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COMPUTATIONAL SEISMOLOGY AND GEODYNAMICS VOL. 1

ON FEASIBILITY OF FREQUENCY RESOLUTION IN SPECTRAL ANALYSIS

G. M. Molchan
International Institute of Earthquake Prediction
Theory and Mathematical Geophysics, Russian Academy of Sciences

A model of a short signal is considered. It consists of two complex harmonics with unknown
amplitudes and frequencies Aw = O(T~7) apart plus a complex white noise, where T is a period
of observation. The upper bound 7* of exponents v, such that a spectral method resolves these
harmonics, is considered as a new measure of resolution capability for small samples. The knowledge
of v* allows to rank modern high resolution thechniques originally developed for geophysical data
proccesing. As a first step on this way, we find v** = supy", where supremum is taken over all
spectral methods. For a generic signal ¥** = 5/4. It reduces to 7/6 for harmonics with equal
powers. In other words, ¥* < 7/6 for spectral techniques, which are based on power spectrum
and thus lose initial harmonic phases. This results are closely related to the old harmonic analysis
problem that goes back to Lord Rayleigh. He defined, on the basis of nonoptimal Fourier method,
a frequency resoltion condition in the absence of noise by relation: |w; — wa| > 27T, However,
the frequency resolution condition, even in the presence of noice, takes the form |w; — wo| > T,
The likelihood of the signal in hand does not posess the property of local asimptotic normality for
all ¥ < 9™, therefore our results are not based on the general asymptotic theory of Le Cam-Hajek-

Ibragimov-Khas’minsky.

1. INTRODUCTION

The 1970s launched a number of novel practical tech-
niques of harmonic analysis for use in geophysics. These
include Burg’s maximum entropy method, Pisarenko’s
harmonic decomposition technique, Capon’s ”maximum
likelihood” spectral estimation, and extensions of these,
both parametric and nonparametric (see the review in
Kay and Marple 1981). The new techniques aimed at en-
hancing frequency resolution for short samples and, for
that reason, have come to be known as techniques of
high-frequency resolution. The necessity arose to make
quantitative evaluations and comparisons of the solutions
obtained by those methods.

The techniques were mostly analyzed and compared
using an empirical computer approach. Although real
signals vary quite widely, the simple model of hidden pe-
riodicities is meaningful enough for the purposes of com-
parison:

z(n) = s(n) + cw(n), 0<n<N

(1.1)

where s(n) = ay exp(iw;n) + a_ exp(iw_n) is a signal
involving the unknown parameters ay, wy and o;w is
a complex-valued Gaussian white noise: Fw(n) = 0,
Ew(n)w(m) = 6.

V.F.Pisarenko suggested formalization of observed
short or moderately long time series by setting up model
(1.1) involving convergent frequencies, the peak frequen-
cies w4 varying as N — oo according to
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wt =wgxhgN77, ¥>0, hg #0 (12)

where (wo, hg) are new frequency parameters and 7 is
a known parameter controlling the closeness of the fre-
quencies relative to sample size N. The upper bound
¥* = sup < over those v that make frequency resolution
possible (see below) is a quantitative parameter of reso-
lution capability at the fixed parameter point (wg, ho);
the quantity v¢ = infg ¥*(wo, ho) can perform the same
function for a parameter set G. In particular, the method
of harmonic decomposition (MHD) resolves any pair of
close frequencies if NY/®|wy —w_| > 1, ie., yiup = 1/6
[Molchan and Newman, 1988].

This work (see a short version [Molchan, 1990]) exam-
ines the utmost resolution capability of harmonic analy-
sis for (1.1), (1.2), i.e., it finds the upper bound v** =
supv*(u) over all methods u for the entire parametric
set of frequencies. We shall show that the value v** is
attained at the method of least squares (MLS) and shall
obtain 7y ¢ as a function of restrictions on the ampli-
tudes.

Historical remarks. Walker [Walker, 1971] has stud-
led the properties of MLS estimators for amplitudes and
frequencies in the general problem of hidden periodici-
ties, that is, in a situation where the signal s is a sum of a
known number m of unknown complex-valued harmonics
with frequencies {w¢}, when N — oo and |w; —wj| > C.
Recall that the MLS estimators are then found from

2

Z z(n) — Z agexpiwgn| =

0<n<N 1<k<m

(1.3)

min
{ak.“‘k}
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The resulting frequency estimators are consistent, which
is equivalent to resolvability, asymptotically normal and
independent. Their standard deviations are

omLs(wi) = colag| "I N—3/2 (1.4)

The MLS is optimal when the frequencies are fixed
[Ibragimov and Khas’minskiy, 1981]. On the other hand,
when the frequencies are converging, the order of decay
for (1.4) cannot be made higher, hence the optimality of
MLS in this situation (see [Ibragimov and Khas’minskiy,
1981]) yields the simplest necessary resolution condition
lwi —w;j| > N=3/2 or the estimate y™* < 3/2.

The unconventional exponent in (1.4) that controls the
decay of o(wy) as N tends to infinity seems to insure
frequency resolution in a more general case in which
0 <y <1and N77|w; —wj| > C (the relevant result is
stated without proof by Pisarenko et al. [1976].

