FeS₂-As соответствует лишь низким концентрациям с X As не более 0,05 (Reich, Becker, 2006), т. е. около 6 мас.%. Тем не менее мышьяковистые пириты широко распространены на золоторудных месторождениях, где эта фаза концентрирует золото наряду с арсенопиритом и обычным пиритом.

[©] Вилор Н. В., Казьмин Л. А., Павлова Л. А., 2011

Даже в золоторудном гиганте Сухой Лог с низкими концентрациями As примесь этого элемента в некоторых рудных генерациях пирита варьирует от 0,26 до 0,87 мас.%, а в отдельных случаях достигает 2,5 мас.% (Гаврилов, Кряжев, 2008). Содержание мышьяка в пирите может приближаться к 10 мас.% (Blanchard et al., 2007), а на отдельных золоторудных месторождениях карлинского типа оно повышается до 11,27–19 мас.% (Simon et al., 1999; Cline, 2001).

При дальнейшем повышении содержания мышьяка начинают формироваться домены метастабильного кубического FeAsS, а затем образуется парагенезис ру + аsp_{монокл}. На основании расчетов в терминах плотностной функциональной теории (DFT) М. Блэнчард с соавторами (Blanchard et al., 2007) показали, что в области As-содержащего твердого раствора в пирите возникают дианионные группы AsS. Замещение серы мышьяком в структуре пирита энергетически более выгодно, чем замещение железа, а конфигурация AsS более предпочтительна по сравнению с типом As₂. По результатам рентгеноструктурных измерений в пирите с содержанием As не более 5 мас.% для восстановительных условий кристаллизации минерала предложен вариант структурного размещения мышьяка:

$$1 \text{As замещает } 1\text{FeFe}_{32}\text{S}_{64} + + \text{AsS} \rightarrow \text{Fe}_{31}\text{AsS}_{64} + \text{FeS}$$
(1)

и варианты замещения серы мышьяком:

1AsS замещает
$$1SFe_{32}S_{64}$$
 +
+ AsS \rightarrow Fe₃₂S₆₃As + 0,25S₈; (2)
1As замещает 1S Fe S +

$$+ AsS \rightarrow Fe_{32}S_{62}As + 0.375S_{8}; \qquad (3)$$

$$+ AsS_{2} assume are 1S_{2}Fe_{32}S_{64} + (3)$$

$$+2 \tilde{A}sS \rightarrow Fe_{32}S_{62}\tilde{A}s_2 + 0.5S_8.$$
 (4)

Рассчитанная энергия растворения в реакциях 1-4 (эВ), равная 2,192; 1,116; 3,869 и 2,739 соответственно, выделяет, по мнению авторов, как наиболее благоприятные минимальные значения двух первых реакций, с особой предпочтительностью 2-й. В экспериментах и расчетах с использованием ПК «Гиббс» Г. Р. Колонин, Г. А. Пальянова и Г. П. Широносова (1988, 1991; Г. А. Пальянова, 2008) исследовали устойчивость аsp в широком кислотно-щелочном интервале растворов при температуре 200-300°C, p = 500 бар. Они установили, что поля инконгруэнтной растворимости арсенопирита соответствуют нескольким рудным парагенезисам, сменяющимся в зависимости от кислотно-щелочной ситуации. Выявленный интервал однофазовой, индивидуальной устойчивости арсенопирита, располагающийся в неширокой субщелочной области, характеризуется низким окислительным потенциалом при парциальном давлении кислорода от $1 \cdot 10^{-35}$ до $1 \cdot 10^{-76.6}$. Широко распространенная ассоциация арсенопирита с пиритом располагается при pH ≤ 4 .

Отчасти, как альтернативный ход образования арсенопирита, может рассматриваться сорбционный механизм осаждения ионов арсенита As(III) на сульфидной матрице троилита и пирита (Bostic, Fendorf, 2003). Появление арсенопиритового состава, как адсорбированного комплекса, сопровождается образованием гидроксида и метастабильного тетрасульфида железа

 $3\text{FeS} + \text{As}(\text{OH})_3 \rightarrow \text{FeS}_2 + \text{FeAsS} + \text{Fe}(\text{OH})_3$ (5) или

$$7\text{FeS}_{2} + 2\text{As(OH)}_{3} \rightarrow 3\text{FeS}_{4} + 2\text{FeAsS} + 2\text{Fe(OH)}_{2}.$$
 (6)

Сорбция, свойственная аноксидным, восстановительным условиям, увеличивается с повышением щелочности, снижаясь с возрастанием концентрации растворенного сероводорода. В высокосульфидных средах быстро выделяется осадок аурипигмента As_2S_3 (**огр**). Тем не менее в умеренно сероводородных растворах с концентрацией H_2S около 5 ммоль или несколько выше сорбция становится минимальной вследствие стабилизации растворенного мышьяка в форме тиоарсенитов.

Важнейшей частью исследований по созданию численной физико-химической модели формирования золото-кварц-сульфидного оруденения рассматриваемого кварц-пирит-арсенопиритового рудно-минерального типа является расчет термодинамических констант в сульфоарсенидной системе $Fe - As - S - Na - Cl - H_0$. Включая рассмотрение равновесий парагенезиса py + asp с частицами раствора, анализ системы требует больших расчетных ресурсов согласованных термодинамических констант в рамках решения обратной задачи физико-химического моделирования с помощью ПК «Селектор». При согласовании значений термодинамических констант зависимых компонентов системы, содержащих Fe, As и S, с базой данных ПК возникла необходимость оценки роли мышьяковистого пирита в парагенезисе $\mathbf{py} + \mathbf{asp}$. Цель данной работы заключается в расчетном определении минеральных ассоциаций, образующихся при взаимодействии гидротермального раствора с арсенопиритом, а также эволюции парагенезисов, по шкале температур с определением условий появления в них As-ру. В задачу исследования включалось вычисление термодинамических функций миналов данной фазы переменного состава с привлечением анализа минералообразования на золото-кварцевом месторождении пирит-арсенопиритового минерального типа.

Природный объект

Формирование **py** + **asp** ассоциации рассмотрено на золоторудном кварц-сульфидном месторождении Верный, расположенном в северной части Бодайбинского рудно-россыпного района (Вилор и др., 2007). Металлоносные зоны кварц-сульфидно-прожилкового состава и кварцевых жил залегают в верхнерифейской углеродистой олигомиктовой песчано-сланцевой (аунакитская свита) формации на своде дислоцированной антиклинали II порядка. На рудном узле в формировании золотого оруденения выделяются 5 стадий (Вилор и др., 2007). Начальная стадия соответствует первичному перераспределению низких концентраций Аи. На заключительной содержание золота в руде также снижается. П стадия – колчеданная (сульфидная) включает гидротермальный привнос и переотложение раннего пирита и образование золотоносных зон сульфидизации с проявлением вкрапленных, линзовидных и конкрециевидных тонко- и мелкозернистых форм пиритовой минерализации, по времени появления коррелирующих с развитием поздней фазы прогрессивной метаморфической зональности Мамско-Бодайбинского зонального метаморфического комплекса. На III сульфоарсенидной стадии преобразуются зоны сульфидизации с возникновением кварц-сульфидных прожилков и рудных столбов с высокими концентрациями золота. Уровню III-А подстадии соответствует собственно золото-кварц-арсенопиритовое (с пиритом) прожилково-вкрапленное оруденение на месторождении Верный и на аналогичных ему рудных объектах Александр Невский и Чертово Корыто. В рудах преобладает кварц-