This paper examines the case of two complex-valued
harmonics with 4 > 1 (the case of short data sam-
ples in the accepted terminology). V. F. Pisarenko [Pis-
arenko et al., 1976] and V. M. Gertsik (1983, unpublished
manuscript, available at the Institute of Physics of the
Earth, Acad. Sci. USSR) studied MLS estimators in
a similar problem where the continuous-time real-valued
part of (1.1) and (1.2) is observed and 7 > 1. Their result
can be used to obtain nontrivial estimates of v** in the
real-valued version of (1.1), (1.2):

7/6 < v** <5/4, if w#0, Im(aya_)#0 (Gertsik)
(1.5)

1<y < 7/6, if w#0, Im(a+(_1_) =i (Pisarenko)
(1.6)

To be more specific, they have found the upper bounds
for such vy for which the relevant inverse Fisher matrix
converges to zero. The bounds are given in (1.5), (1.6)
as upper bound estimates of y**.

Derivation of a lower bound for ¥** in (1.5) relies
on MLS estimators of frequency parameters under uni-
form local asymptotic normality (LAN) [Ibragimov and
Khas’minskiy, 1981]. The LAN property was proved by
Gertsik for v < 7/6 and Im(aya_) # 0, so he could
use the general theory of maximum likelihood [Ibragi-
mov and Khas’minskiy, 1981] to prove MLS resolution
and to establish a certain optimality (after Wolfowitz,
"see that paper for the terminology) for MLS estimation
of frequency parameters. It can be shown that the same
procedure leads to the estimate y** > 9/8 for the case
Im(aya-) = 0, i.e., we have v** € [9/8, 7/6], provided
w# 0 and Im(ajza_) =0.

The parameters {a+, o, w, h} are assumed to be apri-
ori bounded in the above studies of MLS estimation. In
our problem the parameter h = |wy — w_|N7/? is un-
usual. It is related to a "microscale” of interfrequency
intervals, so that the use of apriori bounds on A that
are uniform over N is not very convenient in applica-

tions. The above remark implies that determination of
v** should only rely on those spectral analysis methods
u that do not assume any uniform apriori bounds on h
in a sequence of experiments with increasing sample size.
This work uses direct methods for solving (1.1), (1.2)
to get exact equalities, ¥** = 5/4 for harmonics with un-
equal initial phases, and ¥** = 7/6 for the case of equal
phases. We do not assume uniform apriori bounds on h;
since we consider a complex-valued problem, the restric-
tion w # 0 for the central frequency is also eliminated.
Notation. ©® = ©’ x ©” is the parametric space where

O ={w,h: —r<w<m 0<h< oo}
o2 >0, ax € C1\{0}
a+ +a_ ?é 0} (17)

P(A | 6) is the probability of event A with respect to
process (1.1), (1.2) involving parameters 8; E€ is the
mathematical expectation of £, 0,(1) and O, (1) are stan-
dard symbols to denote small random variables that are
bounded in probability, i.e., P{|op(1)| > u} — 0, Yu >0
and O, (1) - o(1) = 0p(1) for any infinitely small quantity
o(1).

An inner product on a complex-valued vector space CV
is given by (z,y) = N1 > o<i<n Zi¥j- The linear opera-
tor A = {a;;} on CV is given by (Az); = N~! 2 @iz,

1/2
the norm of A in L? is |4, = (Zi,j |a,~,»|2) ¥

0" ={0? a4, a_ :

2. FREQUENCY RESOLUTION

A method is said to resolve peak frequencies {wy}, if
it leads to construction of such a sequence of frequency
estimates w; that @y — wy = op(minjz |we — wj|). In
terms of estimates @, il, for wg, ho, that means that for
any n > 0 we have

P{lo —wols > uN~", |h—ho| > u| 8} =0, N - o
- (2.1)

where | - |, is a metric on the circle S* = (-7, 7), ie.,
lwi —wa|s = min(|w; — ws|, 27 — |w; — wa|).

A resolution is said to be F-uniform over frequency, if
(2.1) holds uniformly over 8y for F' € ©.

The condition for frequency resolution is identified in
[Pisarenko et al., 1976] with consistent estimation of am-
plitude and frequency parameters. This is sufficient for
frequency location, if |wy —w_| > C and is not suffi-
cient under (1.2). In this latter case consistent estimators
&, h: &—w = 0,(N~7) do localize the central frequency
and provide a correct conclusion about its splitting, but
do not resolve the frequencies (with nonintersecting con-
fidence intervals and the confidence coefficient ey — 1,
however exactly the distance between these is known).

Replace (2.1) with a more convenient requirement.
Functional (1.3) is easily minimized with respect to am-
plitudes {ax}. The relevant values {a;} are uniquely de-
termined from the linear equations

Fuyo

HSE AR P At
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(z,e®)) = E ap(e®), ),

1<k<m

l1<p<m

where
z = {z(n)}, e® = {exp(iwpn)}, n=0,1,...,N =1

Elimination of {ax} from (1.3) yields a variational prin-
ciple for estimation of the frequencies

{wp}_argr{na.x Z (z, eM)][(e

2 1<i,;<m

, €7D 1)

(2.2)

This principle can be stated as follows: the set of har-
monics {e?} is sought having the maximum projection
of the signal z onto the subspace L4 spanned by the
harmonics with the frequencies 6’ = {wp}.