Рис. 1. Пирит-арсенопиритовая руда месторождения Верный (Восточная Сибирь): a – метакристаллы **asp** III-А подстадии среди обособлений мелко- и тонкозернистого пирита предшествующей II рудной стадии. **Qu** – кварц шестоватого сложения, **schist** – углеродистый пиритизированный слюдисто-кварц-карбонатный микросланец (метаалевролит); δ , δ – включения золота (**Au**) в арсенопирите (**asp**) и кварце (**Qu**) (×60)

Fig. 1. Pyrite-arsenopyrite ore from Verny Deposit (East Siberia): a – the III-A substage **asp** metacrystals among small- and fine-grained pyrite of the II preceding ore stage. **Qu** is columnar quartz, **schist** is carbonaceous pyrite-altered micaceous-quartz-carbonate microshale (meta-siltstone); δ , δ' – gold inclusions (**Au**) in arsenopyrite (**asp**) and quartz (**Qu**) (magnification is 60)

пиритовый или кварц-пирит-арсенопиритовый состав с незначительным присутствием пирротина, низкожелезистого сфалерита, халькопирита и относительно редкого тетраэдрита, близкого к фрейбергиту (Вилор и др., 2003). С ним и арсенопиритом ассоциирует самородное золото. Метакристаллы **аsp** и шестоватый кварц в виде оторочек располагаются среди пиритовых агрегатов **II стадии** (рис. 1, *a*).

Изучение состава пиритов и арсенопиритов проведено на электронно-зондовых рентгеноспектральных микроаналитических комплексах JCXА-733 и JXA8200 (JEOL Ltd, Japan), соответственно укомплектованных энергетическими спектрометрами: Sahara (Princton Gamma-Tech Ltd) и MiniCup (Leon Ltd, Japan), а также волновыми спектрометрами ТАР, РЕТ и LiF и пятью кристаллами-анализаторами LDE1, LDE2, TAP, TAPH, LDEBH, PETJ, РЕТН, LiF и LiFH. В качестве образцов сравнения использовали стандартные образцы, аттестованные в Институте геологии, геофизики и минералогии СО РАН (г. Новосибирск): природные пирит, арсенопирит, халькопирит, сфалерит, галенит и сплав Fe – Co – Ni. Количественные определения содержаний элементов выполняли с помощью волновых спектрометров при ускоряющем напряжении 20 кВ, токе электронного пучка 20 нА и диаметре зонда 1 мкм, управляя съемкой и пересчитывая регистрируемые относительные интенсивности в концентрации с помощью расчетно-

управляющего комплекса MARshell32 (Канакин, Карманов, 2006), адаптированного в программное обеспечение микроанализатора ЈСХА-733. Распределение мышьяка в пиритах изучали, используя комплекс JXA8200. Полученные результаты

Рис. 2. Составы мышьяковистых пиритов: а – статистические группы содержаний мышьяка в пирите, мас.%: группа 1-0,2-0,3; 2-0,3-0,4; 3-0,4-0,6; 4-0,6-0,8; 5-0,8-1,0; 6-1,0-1,2; 7-1,2-1,5; 8-1,5-2,5; б-распределение мышьяка в пирите. Два типа распределения: однородное – квазиизотропное (1) и неоднородное – анизотропное (2). Переход между пиритом и арсенопиритом (3)

Fig. 2. Arsenic pyrite compositions: a – the statistical groups of As content of pyrite, mass. %: group 1 – 0.2–0.3; 2 – 0.3– 0.4; 3 - 0.4 - 0.6; 4 - 0.6 - 0.8; 5 - 0.8 - 1.0; 6 - 1.0 - 1.2; 7 - 1.2 - 1.5; 8 - 1.5 - 2.5; 6 - the distribution of As in pyrite. Two typesof distribution: homogeneous – quasiisotropic (1) and heterogeneous – anisotropic (2). The pyrite-arsenopyrite transfer (3)

фициентом корреляции 0,765 (Вилор и др., 2007).

соответствуют II категории анализа со средне-

квадратическим отклонением результатов, не пре-

вышающим допустимое, а сумма компонентов, со-

держание которых в пробе выше 0,1%, лежит в

интервале 99,5±1,5%.

Повышение мышьяковистости ру до 1800–5000 г/т увеличивает его золотоносность до 6,02–15 г/т. Содержания As в пирите предрудной реликтовой диагенетически-эпигенетической и раннеметаморфической стадий, обычно не превышающие 0,151-0,168 мас.%, в As-ру III-А подстадии достигают 2,5 мас.%. Распределение мышьяка в Asру полимодальное (рис. 2, *a*). Это – интервалы 0,4-0,8 и 1-1,2 мас.%. Присутствуют 2 типа распределения: более или менее однородное – квазиизотропное (1) и неоднородное – анизотропное (2) (см. рис. 2, δ , δ). Однако при 1-м типе в кристаллах присутствуют зоны и блоки с содержанием As, ненамного превышающим минимум ранних стадий. При анизотропном распределении возникают локальные максимумы (до 2,3–2,5 мас.% As) с размерами от 4 до 6,5 мкм. Внутри кристаллов присутствуют такие же зоны протяженностью более 41 мкм с шириной до 2,4-5,6 мкм.

Содержания мышьяка, железа и серы в **As-ру** обратно пропорциональны коэффициентам корреляции **S** – **As** – 0,5 (n = 153) и **Fe** – **As** – 0,4 (n = 150) соответственно. Рудные элементы-примеси располагаются в ряд в порядке частоты распространения и величины концентраций: Co \rightarrow Ni \rightarrow Cu \rightarrow Zn \rightarrow Pb. Их содержание не превышает 0,7 мас. % при среднем уровне 0,2–0,1 мас.%.

В формульном составе пиритов в зависимости от содержания As выделяется группа с замещенной серой (при среднем As 0,443 мас.%, $\sigma = \pm 0,201$) As-py₁ и группа, в которой мышьяк замещает серу и железо (при среднем As 1,545 мас.% $\sigma = \pm 0,531$) As-py₂.

 $\begin{array}{l} \textbf{As-py}_{1} \ Fe_{1,0036} \ S_{1,962} \ As_{0,0187} \ Co_{0,0068} \ Ni_{0,0084} \\ \sigma \pm \ 0,0017 \ 0,012 \ 0,0137 \ 0,0027 \ 0,0025 \\ \textbf{As-py}_{2} \ Fe_{0,99} \ S_{1,924} \ As_{0,0627} \ Co_{0,013} \ Ni_{0,009} \\ \sigma \pm \ 0,005 \ 0,029 \ 0,0189 \ 0,013 \ 0,012 \end{array}$

Группа **As-p**₂ связана с участками кристаллов **py**, содержащими повышенные концентрации As, и ассоциирует с **asp** III-А подстадии.

МЕТОДИКА ТЕРМОДИНАМИЧЕСКИХ РАСЧЕТОВ

В целях исследования образования парагенезиса **py** + **asp** и условий появления золотосодержащего **As-py** при взаимодействии ранней рудной пиритовой матрицы с сульфоарсенидным раствором арсенопиритовой подстадии привлечено физико-химическое моделирование (ФХМ) на основе ПК «Селектор» (Казьмин и др., 1975; Карпов, 1981). В решении задач моделирования рудного процесса выделяются два этапа: I – подготовительный и II – собственно расчетной имитации минералообразования. Содержание подготовительного этапа включало решения ряда обратных задач ФХМ в последовательности частных систем для согласования термодинамических констант участвующих зависимых компонентов: минеральных фаз, частиц и комплексов в гидротермальном растворе с основной базой термодинамических данных «Селектора-С» для его версии, данной в работе (Авченко и др., 2009). Согласование по методике, изложенной в статье (Вилор, Казьмин, 2007), объединяло частные системы как элементы одной общей в порядке увеличения числа независимых компонентов. Так, в системе Fe -Na - Cl - H - O «магнетит – раствор» (Tremaine, 1977) уточнялись термодинамические функции железистых зависимых компонентов раствора: аква-ионов, хлоридных, гидрооксо- и гидрооксохлоридных комплексов. В системе Fe - S - Na -Cl – H – O «пирит – раствор», по данным (Масалович, 1975), аналогичные функции согласовывались для серии Fe комплексов, включающей гидросульфиды, гидрооксогидросульфиды, тиосульфаты. Состав и термодинамические константы для системы Fe – As – S – Na – Cl – H,O согласовывались у Fe комплексов в растворе, включая тиоарсениты, арсениды, арсенаты Fe и Na, а также у твердых минеральных фаз – asp и lo. Критерием удовлетворительного согласования в соответствии с ранее предложенным алгоритмом решения обратных задач ФХМ (Вилор, Казмин, 2007) являлось достижение расчетами точности моделируемых экспериментов (Колонин и др., 1988; Pokrovski et al., 2002; Пальянова, 2008) на критерии условия глобального минимума свободной энергии соответствующих систем. Достигнут уровень согласования при следующих термодинамических функциях участвующих сульфидных фаз (табл. 1). В соответствии с предложенным алгоритмом (Вилор, Казьмин, 2007) в базу термодинамических данных включены функции g_т комплексов железа и сульфоарсенидных комплексов, согласованных с основной базой данных «Селектора» при расчетах фазовых соответствий в вышеперечисленных частных системах.

На II этапе расчетной имитации минералообразования получены решения прямых задач ФХМ для исследования состава минеральных парагенезисов в термодинамическом равновесии с раствором при фиксированных Р, Т и С. Рассчитанная эволюция парагенезисов рассматривает вариант переноса насыщенного раствора через последовательность резервуаров с изобарическим снижением температуры (при 300 бар и насыщенных паров воды) от 300 до 100°С с расчетными точками через 25°С. Смена ассоциаций твердых фаз при эволюции данного насыщенного раствора и инфильтрации его через пиритовую матрицу в соответствии с ситуацией на золоторудном месторождении (см. рис. 1) рассмотрена в расчете состава парагенезисов с координатами рН - температура. Использована аналогичная последовательность резервуаров с изобарическим пошаговым снижением температуры (300 бар). Термодинамические функции As-py рассчитаны на ос-

Минерал	Функция	S ⁰ ₂₉₈ ,	Коэффи т	циенты в ур теплоемкост	авнении и	Литературный
	кал/моль	кал/мол	а	b	с	источник
Арсенопирит FeAsS ¹	-34843	26,372	18,047	1,142	-1,803	Уточнено по данным ¹
Леллингит FeAs ₂	-13985	28,643	18,329	0,741	-1,441	То же
Пирит FeS ₂	-38296	12,65	17,88	1,32	-3,05	Химическая, 1971
Пирит _{As1} Fe _{0,969} S ₂ As _{0,031}	-37710	12,356	17,88	1,32	-3,05	
Пирит _{As2} FeS _{1,969} As _{0,031}	-38206	12,485	17,88	1,32	-3,05	Рассчитано по Blan-
Пирит _{As3} FeS _{1,934} As _{0,031}	-37970	12,563	17,88	1,32	-3,05	chard et al., 2007
Пирит _{As4} FeS _{1,934} As _{0,062}	-38116	12,512	17,88	1,32	-3,05	
Пирротин Fe _{0,877} S	-22361	14,515	7,5	14,794	0	Yokokawa, 1988
Аурипигмент As ₂ S ₃	-40296	39,101	25,251	8,709	0	То же
Реальгар $As_2S_2^2$	-30520	30,305	17,88	1,32	-3,05	«
Мышьяк As	0	8,4	5,23	2,22	0	Химическая, 1971
Сера S ⁰ _{ромб}	0	7,6	3,58	6,24	0	То же
Магнетит Fe ₃ O ₄	-242710	34,928	743,3	-720,11	58,73	Дорогокупец и др., 1988; Yokokawa, 1988
Гематит Fe ₂ O ₃	-177366	20,889	278,68	-217,45	24,32	То же
Арсенолит As ₄ O ₆	-275461	51,195	42,09	-5,456	Не расч.	Yokokawa, 1988

Таблица 1. Согласованные термодинамические функции твердых фаз системы Fe - As - STable 1. Coordinated thermodynamic functions of the Fe - As - S system solid phases

¹ Колонин и др., 1988; Pokrovski et al., 2002; Пашинкин и др., 1989; Perfetti et al., 2008.

² Уточнено по данным экспериментов Г. Д. Мироновой и др., 1983, 1990.

новании свойств серии составов данной фазы, приведенных в работе (Blanchard et al., 2007), для которой учтены 4 стехиометрических минала: **As-py**₁ Fe_{0.96875} S₂As_{0.03125} (1As замещает 1Fe), **As py**₂ FeS_{1.96785} As_{0.03125} (1As замещает 1S₂), **As-py**₃ FeS_{1.93375} As_{0.03125} (1As замещает 1S₂ + 1S_{вакансия}), **As-py**₄ Fe S_{1.93375} As_{0.0625} (2 As⁻¹ замещает 1 S₂⁻²). Кислотность-щелочность раствора соответствовала участвующим концентрациям HCl от 1 × 10⁻⁴ до 0,1 m и NaOH от 1 × 10⁻⁴ до 1 m. В расчете системы **Fe** – **As** – **S** – **Na** – **Cl** – **H**₂**O** принимают участие 559 зависимых компонентов, включая 404 иона и другие частицы раствора, 50 твердых фаз и 105 компонентов газовой фазы. Характеристическим для системы является присутствие в растворе арсенатов Na и Fe, арсенидов Fe, тиоарсенитов, тиосульфатов Na и Fe, полисульфидов, натровых сульфидов и сульфатов, а также производных сложных кислот, содержащих серу.