Let Py be the projection on Lg: in CN and let Py = Pg(l)
be the projection on the space S of the true harmonics.
Then the MLS estimates for wg, hg are given by

{@, h}_arg ma.x ||Pg::z:]| (2.3)

where the maximum is taken over all w € (=7, 7) and
h € [0, m/2 x NY]. We also have 2hN~7 < =, because
this quantity is the interfrequency distance on S'. MLS
estimators will be labeled ”modified” and the method is
called MLS («) if the extremum in (2.3) is taken over h
from the interval [0, N¢], 0 < a < 7.

It is easy to see that MLS(«) provided frequency res-
olution, if for any u > 0

P {Gm%n)(HPorH? —|Pz|?) <0 00} ~0, N— oo
(2.4)

where

Ou(a)={w ,h:
|h——h0|2u,w6(—

Iw - wOI‘ Z U'N_7)
7, 7], h € [0, N°]}

A similar reduction in the proof of consistency is used
in the general theory of maximum likelihood estimation
[Ibragimov and Khas’minskiy, 1981].

3. SUFFICIENT RESOLUTION
CONDITIONS FOR MLS ()

Let F be a compact set from the parametric set ©.

Theorem 1: In (1.1), (1.2), MLS(a) provides F-
uniform frequency resolution under the following restric-
tions:

1I)FcoOn{l  :Im(aa-) #0}, 1 <y < 5/4 and
0 < a < (y—1)/3 for harmonics with unequal initial
phases;

2) FCcONn{f :Im(aya-) =0}, 1 <y < 7/6 and
0 < a < (y—1)/4 for harmonics with equal initial phases.

Outline of proof: It suffices to show that (2.4) holds
uniformly in 6 = (wo, ho, 6”) from F. For this reason we

must examine the random function

| Poz|[? = | Porzll® = [|s37|* + 20Re(s3, W)
+0’2(W, (P() - Pg/)W) (31)
where s; = s — Pys is the component of s orthogonal to

the Ly plane spanned by

* = {exp(i(w+ A)n), n=0,1,...,N
—T<w<mT 0<AL /2

_1}

A=hN~" (3.2)
We are to show that
|Poz||?> = | Porz|® = |sgll*(1 + 0p(1)), N — o0 (3.3)

for ' € Ou(e). The estimate ||sj|| > C(N, u) > 0 on
Ou(a) (see Section 4 below) yields (2.4), hence the state-
ment of the theorem. The proof of (3.3) is independent
of any restrictions on «; these emerge as purely technical
ones in the analysis of the deterministic function ||sg ||.
Lemma 3.1: Let Py be the projection operator in CN
onto the plane spanned by (3.2). Then for any § > 1

||Po: — P || < CNP(Jwy — walu + |A1 = Asl.)
A,‘_: h,‘N_’y < 71'/2

Proof: ~ The projection operator onto the sub-
space spanned by {e(P)} has the form Pz =

Zl(p 2 (B e(P))ane(q)
[(e(’;), e?q))] . In particular, we have for vector (3.2),

the matrix being [aP?] =

Py = [Py iy B)]

= [Pa,m(0, h)expiw(n — m)]n m=0, N—1, (3.4)
where
Pam(0, h) =2[cos(t, — tm)8 — N (8) cos(tn + tm)8]
x[1 =X (@) (3.5)
th=[n—(N=1)/2JN"}, § = NA=N'""h
1/2
eN(6) =siné/[Nsiné/N] = / cos 26tdun(t) (3.6)
=173

The measure ppy is concentrated at the points t, with
weights 1/N, [ un(dt) = 1.
The operator Py is a smooth function of w, h. There-

fore

1Po; = Pay)| < kot = wal. sup [|9.Par /6]
+1A1 = Aql. sup 9Py /04

From (3.4) we get

(3.7)

18P5:/0w]| = [[i(n = m) Pam(w, W)]| < N||Porll2 = VAN
(3.8)

where d = 2 is the dimension of Lg.
Let us evaluate
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|0Pp,m/0A] = 2N| —t"sint™ 6+t sintt6 - pn(6)
—(dpn(8)/d6) costté + P, (0, A)pn(8)dpn(6)/ds|
x(1-px(6)" (3.9)
where t* = t, £ t,, Jt¥] < 1.
Let A € I = (N~(1+¢) 7/2). From the integral rep-

resentation of ¢y (6) in (3.6) we derive |pn(6)] < 1 and
|den(6)/d6| < 1. For this reason

|0Pam/OA] < 2N(3+ |Pam|)(1 = ¢4 (6))" (3.10)

To evaluate 1 — p%(8), we note that for any |z| < 7/2

len(8)| < len(2)|, |6] >z, 6] < 7N/2 (3.11)
and also (see 3.6)
on(6) =1-6%/6+0(5*), 6§—0 (3.12)

Hence for NA =6 € (N~¢, ©N/2)
1- % (8) > 1—%(N™5)>02N"%*, N >N, (3.13)