РЕЗУЛЬТАТЫ

Фазовый состав системы «арсенопирит + раствор»

При взаимодействии сероводородного раствора $(0,01 \text{ H}_2 \text{S} \text{ m}, 300 \text{ бар})$ и **аsp** парагенезисы с участием сульфидов мышьяка и железа, а также магнетита (**mt**) сменяются в зависимости от температуры и состава (pH) гидротермального раствора (рис. 3, *a*). С увеличением щелочности на фоне возрастания температуры формируется последовательность ассоциаций: арсенопирит + реальгар (**re**) (± мышьяк элементарный, **As**_N) → арсенопирит + магнетит > арсенопирит +

магнетит + леллингит с преимущественно инконгруэнтной растворимостью asp. Поле конгруэнтной растворимости минерала ограничивается 150-200-градусной изотермой в слабокислотном близнейтральном интервале. Ниже ее преобладающий asp замещается ассоциацией asp + ру. Сульфоарсенидная минеральная группа, в которой сосуществуют asp с orp, re и As_N, устойчива только в кислотных растворах. При снижении давления до уровня упругости насыщенных паров воды положение границ оксидно-арсенидной ассоциации почти не меняется. Но относительно высокотемпературная часть mt + asp поля опускается в более кислотные условия, как и нижняя кислотная граница устойчивости asp. В отсутствие As_N поле re + asp расширяется. За счет сужения поля asp+ ру в низкотемпературной умеренно кислотной зоне увеличивается область сосуществования аsp + ру + огр. При составе системы аsp + вода под давлением 300 бар, без дополнительного H₂S в растворе расширяется поле asp + lo + mt, опускаясь до pH = 6. Ру выбывает из парагенезисов. Выделяется неширокая зона конгруэнтной растворимости asp от слабокислотных при температуре 300°C (pH = 3-4,2) до близнейтральных-щелочных (pH = 6-8) условиях при 100°С. В кислотной области располагаются ассоциации $\operatorname{asp} \operatorname{c} \operatorname{re} \operatorname{u} \operatorname{As}_{\operatorname{N}}$. При снижении давления до уровня упругости насыщенных паров воды в данной системе несколько расширяются по щелочности и температуре поля asp + mt и orp + re за счет выхода As_{N} , который находится в ассоциации с asp только выше 250°С и рН около 2 и менее.

Fig. 3. The calculated arsenopyrite, pyrite and arsenic pyrite parageneses in the $\mathbf{Fe} - \mathbf{As} - \mathbf{S} - \mathbf{Na} - \mathbf{CI} - \mathbf{H}_2 \mathbf{O}$ system: *a* – arsenopyrite interacting with sulfide solution (0.01 H₂S m, 300 bar); δ – the evolution of the composition of solid phases contacting arsenopyrite-saturated solution at 300°C; σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C; σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C; σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solution at 300°C (σ – the composition of solid phases contacting arsenopyrite-saturated solu

59

Последовательности парагенезисов при кислотно-щелочной эволюции раствора, насыщенного арсенопиритом

В мезотермальном интервале формирования продуктивного золотого оруденения исследуются изменения в составе твердых фаз, выделяющихся из раствора, проникающего в растворо(флюидо)доминирующую зону флюидной системы (ФС) (см.

Таблица 2. Рассчитанная инверсия рН при взаимодействии раствора, насыщенного в отношении asp, с пиритом

Table 2. The calculated pH	inversion for	arsenopyrite-saturated	solution	reacting
with pyrite				

	Кон	центрация	кислотне	го или ще	лочного	компонен	га раство	pa, m
	0,00	01 HCl	0,001	NaOH	0,01	NaOH	1 N	aOH
	pН	∆pH	pН	∆pH	pН	∆pH	pН	∆pH
В равнове-								
сии с арсе-								
нопиритом	3,65	_	4,781	_	7,111	_	9,025	_
(300°C),			-					
р = 300 бар								
В равнове-								
сии с пири-	2 614	±0.0026	4 025	+0.756	1 778	±2 282	6 812	⊥ 2 192
том (275°С),	5,014	+0,0030	4,023	+0,750	4,720	+2,365	0,042	$\pm 2,103$
р = 300 бар								

Примечание. $\Delta pH = pH$ в растворе с **asp** – pH в растворе с **py**. *Note.* $\Delta pH = pH$ in solution + **asp** – pH in solution + **py**.

рис. 3, б). Взаимодействие с окружающей минеральной средой не рассматривается. Численно воспроизведено перемещение массы раствора, насыщенного по отношению к арсенопириту при температуре 300°С (300 бар; 0,01 H₂S m) в последовательности резервуаров. Соотношение ассоциаций твердых фаз при стартовом состоянии (t = 300°C) аналогично рассмотренному на рис. 3, a. Они сменяются соответственно увеличению щелочности раствора в ряду от $asp + As_N$ в кислотной части к asp, asp + mt и asp + lo + mt в щелочной части диаграммы. При продвижении раствора по гидротермальной колонне (последовательности резервуаров) со снижающейся температурой выраженная смена ассоциаций твердых фаз, выделяющихся из раствора, свойственна кислотному интервалу с рН = 1-3. Здесь пара $asp + As_{N}$, устойчивая до 225°C, сменяется asp в присутствии сульфидов As: re и orp в разных сочетаниях.

Слабокислый – близнейтральный интервал диаграммы (см. рис. 3, δ) соответствует полю конгруэнтной растворимости **asp**, которое около 200°С и ниже сменяется парагенезисом **asp** + **py** с участием мышьяковистого пирита **As-py**₃. На 100-градусном пределе к нему иногда добавляется разновидность, насыщенная мышьяком, – **As-py**₄. В близнейтральной и щелочной частях фазовой диаграммы располагается поле раствора, где минеральные новообразования отсутствуют. При достижении 200-градусной изотермы с ростом щелочности устойчива ассоциация **asp** и **lo** с **As**_N, который не появляется за 300-градусной изотермой.

Инфильтрация насыщенного раствора через пиритовую матрицу

Инфильтрация раствора, насыщенного по отношению к **аsp** при 300°С, через пиритовую матрицу 2-й рудной стадии на месторождении с понижением температуры, также моделируется переходом его через последовательность резервуаров. В зависимости от рН формируются четыре основных поля парагенезисов (см. рис. 3, в): 1 – мономинеральный ру, устойчивый до 175-200°С независимо от кислотности-щелочности; 2 – ассоциация py + orp, расположенная при температуре от 175°С в кислом – слабокислом интервале; 3 – сосуществование ру и As-ру, иногда с участием серы. Здесь orp появляется около 100°С в близнейтральном интервале; 4 – парагенезис ру + mt + As-py, находится от 275°C и выше при увеличении щелочности исходного раствора. Вследствие взаимодействия с ру на фоне понижения температуры в щелочном растворе, насыщенном относительно asp, значительно уменьшается pH, хотя концентрация NaOH возрастет (табл. 2). Эффект обусловлен повышением содержания сульфатов.

Таким образом, на контакте сосуществующих сульфидов **py** и **asp** резко изменяются кислотнощелочные и окислительно-восстановительные условия со снижением щелочности гидротермального раствора, особенно с образованием буферной ассоциации **py** + **mt**. В низкотемпературных участках последовательности взаимодействия раствора с пиритом возможно появление некоторого избытка метастабильной серы. Ее последующее окисление является причиной пострудных преобразований, соответствующих стадии аргиллизации.

ОБСУЖДЕНИЕ

Влияние внешних параметров: *P*, *T* и состава раствора на парагенезисы с участием АПИ

Выделяются три поля характеристической растворимости **asp**, в тесной зависимости от кислотности-щелочности контактирующего раствора (см. рис. 3, *a*). В кислотной (рН до 4) преобладает инконгруэнтное растворение asp с образованием сульфидов мышьяка и собственно мышьяка. Но в слабокислотном интервале с pH 3-4 до 150°C располагается узкое поле конгруэнтной растворимости исходного минерала. Близнейтральнойщелочной области свойственны мономинеральный asp до 200°С и ассоциации его с сульфидами Fe при уменьшении температуры ниже 175-200°С. В щелочной области asp растворяется инконгруэнтно с появлением mt и lo. Поля конгрузнтной растворимости asp, его мономинеральной устойчивости охватывают интервалы pH от 2–3 (300°C) до 8-9 (100°C) независимо от давления и состава реагирующего раствора. Однако инконгруэнтная растворимость в сопровождении ру проявляется только в сернистых растворах, при некотором избытке H₂S (0,001–0,01 m). Изменения концентраций участвующих элементов Fe и As от pH по температуре при слабой зависимости от состава раствора и давления имеют одинаковые тенденции (табл. 3). Концентрация железа снижается на 4 порядка с переходом от кислотного интервала к щелочному от 4-6 · 10⁻² (pH около 2) до 2,4 · 10⁻⁶ m (pH = 8,7). Концентрация As минимальна в близнейтральном интервале рН 4-7 при конгруэнтной растворимости **asp** на уровне $2,4 \cdot 10^{-3}$ m. Она увеличивается с ростом кислотности в области устойчивости сульфидов мышьяка до 3 · 10⁻² m (pH = 2,2) и в щелочной области в присутствии **т** и **lo** до $1,3 \cdot 10^{-1}$ т соответственно (pH = 8,8). Таким образом, в слабокислотном интервале содержания Fe и As близкие и высокие, образуют области совместной миграции. В щелочных условиях подвижность железа резко ограничивает-

Таблица 3. Рассчитанные концентрации железа и мышьяка (lg m) в растворе при смене парагенезисов *Table 3*. The calculated Fe and As solution concentrations (lg m) at changing parageneses

Состав	раствора,						pН						
пара	аметры	1	2	3	4	5	6	7	8	9	10	11	12
0,01m H ₂ S	, 100°C Fe	-1,58		-2,92	-3,17			-5,79				-5,10	-4,11
	As	-4,61		-3,59	-3,18			-4,45				-4,16	-4,13
300 бар	300°C Fe		-1,32	-2,32	-2,60	-4,38		-5,66	-5,61				
_	As		-1,75	-2,32	-2,60	-3,26		-1,88	-0,86				
0,01m H ₂ S	, 100°C Fe		-1,15	-2,19		-4,79				-6,18		-5,78	-5,30
	As		-5,96	-6,36		-6,09				-2,9		-2,36	-2,45
днпв	300°C Fe		-1,16	-2,20	-2,586	-4,40		-5,75	-5,74				
	As		-1,50	-2,26	-2,593	-3,22		-1,88	-0,87				
Вода,	100°C Fe	-1,65	-2,65				-5,97			-5,54	-5,36	-5,18	-4,91
	As	-6,53	-7,00				-5,97			-5,42	-4,91	-4,38	-3,45
300 бар	300°C Fe		-1,32	-2,33	-3,529	-4,91	-5,56	-5,66	-5,61				
_	As		-184	-2,59	-3,165	-2,99	-2,64	-1,84	-0,87				
Вода,	100°C Fe		-1,18		-3,316	-5,59		-6,08		-5,96	-5,12	-5,76	-5,3
	As		-4,48		-4,89	-5,86		-6,08		-4,4	-3,73	-2,82	-2,18
днпв	300°C Fe		-1,17		-3,1	-4,80	-5,36	-5,75	-5,74				
	As		-2,55		-3,1	-2,99	-2,16	-1,83	-0,86				

Таблица	4. I	Рассчитанные	концентрации	моляльных	(m _i)	ведущих	форм	переноса	основных	компо-
нентов в	pac	створе, насыщ	енном относите	льно asp						

Table 4. The calculated concentrations (m_i) of the leading transfer types of main components in arsenopyrite-saturated solution

	300°C			200°C			100°C	
As	Fe	S	As	Fe	S	As	Fe	S
$H_3AsS_3^0$ 7,4 ·10 ⁻⁴	Fe ²⁺ 2,1 ·10 ⁻⁵	HS ⁻ 7,8 ·10 ⁻³	$\begin{array}{c} H_3AsS_3\\ 7\cdot 10^{-4}\end{array}$	Fe ²⁺ 2,4 ·10 ⁻⁶	H_2S 5,5·10 ⁻⁵	H ₃ AsS ₃ 3,2·10 ⁻⁵	Fe ²⁺ $1,5\cdot10^{-4}$	H ₂ S 1,9·10 ⁻³
$H_2AsS_3^{-7}$ 7,8 ·10 ⁻⁷	FeOH ⁺ 2,5 ·10 ⁻⁶		$H_2AsS_3^-$ 3,2 ·10 ⁻⁵	FeHS ⁺ 7,1 ·10 ⁻⁴	HS ⁻ 7,7·10 ⁻³	$H_2AsS_3^-$ 2,6 ·10 ⁻⁴	FeHS ⁺ 7,5·10 ⁻⁴	HS ⁻ 6,6·10 ⁻³
H ₃ AsO ₃ ⁰	FeHS ⁺ 7,1 ·10 ⁻⁴		HAsS ₃ ²⁻ 5,7 ·10 ⁻⁷	$Fe(HS)_2^0$ 1,4 ·10 ⁻⁵		HAsS ₃ ²⁻ 7,4 ·10 ⁻⁵	$Fe(HS)_2^0$ 5,4.10-4	
1,3 ·10 ⁻⁶	$Fe(HS)_{2}^{0}$ 7,8 ·10 ⁻⁶		$\frac{\mathrm{HAsS_2}^{0}}{2\cdot 10^{-7}}$	$Fe(HS)_{3}^{-1}$ 1,7 ·10 ⁻⁶		AsS_3^{3-} 6,7 ·10 ⁻⁶		
	$Fe(HS)_{3}^{-1}$ 1,4 ·10 ⁻⁶							

Примечание. Концентрации рассчитаны для переноса в стартовом 0,007 m растворе NaOH, насыщенном **asp** при температуре 300°С.

Note. Concentrations were calculated for transport by the start 0.007 NaOH m solution, saturated by asp near 300°C.

Физико-химическое моделирование минералообразования на золоторудных месторождениях

ся, а у As возрастает. Здесь миграция элементов раздельная.