Inequality (3.10) can consequently be continued:

|0Pn,m/0A| < CN*2(1 4 |P, u|), and so
168 /0A||2 < 2CN'" T2 (1 4 ||Py||2) = Cy N F2
Ael (3.14)
Evaluation of (3.9) for small AN = § € (0, N~¢) will be
based on (3.12), as well as on
tsintd = t26 + O(6°), costd =1 — (t6)2/2+ O(6%)
don (6)/d6 = —6/3 + o(8°)

and (see below) P, n(0,h) = 1+ 12tnt,, + O(62), 6 =
AN1=7. This yields

0Pnm(0, h)/8A = O(N'~¢), ||0P/dA|, < CN'~¢

0< A< N0+ (3.15)
Combining the above estimates (3.7), (3.8), (3.14), (3.15)
and recalling that || - || < || - |2, we obtain the desired

lemma.
Lemma 3.2: Let 6y, 6' C (—m, 7] x (0, 7N7/2], then
foranye >0
P{sup |(w, (Py — Pp:)w)| >N~ |6y} — 0, z — o0
(3.16)

uniformly over 6 and N.

Proof: We use the following statement, which follows
from theorem in [Ibragimov and Khas’minskiy, 1981, Sec-
tion 1.19]: Let £(f), § € K C R? be a real-valued con-
tinuous random function in a unit square and let

EEO)™ < A, El€(61) —€(62)™ < Aloy — 6,
for some m > 3. In that case

Esup [¢(0)] < CoAY™
e K

Apply the theorem to the function

£N(w7A) = N(w) (PO - PG’)w); le S ™,

A=hN"7€(0,7/2)  (3.17)

To calculate its moments, we remark that the
quadratic form (3.17) is related to the self-adjoint opera-
tor Py — Py and hence it can be converted to the canon-
ical form En(w, A) = 3 cicaa Mileil?, 0 < |X| < 1 by
a unitary transformation. The number of nonzero eigen-
values of Py — Py is not greater than the sum of the
dimensions of Lq and Ly, i.e., 2d < 4. White noise is in-
variant under unitary transformations, hence the ¢; are
independent complex-valued Gaussian random variables
with parameters (0, 1). It follows that

EnG)™ <[|Po— Porl|"E(ler|* + ... + [e[)™
=||Po — Ps||"am < am

where ||Py — Pg#|| < 1 has been used.
In view of the preceding discussion, the representation

En(01) — En(65) = N(w, (Pos — Py )w) yields for m > 3
EIAN|™ < am||APy||™ < am||AP|I?

Proceeding further, we get by lemma 1
< CamNaﬁ(]wl — wzl, + IAI - Agl‘)s

It remains to use the above theorem with A =
N3a,(C +1). Ultimately we derive

Esup [en(6)] < CN3/m (3.18)
w,h

Since m is arbitrary, the exponent 3a/m can be made
indefinitely small. Using (3.18) and Chebyshev’s inequal-

"ity, we obtain lemma 3.2.

Lemma 3.3: Let 0 < a < v, then for any (e,¢',u) > 0

«(a

P{ sup |(szi, w)l|/||s7]]
O.(a)

N Nc'—l/ZHSHe
inf{|sgc : 0’ € Oy (a)}

66} —0, z > o0
(3.19)

uniformly over N and §j(—=, 7] x (0, 7N7/2).
Proof: The function

v (w, A)=(s5i, w)/\/El(sg:, w)|*
= (s, wVNI(sElI?, A=hN"Y
is Gaussian with mean 0 and variance 1. Evaluate its
maximum on Oy («) by using Fernique’s result [Fernique,
1975, Theorem 4.1.1]. It is convenient for our purposes

to restate it as follows: Let n(t), ¢ € R? be a centered
Gaussian function in the rectangle T = {|t;| < L;}. If

sup  Eln(t1) — n(t2)|* < (A&%)%, Eln(t)]* =1
[ti—ta]<6

then
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P{sup|n(t)| > z(1 + cAL"g—l/?)}
T

st cl/ exp(—u?/2)du, z > z¢ (3.20)

where L = max L;.

Now evaluate ¢? = Elpn(w, A) — ny(w’, A')|? for
{w, W'} C (=7, 7]; A, A’ € (0, 7/2). For the sake of
simplicity we assume the notation § to be the same for
(w, h) and (w, A), setting A = AN~Y. Let n = ||s7 ],
then
¥ =|lsg /n—sp/n|

<lls¢ — s ll/n + llsll x 11/n = 1/n)

<(lsg = sgll+ In=n'n~ < 2llsg = szll/lls7

However, we have
llsg = sl = 1(Ps = Por)s|| < ||Ps — Por|
<llsll-1Ps = Porll¥, 0<pp <1
That inequality can be continued by using Lemma 3.1:
< cllsli(n?8)*, o -l + A= AL <5, B> 1
Therefore
¥ < 2lls|(N?6) /rua, nua =in{llsill, & €Ou())

On the other hand, ¥ < 2. We raise both estimates to
the powers of € and 1 — ¢ and multiply them to get

¥ < 2clls)T(NFE)#/nf o = ANST, E=en (321)

The set Oy () is divided into four rectangles T;. For each
of these we get, by (3.20) and (3.21),

P{sup I (6)] > ze(e, p)|ls||F N /nf o} < (2)

where €' = fep; p(z) — 0 when z — co. Hence Lemma
3, since

P{sup Inx(0)| 2 2} < ZP{sgp Inn (8)] > «}

Lemma 3.4: Suppose that 1 < y < 1+ 1/k, F is a
compact set from O, and

@ir}f)Hsj',Hz >cpNUE cp >0, u>0, 6p€ F x F”
(3.22)

Then (2.4) holds uniformly over F = F' x F".