Формирование парагенезисов с участием арсенопирита и мышьяковистого пирита

Моделирование инфильтрации раствора, насыщенного по отношению к арсенопириту при 300°C $(300 \, \text{бар}) \, (\text{см. рис. } 3, \delta), \, \text{через последовательность}$ термоячеек с отделением раствора от образовавшихся равновесных твердых фаз в координатах рН-температура отражает формирование кислотной, щелочной и продуктивной групп asp содержащих ассоциаций – парагенезисов. Однако кислотная группа (pH \leq 3) с участием фазы As_N и сульфидов As и щелочная (pH ≥ 6–6,5) в присутствии mt, lo и As_{N} реально маловероятны скорее всего из-за крайне редко встречаемых параметров сильной кислотности и щелочности в восстановительных гипотермальных глубинных растворах. Наиболее распространен на рудных месторождениях слабокислотный – близнейтральный продуктивный интервал устойчивости мономинерального аsp до 200°С и сменяющий его с понижением температуры парагенезис с ру и As-ру₁₋₃. Особенность данного и примыкающего щелочного интервала составляет пространство ненасыщенных растворов ниже 200°C (pH \geq 6). Вполне допустимо, что, появляясь в зоне оруденения с предшествующими рудными ассоциациями, такие растворы произведут выщелачивание рудного вещества, создавая в залежах их «пустые» части. На всем протяжении поля устойчивости мономинерального asp (на примере вектора состава с pH=4,53, NaOH=0,007 m) вплоть до 150°С мольные соотношения Fe, As и S стабилизированы на уровне 7: 7: 100. Они изменяются до 3 : 6 : 100 и 0,84 : 4 : 97 для 125 и 100°С соответственно при выделении продуктивной ассоциации asp + py + As-py₁₋₃. Ведущим формам переноса основных компонентов системы присуща сульфидная мотивация составов преобладающих комплексов (табл. 4).

Транспорт мышьяка в виде тиоарсенитов H₃AsS₃ с диссоциатами преобладает. Лишь при температуре 300°С и выше вровень с ним выходят концентрации мышьяковистой кислоты H₃AsO₃⁰. Железо связывается акваионом Fe²⁺ и гидросульфид-ионами. Значение первого с ростом температуры понижается. При 300°С с ними конкурирует простой гидрооксокомплекс FeOH⁺. Преобладающими мигрантами серы выступают HS⁻ и H₂S. Перенос As и Fe раздельный. Рассчитанные концентрации их совместных форм – арсенатов, арсенидов, тиоарсенидов крайне незначительны.

При вступлении раствора, насыщенного по отношению к **аsp** при 300°С, в пиритовую матрицу в мономинеральном поле пирита не происходит образование дополнительных фаз при снижении температуры до 175°С, за исключением относительно высокотемпературного щелочного участ-

HULE J. I IL CALL	culated arsenic s	ouuuon componen	IL CONCENTRALIONS	contacting pyri	IIG				
Tempe-			Конце	нтрация кислотн	ого и щелочного к	омпонента раство	pa, m		
parypa,	0,001 HCI	0,001 NaOH	0,5 NaOH	0,001 HCI	0,001 NaOH	0,5 NaOH	0,001 HCl	0,001 NaOH	0,5 NaOH
ې ب		m Fe			m As			m S	
300	6,57.10 ⁻⁴	$1,03.10^{-4}$	$2,49.10^{-6}$	$6,60 \cdot 10^{-4}$	$2,71 \cdot 10^{-4}$	$5,61 \cdot 10^{-2}$	1,66.10 ⁻³	$1,27.10^{-3}$	$4,13.10^{-1}$
275	$1,07.10^{-3}$	$3,58.10^{-4}$	$4,96.10^{-5}$	$6,60 \cdot 10^{-4}$	$2,71 \cdot 10^{-4}$	$5,61 \cdot 10^{-2}$	$3,32 \cdot 10^{-3}$	$2,61 \cdot 10^{-3}$	$5,86.10^{-1}$
250	$8,07.10^{4}$	$9,92.10^{-5}$	$9,245.10^{-6}$	$6,60 \cdot 10^{-4}$	$2,71 \cdot 10^{-4}$	$5,61 \cdot 10^{-2}$	$2,80.10^{-3}$	$2,09 \cdot 10^{-3}$	$6,11.10^{-1}$
225	$6,93.10^{4}$	$2,08.10^{-5}$	$1,67.10^{-6}$	$6,60 \cdot 10^{-4}$	$2,71 \cdot 10^{-4}$	$5,61 \cdot 10^{-2}$	$2,68 \cdot 10^{-3}$	$1,93 \cdot 10^{-3}$	$6,11.10^{-1}$
200	5,82.10-4	$3,65 \cdot 10^{-6}$	$2,76.10^{-7}$	$6,60 \cdot 10^{-4}$	$2,71 \cdot 10^{-4}$	$5,61 \cdot 10^{-2}$	$2,56.10^{-3}$	$1,9.10^{-3}$	$6,11.10^{-1}$
175	$4,70.10^{4}$	$5,81 \cdot 10^{-7}$	$4, 3 \cdot 10^{-8}$	$6,50 \cdot 10^{-4}$	$2,71 \cdot 10^{-4}$	$5,61 \cdot 10^{-2}$	$2,44.10^{-3}$	$1,89.10^{3}$	$6,11.10^{-1}$
150	$4,00.10^{4}$	$8,96.10^{-8}$	$8,34.10^{-9}$	$5,30 \cdot 10^{-4}$	$2,71 \cdot 10^{-4}$	$5,61 \cdot 10^{-2}$	$2,18.10^{-3}$	$1,89.10^{-3}$	$5,94.10^{-1}$
125	3,43.104	$1,21.10^{-8}$	$\leq 1.10^{-12}$	$2,45 \cdot 10^{-4}$	$1,77.10^{-4}$	$5,61 \cdot 10^{-2}$	$1,67.10^{-3}$	$1,75 \cdot 10^{-3}$	$5,77.10^{-1}$
100	$1,96.10^{4}$	$1,52.10^{-9}$	$\leq 1.10^{-12}$	$3,40 \cdot 10^{-5}$	$6,62 \cdot 10^{-5}$	$5,61 \cdot 10^{-2}$	$1,22.10^{-3}$	$1,58 \cdot 10^{-3}$	$5,67.10^{-1}$

Таблица 5. Рассчитанные концентрации компонентов мышьяковистого раствора в контакте с пиритом

ка (275°С) с ассоциацией **ру** + **mt** и ранним **As-ру**₃ (см. рис. 3, e). Ниже 200°С в близнейтральном интервале устойчивы ассоциации **ру** и железозамещенного **As-ру**₁. Состав раствора дифференцируется только по концентрации железа и слабее для мышьяка с дальнейшим уменьшением температуры и возрастанием pH на фоне концентрации серы, изменяющейся в пределах 1-го порядка (табл. 5).

На уровне появления Аѕ-ру, содержание железа в растворе становится крайне низким, менее 1.10⁻⁷-1.10⁻⁸ m. Преобладающей формой переноса мышьяка являются тиоарсениты, среди которых доминируют H₃AsS₃ и его диссоциаты. При увеличении щелочности возрастает роль арсенатов и арсенитов. Но на 100-градусной изотерме существенно главенствуют тиоарсениты. В кислотном и слабощелочном растворах железо находится в форме гидросульфида FeHS⁺, которому на один порядок уступает концентрация аква-иона Fe²⁺. На уровне 150°С и ниже увеличивается значение Fe(HS)₂⁰ и Fe(HS)₃⁻. К преобладающим в растворе HS⁻²и H₂S с увеличением щелочности $NaSO_{4}^{-}$ и SO_{4}^{2-} , концентрации которых ниже на 1–2 порядка.