Remark: The next section contains a proof of the apri-
oriestimate (3.22) with k = 4 for harmonics with unequal
initial phases and with k = 6 for the case of equal phases.
This will complete the proof of Theorem 1.

Proof: By

[1Poz||? = || Poc||? = Ils7[I*

i . (Po = Py
(14 2R CE D 4 g2 Lo L 200D
llsy I lls5 12

Use (3.16), (3.19) with ¢/ = €%/2 in (3.19) to get

| Pozl* ~ || Poz||* = Is7 ||

<(1+ 200, (sl Ve 02) 4 020,(VY)  (3.23)
where Vy = N'=¢inf(||s5|?, 6 € ©4(a)). The apri-
ori estimate (3.22) yields Viy > cp N(:+1=7k)=¢ o < ¢
Setting 2¢ = k + 1 — vk, we have Vy > cp N€.

The quantities o, |ay|, hence ||s||(||s|| < |ay| + |a—])
are bounded on the compact set F"| so that

”PO-I'“2 = “Pox”2 = |IséL”2<l + OP(N—E(1+E)/4))
2 cp N4 (14 05(1))

Therefore we have, uniformly over F,
P{ nt (1P = Pl < 0100 )

< P{ gnt (IPo@I? = 1Pwal?) < /260N 075 | o

4. NORM OF SIGNAL RESIDUAL

Preliminary remarks:

1) It follows from the structure of s (1.1) and of the
projection operator Py (3.4) that ||s3||? is a function of
W — Wo!

llsz 11> = lIsoll> = 1| Plw—wo, 1y50ll*s S0 = 5 lwo=o (4.1)

Consequently, one can set wg = 0 in what follows.

2) ||sz|| is not affected by the substitution s — zys
where |zx| = 1. Remembering the last remark, we shall
represent the signal in the form

s(t) = a4 exp(ibot) + a_ exp(—ibgt), 69 = N'=7hy,
(4.2)
where t takes on the values t, = [n — (N — 1)/2]/N in
the interval (—1/2, 1/2).
3) Expansion of (4.2) in the small parameter 6, leads
to the basic vectors t* = {t?, n =10, 1, ..., N — 1},
where p = 0, 1,.... Owing to the antisymmetry ¢, =

—tn—n, the vectors t? involving odd and even powers are
orthogonal, i.e.,

(7, t') = (t**')
_ /0, p+ 1 isodd
- [2P+’(p+ l+ 1)]-1 +O(N7Y), p+1 iseven
(4.3)
where (p) = [ ¢(t)dun(t), the measure py being defined
in (3.6).
4) Everywhere below 1 < y < 5/4, § = A- N =
hN1—7, bg=Ag-N = h0N1_7.
Statement 4.1: If
lws — wola > 27/N and
max{lay +a_|7", Jax|, ho} < f
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then
”59“2>Cj>0 N>Nf

Proof: 1t follows from (4.2) that s(n) = ay + a_ +
O(N'=7), hence

llsgll* = lag + a_ | x 115/l + O(N1=7)

where the remainder is uniform over ag, hg if

(lax|,ho) < f. The magnitude of the projection of
1=(1,...,1) on Ly is given by

el = 75 () + 2 (%)
—2FN(2)FN( 2) Fv(A)] /(1= FR(8)  (45)

where Fn(z) = ®nx(Nz) = sin Nz/(Nsinz) is Féjer’s
kernel. The function Fy(z) is of interest when |z| < 7/2,
since A < 7/2 and |wy]| < 27.

Now use the estimate

|Fn(y)] < Fn(2),

where zg > 0 is the least root of

(4.4)

y>z >0, |z|]<zo/N  (4.6)

Piies) = [Nsin gw/N]—l, =€ (n/2,7)

It then follows from (4.5) that
1e]? < 2F%(z.)(1 - F(z.)) ™!
z, = min(z, A, |w|/2)

The right-hand side of this inequality is less than 1 if
F(z.) < 0.5. We have Fny(z.) < 0.5 at z. = 1.9/N for
N > 15. Consequently, '

L6 =1 ||6]* > ¢
if {lazl, ho} < f, {lwzl/2, A} >1.9/N
Let A <1.9/N and |wx| < 27/N. From (4.5) we have

1o [1P(s/2) = Pl /2P
)

2
+FN( )FN( 2 )] 1+ Fn(A) (4.7)
Using the estimates
|Fn(ws/2)] < max |Nsinz|™! =
= [o=/2, wi/2) C [-7/2, 7/2)
and
|Fn(ws/2) = Fn(w-/2)| = [Fy(2)|A
= Na|cos Nz — Fy(z)cosz|-|Nsinz|™!
<NA(l+y)y, z€J
we derive
116]1” < [Ay*(1 +y)* +°]B (48)
where

(NA) (1= Fn(A))™ = maxp(4)

= max ()

|NA|<1 92

INIleaXI 21+ Fy(A)]™!

B =

The functions ¢ and ¥ are increasing in (0, 7/N).
To see this, use (3.5) to obtain

0.5
Frn(z/N) =/ s Qtaibun (Y, /,;,,(dt) =1
-0.5
whence
0.5
Fn(z/N) = —/ 2tsintzdun(t) <0, o<z<m
-0.5

so that ¥(A) is increasing in (0, 7/N).

Similarly
il—FN(x/N)_ifl—cos%xd ;
dr 4z T dz (22)2 m (1)

(t) (t9) ()
= =7 222) + 54(22)° - 51 6(22)° .
For 0 < £ < /15, the above alternating series consists
of monotone decreasing terms, hence involves negative
values:

g))!(zk —9> (S%S%Qk(u)?
k=2, 3. .. (4.9)
I S
(222) < ((*%)/(5%2)) - 4(k? = 1)(1 + 1/2k)
However,
2%k +2 b2 2k42 2k 2%
At >=4/_1/2z i < [ = (i

consequently, (4.9) is true, provided

(22)* < min16(k* = 1)(1+1/2k) = 4 x 15

It follows that 1/¢(A) is decreasing in (0, 7/N).
If A<19/N, then A =¢(1.9/N) and B = ¢(1.9/N).
When N > 1000, we have A < 3.6, B < 1.336, and

y = max(|Nsinz|™!, /N <z < 7/2) < 0.3183

To sum up, estimate (4.8) leads to the desired inequality
167 14/]]> < 0.982 < 1,N > 10%.

The lower bound on ||14/]|? and estimate (4.4) yield
Statement 4.1.

Remark: We shall assume h < N*, § = N'=7h = o(1)
in what follows. Then the analysis of |[sf|| can be re-
duced to the asymptotics with respect to the small pa-
rameters § and &.

Lemma 4.2: a) Let {|ax|, ho} < f. Then, uniformly
over hg
[IslI” = lat + a— | + 2Re(ata-)(~65/3!
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+64/5! — 85/7! + o( N(1-7)8)) (4.10)

b) The matriz elements of the projection operator Po,n)
have the asymptotics

Pam(0, B) = D up(tn,tm)(—6%)F/(2k)! + 651y
0<k<3

+N~2r, (4.11)

where |ri(n, m, 6)| < ¢ for 6 | 0 and N 1 oo; the
ug(z, y) are polynomials of the form

up =1+ 12zy
uy = 25[4z%y + 22 — 0.6zy — 1/12)

uy = S[4.82%y + 823y + 22 + 62%y°
—4.82%y — 222 + (66/175)zy + 1/15]

and S is a symmelrizing operation: Sf(z, y) =

[f(z, v) + f(y, z))/2.

Proof: a) Signal (4.2) is expanded into a uniformly
convergent series in 8g:

s(t) = (ar + (-

£>0

*a_)(i60t)* /k!

Vectors tP of opposite parities are orthogonal, hence

sl = lay +a- + Y dap ()65 /(20)!  (4.12)
p21 *
where
dip= 3 Chylas+(~D)Fa)(@y + (1)@ *a_ )ik ie=+
0<k<2p '

= (=1 (lay +a-[* = |ay — a_[2)2%"!

=2Re(asa_)(20)%

Using (4.3) we get (4.10) with the remainder O(63) +

O(63N~1). The first term is associated with truncation
of (4.12), the second with the asymptotics of (t%) .
If 1 <v<5/4, then N-1 = 0(54) which completes
the proof of (4.10). c) The expansion p, (0, k) in 6§ =
hN'=7 can be derived directly from (3.5). To do this, the
numerator and the denominator of (3.5) are expanded
into series up to the order O(8°) inclusive. The functions
cos(t, £ty )6 and <I>N(5) are even, which simplifies the
matter. The expansions for cost§ are easxly derived from
the relation

®n(8) =siné - [Nsiné/N]~! =sinb/s- (1 + O(62/N?))

where the remainder term is uniform over h < f. Hence

1- @12\/(6) = %(COS 26 -1+ 262)/62 4 0(52N_2)

= 2((26)?/4! — (26)* /6! + (26)° /8! + O(62N~?)

%52[1 — O} (8] =1+ (2/15)6% + (13/(15)% x 7)6*
+0(6)® + O(N™?)

It remains to multiply and add the expansions. The re-
sults of these elementary operations are summarized in
(4.11).

Statement 4.3: Let0 < h < NY—o1,

2N™# < |Jw — wo|N < 2v14

1< <y,

where

0 <4p < min(y — 1.2(a; — 1))
and {lag|, ho, lay +a_|7'} < f

Then ||sg||> > eN1-7.

Remark: From Statement 4.1 it follows that HsL”2
is uniformly separated from zero in the region given
by |w — wo|N > 2v/14 and 0 < h < 12N7L | if
{lazl, ho, lay +a_|"'} < f.

Proof: According to Lemma 4.2,

1o/l = I(L, €0)? +12[(1, 2e.)|? + O(6?)