К динамике выделения аsp

Присутствие авр в рассчитанных парагенезисах (см. рис. 3, а, б) обусловлено включением этой фазы в стартовый состав каждого из вариантов расчета образующих частных систем. Поэтому мольные отношения Fe, As и S стабилизированы в насыщенных растворах равновесием с АПИ, но постепенно уменьшаются со снижением температуры менее 200°С при появлении незначительного количества дополнительной фазы As-py₁₋₃. При взаимодействии раствора с пиритовой матрицей **asp** отсутствует в рассчитанных фазовых составах. Причиной является устойчивая диспропорция валовых концентраций растворенных мышьяка и железа, в основе которой находятся низкие моляльности Fe, уменьшающиеся на фоне снижения температуры от $1,1 \times 10^{-4}$ (275°C) до 2,2×10-8 m (150-125°C) и определяемые низкой конгруэнтной растворимостью пирита. Но высокие рассчитанные концентрации As, задаваемые исходным насыщением раствора относительно asp при 300°С, не реализуются в твердую фазу вследствие дефицита Fe, за исключением небольшого количества As-py₁, так как при конгрузнтной растворимости asp концентрации Fe и As должны быть полностью сопоставимы.

В продуктивном интервале рассчитанных арсенопиритовых парагенезисов и в варианте инфильтрации раствора через пирит его мышьяковистая разновидность фиксируется при температуре ниже 200°С. Появление этой важнейшей, широко распространенной золотосодержащей минеральной фазы – **Аs-ру** весьма типично на бога-

Рис. 4. Рентгеновское излучение центров в субструктуре As-содержащего пирита. Изображение поверхности зерна минерала в обратнорассеянных электронах. Кривая показывает распределение характеристического рентгеновского излучения мышьяка по указанному на изображении сечению (прямая линия)

Fig. 4. The X-ray radiation of centers in the As pyrite substructure. The mineral grain surface is imaged in reversely dispersed electrons. The curve shows the distribution of characteristic X-ray radiation of As over the cross-section (the straight line)

тых месторождениях карлинского типа, где он образуется в рудах совместно с марказитом при температуре 200–150°С (Cline, 2001). В целом же на рассматриваемом древнем (поздний рифей – средний палеозой) глубинном месторождении вхождение As в пириты ограничивается 2,5 мас.%. И поскольку между составами аsp и ру нет переходных промежуточных соотношений, то за пределами указанных содержаний As, вероятно, при его привносе в пирите начинает формироваться структура, которая при достижении стехиометрических соотношений образующих элементов сразу соответствует микровключению asp, далее разрастающемуся в отдельный метакристалл – вкрапленник, порфиробласт. Новообразование вкрапленников арсенопирита отчетливо проявлено среди обособлений пирита предшествующей рудной стадии (см. рис. 1).

С помощью электронно-зондового микроанализа замечено проявление аналога этой предшествующей почти неупорядоченной субструктуры в отдельных блоках сопутствующего мышьяковистого пирита. Изучение распределения характеристического рентгеновского излучения мышьяка позволило выделить мышьяковистые центры, расположенные в пиритовой матрице. На рис. 4 мышьяковистым центрам в Аs-содержащем пирите соответствуют пики на кривой распределения излучения. Очевидно, образование такой субструктуры соответствует состоянию саморазвивающейся ФС в точке бифуркации с возникновением стабильной структуры, обеспечивающей рост вкрапленных кристаллов **аsp**.

выводы

1. Мышьяковистый пирит с содержанием As до 6, а то и 10 мас.% широко распространен на золоторудных месторождениях, где эта фаза концентрирует золото наряду с арсенопиритом и обычным пиритом. В области As-содержащего твердого раствора в пирите возникают дианионные группы AsS. На месторождении Верный в формульном составе рудных мышьяковистых пиритов в зависимости от содержания As выделяется группа с замещенной серой (при среднем As 0,443 мас.%, $\sigma = \pm 0,201$) As-py₁ и группа, в которой мышьяк замещает серу и железо (при среднем As 1,545 мас.%, $\sigma = \pm 0,531$) As-py₂. Группа As-py₂ связана с участками кристаллов py, содержащими повышенные концентрации As.

2. Согласованы термодинамические функции твердых фаз системы $Fe - As - S - Cl - Na - H_2O$, включая As-py и частицы в водном растворе.

3. В наиболее распространенном на рудных месторождениях слабокислотном – близнейтральном продуктивном интервале устойчив мономинеральный **asp** до 200°С, сменяющийся при понижении температуры парагенезисом **py** + **py**₁₋₃.

4. При вступлении раствора, насыщенного по отношению к **asp** при 300°С, в пиритовую матрицу в мономинеральном поле пирита не образуются дополнительные фазы при снижении температуры от 175–200°С. Ниже 200°С в близнейтральном интервале устойчива ассоциация **py** и железозамещенного **As-py**₁.

5. Между составами **asp** и **py** нет переходных промежуточных соотношений, и с привносом As в пирите возможно формирование структур, которые при достижении стехиометрических соотношений образующих элементов дают микровключения **asp**, соответствующие прохождению системой точки бифуркации. Далее развиваются отдельные метакристаллы – вкрапленники **asp**.

ЛИТЕРАТУРА

Авченко О. В., Чудненко К. В., Александров И. А. Основы физико-химического моделирования минеральных систем. – М. : Наука, 2009. – 229 с.

Вилор Н. В., Казьмин Л. А. Применение физикохимического моделирования при исследовании сульфоарсенидных комплексов в гидротермальных растворах // Геология и геофизика. – 2007. – Т. 48, № 6. – С. 589–603.

Вилор Н. В., Кажарская М. Г., Бычинский В. А. и др. Геохимические корреляции и динамика соотношений «раствор – порода» в рудоносных флюидных системах // Геохимия. – 2003. – № 12. – С. 1305–1317.

Вилор Н. В., Кажарская М. Г., Чупарина Е. В. и др. Распределение концентраций золота в месторождениях Бодайбинского рудного района // Руды и металлы. – 2007. – № 1. – С. 34–43.

Гаврилов А. М., Кряжев С. Г. Минералого-геохимические особенности руд месторождения Сухой Лог // Разведка и охрана недр. – 2008. – № 8. – С. 3–16.

Горячев Н. А., Викентьева О. В., Бортников Н. С. и др. Наталкинское месторождение мирового класса: распределение РЗЭ, флюидные включения, стабильные изотопы кислорода, условия формирования руд (Северо-Восток России) // Геология рудных месторождений. – 2008. – Т. 50, № 5. – С. 414–444.

Дорогокупец П. И., Карпов И. К., Лашкевич В. В. и др. Изобарно-изотермические потенциалы минералов и компонентов водного раствора в программном комплексе «Селектор» // Физико-химические модели в геохимии. – Новосибирск : СО «Наука», 1988. – С. 124– 147.

Казьмин Л. А., Халиуллина О. А., Карпов И. К. Расчет химических равновесий поликомпонентных гетерогенных систем методом минимизации свободной энергии// Информ. бюл. Алгоритмы и программы. ВНТИЦ. – 1975. – № 3.

Канакин С. В., Карманов Н. С. Архитектура и основные возможности программного комплекса MARshell-32 : тез. докл. V Рос. конф. по рентгеноспектральному анализу. – Иркутск, 2006. – С. 48.