+O(N™?) (4.13)
where e, = {exp(iwNt,), n=0,...,N — 1}. We have
2 _ |sin(Nw/2) 2 _|sin ) : _2
.
2
. 2
(1, te0)]? = d SIH(Nw/Q)
dw N sin(w/2)
d sin A _2
d A J =R
Relations (4.4) and (4.13) yield
Is#1? = lay +a-%p(0) + O(NI"7) + 0(5%)  (414)
where p(A) = 1 - VZ()) = 3(V'(X))2, V(X) = (sin A)/A,
A =wN/2. The function ¢(}) is increasing in (0, v/14).
The proof is as follows. We have ¢(0) = 0, and

o(v/14) ~ 0.88. Stationary points satisfy the equation
VI(V+3V") =0.
The case V' = 0 yields the sequence of A, specified by
tan A, = A,. The first positive root is A > /14 ~ 1.19.
The case V 4 3V" = 0 results in the equation u(\) =0
where

u(A)=A"'sin A x (1= A%/3) — cos A
-1

(=A%)
32(2L—1)'2k+1

If A% < 2(k—1)(2k+3), k > 2, the alternating series u(A)
involves decreasing terms, i.e., u(A) > 0 for 0 < A% < 14.
Hence ¢(}) has no stationary points in (0, V/14).

In the vicinity of zero p(A) = A*/45 + O()\8), A — 0,
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so (4.14) yields
53112 > lay +a_|*N =% /45 + O(N'=7) 4+ O(N2(1=a1))

If lay +a-| > f~}, 4p < min(y — 1, 2(ay = 1)), then
llsg II> > cN =4,

Statement {.4: Let 0 < h < N7™®1 1 < a; < 7,
up(N)N™ < |w — wo| < o(N7Y), where p(N) 1 .
Then

s3Il > eN* =20 N > Ny(f, o)

uniformly over ax, ho : {|ax|, ho, lag +a_|"'} < f.
Proof: According to Lemma 4.2,

361> = UR (w) — 67U (w) + O(6%) + O(N~?)
Here

UR = (s, ew)l? + 12|(s, teu)]? (4.15)

Un = Re[4(t%u, $)(s, tew) + (t%e, s)(s, ew)]
—(3/5) I(tew, 5)I” = (1/12)[(s, e.)I*  (4.16)

The quantities (t*e,, s) can be represented in the form
of a uniformly convergent series:

(tew, s) = D> (ap(wN = 8)P +a_(wN + &)P)
p+k’=Z:uen 3
tptk
< #) (4.17)

p!

Therefore it is possible to calculate U} and evaluate U}
explicitly. The use of (4.10) yields

sl = UR () = (%) - (2)%)
x|ays(WN = 60)? +a_(wN + 6%
+O((wN)%) (4.18)

In virtue of (4.17),

(ttey,s) = {(6+ +a@_(t*) + O((wN)?), k even
- O(wN), k odd

Therefore
Uy = lay +a_|2((¢?) — 1/12) + O((wN)?)
= las +a-[’N"2 4 O((wN)?) = O((wN)?)
'Ihen we have

sz 1I* = lIsll* = UX + O((6wN)?) + O(6*) + O(N~2)
= (1/6!'+ O(N~'))|ay(wN = 6p)2 + a_(wN + &)
+RNn
= lay +a-[P(wN)*(1 4+ o(1)) + RY

By assumption, [wN| > 6, [wN|> N2 so that
Ry = O((6wN)?) + O(6*) + O(N~2) = o((wN)*?)

and

Isg|I? > c(wN)* > N4 =20 N 5 N,

Statement 4.5: Let h < N7=1 and |w — wy| < N=o3,
where 1 < ¢(y) < ag < a; <. Then

1
lls3:lI? = gﬂLz — Lo8*|?

o( N =) ¢(y) = (1+27)/3 (4.19a)
+ 9 ©(w,8,60)/8" + o(N(1 — 7)6)
e(y) = (1+37)/4, (4.19b)

where
¢=04|L3 - L 6*
—gRe[(3L4 — TLy6% 4+ 4Lg6*) (L — Lo6?)]
and

Ly =ay(wN = 68)” +a_(wN +§)? (4.20)

The remainder terms are uniform over ax, ho, namely,
{laz|,ho} < f. If, in addition, |ay +a_|"! < f,
ho > ¢, [h=ho| > u, |w—wo| > uN~7, then for N > N,

N4 =) Im(ara-)| > e
lls# |I* > const { N®U=7), Im(aya_) =0,
laya_| > ¢

(4.21a)

(4.21b)

Proof:
1. The derivation of (4.19) is mainly given by (4.10),
(4.11), (4.17):

s> = lay +a_ "

+2Re(aya_) Y (=63)%/(2k +1)! + O(63)

1<k<3
= D (5 Us)(=6%)/(26)! + O(8%) + O(N~?)
1<k<3
where
(s, Ups) = Z (tPey, s)(s, t’ew).v;(,}fl)
0<p+I<2k+2

p+1l=-even (4.22)

and the matrices [vék,)] are real-valued and symmetric,

v}(,ﬁ) = v,(;) (because the projection operator Plo,n) 1s self-
adjoint and real-valued, see (4.11), (4.15), (4.16));