Карпов И. К. Физико-химическое моделирование на ЭВМ в геохимии. – Новосибирск : Наука, 1981. – С. 172.

Кларк Л. Фазовые отношения в системе Fe – As – S // Проблемы эндогенных месторождений. – М. : Мир, 1966. – Вып. 3. – С. 160–250.

Колонин Г. Р., Пальянова Г. А. Арсенопиритсодержащие минеральные ассоциации как индикаторы физико-химических условий гидротермального рудообразования // Геохимия. – 1991. – № 10. – С. 1481–1491.

Колонин Г. Р., Пальянова Г. А., Широносова Г. П. Устойчивость и растворимость арсенопирита в гидротермальных растворах // Геохимия. – 1988. – № 6. – С. 843–856.

Конеев Р. И., Хамиатов Р. А., Мун Ю. С. и др. Нанохимический ряд золотых и золото-серебряных месторождений Узбекистана // Нанохимия золота : тр. симп. – Владивосток : Дальнаука, 2008. – С. 92–100.

Константинов М. М., Некрасов Е. М., Сидоров А. А., Стружков С. Ф. Золоторудные гиганты России и мира. – М.: Науч. мир, 2000. – 268 с.

Масалович А. М. Перенос вещества при отложении пирита в гидротермальных системах // Геология рудных месторождений. – 1975. – Т. 17, № 2. – С. 59–69.

Миронова Г. Д., Зотов А. В., Гулько Н. И. Экспериментальное определение растворимости аурипигмента в кислых растворах при 25–150°С // Геохимия. – 1983. – № 12. – С. 1762–1768.

Миронова Г. Д., Зотов А. В., Гулько Н. И. Экспериментальное исследование растворимости аурипигмента в сульфидных растворах при 25–150°С и устойчивость сульфидных комплексов мышьяка // Там же. – 1990. – № 5. – С. 691–703.

Пальянова Г. А. Физико-химические особенности поведения золота и серебра в процессах гидротермального рудообразования. – Новосибирск : Изд-во СО РАН, 2008. – С. 220. Пашинкин А. С., Муратова В. А., Антюхова А. М., Моисеев Н. В. Теплоемкость и термодинамические функции арсенопирита // Неорганические материалы. – 1989. – Т. 23, № 2. – С. 221–224.

Сафонов Ю. Г. Золоторудные и золотосодержащие месторождения мира – генезис и металлогенический потенциал// Геология рудных месторождений. – 2003. – Т. 45, № 4. – С. 305–320.

Тюкова Е. Э., Ворошин С. В. Состав и парагенезис арсенопирита в месторождениях и вмещающих породах Верхне-Колымского района (к интерпретации генезиса сульфидных ассоциаций). – Магадан : СВКНИИ ДВО РАН, 2007. – С. 107.

Химическая термодинамика в петрологии и геохимии. – Иркутск : Институт геохимии СО РАН, 1971. – 385 с.

Blanchard M., Alfredson M., Brodholt J. et al. Arsenic incorporation into FeS₂ pyrite and its influence on dissolution: ADFT study// Geochim. et Cosmochim. Acta. –2007. – Vol. 71, No. 3. – P. 624–630.

Bostick B. C., Fendorf S. Arsenite sorption on troilite (FeS) and pyrite (FeS_2) // Ibid. – 2003. – Vol. 67, No. 5. – P. 909–921.

Chudnenko K. V., Karpov I. K., Bychinskii V. A., Kulik D. A. Current status of the SELEKTOR softwarde package // Water-rock interaction / eds. Y. K. Kharaka, O. V. Chudaev : Proc. 8th Inter. Symp. on Water-Rock Interaction. A. A. Balkema. – Vladivostok, 1995. – P. 725–727.

Cline J. S. Timing of gold and arsenic sulfide mineral deposition at Getchell Carlin-type gold deposit, north-central Nevada // Econ. Geol. – 2001. – Vol. 96, No. 1. – P. 75–89.

Karpov I. K., Chudnenko K. V., Kulik D. A., Bychinskii V.A. The complex programming minimization of five thermodynamic potentials other, than Gibbs energy in geochemical modeling // Am. Journ. of Sci. – 2002. – Vol. 302, No. 4. – P. 281–311.

Kretschmar U., Scott S. D. Phase relations involving arsenopyrite in the system Fe – As – S and their application // Canad. Mineral. – 1976. – Vol. 14. – P. 364–386.

Perfetti E., Pokrovski G. S., Ballerat-Busserolles K. et al. Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350° C and 300 bar and revised thermodynamic properties of As(OH)₃⁰(aq), AsO(OH)₃⁰(aq) and iron sulfarsenide minerals // Geochim. et Cosmochim. Acta. -2008. – Vol. 72, No. 3. – P. 713–731.

Pokrovski G. S., Kara S., Roux J. Stability and solubility of arsenopyrite in crustal fluids // Ibid. – 2002. – Vol. 66, No. 13. – P. 2361–2378.

Reich M., Becker V. First principles calculation of thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite // Chemical Geology. – 2006. – Vol. 225. – P. 278–290.

Shock E. L., Sassani L., Willes M., Sverjensky D. A. Inorganic species in geologic fluids: correlation among standard molal thermodynamic properties of aqueous hydroxide complexes // Geochim. et Cosmochim. Acta. – 1997. – Vol. 61, No. 5. – P. 907–950.

Simon G., Kesler S. E., Chryssoulis S. Geochemistry and texture of gold-bearing arsenian pyrite, Twin Creeks, Nevada: implication for deposition of gold in Carlin-type deposits // Econ. Geol. – 1999. – Vol. 94, No. 3. – P. 405–422.

Tremaine P. R., von Massov R., Shierman G. R. A calculation of Gibbs free energy for ferrous ions and the solubility of magnetite in H_2O and D_2O to $300^{\circ}C$ // Thermochim. Acta. – 1977. – Vol. 19, No. 3. – P. 287–300.

Yokokawa H. Tables of thermodynamic properties of inorganic compounds // J. National Chem. Labor. for Industry. – 1988. – Vol. 83, No. 11. – P. 27–121.

Поступила в редакцию 07.06.2010 г.

PHYSICOCHEMICAL MODELS OF ORE-FORMING PROCESSES ASSOCIATED WITH Fe-As-S-Na-Cl-H,O SULFOARSENIDE SYSTEM AT GOLD LODES

N. V. Vilor, L. A. Kazmin, L. A. Pavlova

The processes of Au quartz-sulfide mineralization of quartz-pyrite-arsenopyrite type are simulated in terms of a numerical physicochemical model underlain by calculated thermodynamic constants of solid mineral phases and soluble components of the Fe – As – S – Na – Cl – H_2O sulfoarsenide system. The thermodynamic functions of arsenic pyrite minerals are calculated using the analytical data available on ore-forming processes. Successively forming arsenopyrite parageneses are calculated for water and sulfide hydrothermal solutions at temperatures 100–300°C, pressure 300 bar and by the saturation line in conditions of a step-by-step evolution of arsenopyrite-saturated solution and its migration through the pyrite matrix. The stable arsenic pyrite areas are established.

Key words: arsenopyrite, As pyrite, hydrothermal solution, physicochemical modeling, mineralforming processes.