3 L)/l + O((wN) ™)

0<n<6
p+n=ecven

_J1 p+n even
€= 0 p+n odd

(tPen,; 8)=

(4.23)

the L, being defined by (4.20).
Expansions (4.23) are multiplied in (4.22) for expo-
nents p, ! of the same parity. Therefore,

(s, Ugs) = Z L,,Emc,(,’f,),, + O((wn)®), n+ m even
0<n+m<6
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The remainder terms O(8%) and O((wN®) are of order
o(NU=78) when 1 + 3y < 4a,. Similarly, O(6°%) and
O((wN)®) are of order o( N(!=7)4) when 1 + 2y < 3as.
The latter case is necessary to derive (4.19a). Lastly,
O(N~2) = o(N(1=7)3) when v < 5/4.

Thus, some terms in (4.22) can be omitted when de-
riving (4.19):

8% (s, Urs) = 6% > LnLmclf), + o(N1-7))
A

(4.24)

where A = {n, m:0<n+m<6—2k, n+m=even}.
Matrices [v}(,}’c,)] are found from (4.11) in explicit form for
k =0, 1, 2. The case k = 3 involves cumbersome cal-
culations, but these can easily be avoided. From (4.24)
it follows that the contribution from (4.24) with £ = 3
is given by the term 6% x |Lo|? x c{*) where the constant
alone is unknown. '

The above algorithm yields a polynomial P(wN, §, éo)
of degree 6 to fit ||sy||?, the accuracy of this approxima-
tion being O(N(!~7)8) when a; = @3 = . Since||s#||* =
0 for w =0, 6 = by, it follows that P(0, o, 6p) =0 is an

. . 3)
equation 1n cg 3.

Note another simplifying circumstance. The moments
(t*) in (4.23) are given by (4.3) to within O(N~!) or
o(N(=74) if ¥ < 5/4. Hence approximate values of the
moments can be used to calculate (s,Uz, s). In fact, this
statement is true for (s, U;s), 1 =0, 1.

The results are summarized in (4.19). The next step
is to derive (4.21).

<2. The principal term in (4.19a) can be represented in
the form

o =|La — L052|2 =|Ayz - A—ylz, Ay =ay +a_

where £ = wN 4+ 62 — 6%, y = 2(wN)&o. If Im(aya_) # 0,
then pg = 0 at the single real-valued point w = 0, § = é;.
Contours of ¢q as functions of z,y are ellipses. For this
reason, when |y| > yo,

o > min Az — A_yo|* = vs|2Im(aya-)?/|ay +a-|?

However, yg = 2uho N2(1=7), Therefore,
|Ly — Lo6%| > eNA-7)
for {ho, |Im(asa-)|, las +a-|} >¢
which proves (4.21a).
Let Im(aya-) = 0. Rewrite (4.19b) using the notation
Bk = Lk == Lk_2523
15- 8! ||s5||? = 15 - 56| By|* + 6|B3|* — 30Re B4 B,
+40|B2|26% 4 o( N(1~7)5)
=15-41|Ba|? + 6|B3|? 4 |156B; — By|?
+40(b2|26% + o( N(1=)6)

Hence

llsg:11? > C(1Bsl* + 1Bsl*) + o(N(1=7%)

If |B2] < ¢y N =73 then ||sg||? > caN=76 N > N,.
Let |Ba| < c; N(=7)3 We have

|Bs| = |(wN = do(ay —a-)/(a4 +a-))B2
+8Nwé2a_a, [(ay +a )
> [Nw|- |8h3lag! + aZ! |7t — ey NITV|N2E=7) _ ¢ by
x(ay —a-)/(at +a_ )| N4

It follows that, when |ho| > ¢, |a3' +al'| < f, and
lw| > uN~7, the estimate | B3| > ¢cN(!=7)3 N > Nj and
so (4.21b) are true.

The following theorem summarizes the result of this
Section.

Theorem 2: Let

l1<y<5/4 and
max(lat], lay +a_|7, ho, hg') < f

Then the following estimate holds

Isg|I> > eNO=TX N > N

on the set {w, h: |w—wpl. > uNT~*1} with
k=4, if Im(aga_)| > ¢ and 1 + 2y < 3a; < 3y
k= 6, szm(a+&_) = 0, Ia+a._| > €
and 1 + 3y < 4oy < 47.
Remark: The result stated above is the last link in
the proof of Theorem 1 (see Lemma 3.4). To obtain the
formulation of Theorem 1, set a = v — a;.

5. NECESSARY CONDITIONS
FOR FREQUENCY RESOLUTION

These conditions in problem (1.1), (1.2) are derived
from an analysis of the inverse Fisher matrix. The anal-
ysis involves ideas from Gertsik’s algorithm. The algo-
rithm yields the principal asymptotic term in the inverse
Gram matrix when it is close to being degenerate. The
restrictions on < are deduced from the fact that only one
parameter, h, can be estimated consistently.

It is more convenient to use another signal parameter-
1zation 1n this section:

0= (0% Ay, A_,w,h)ER, xCxCxS'xR, =0

where Ay =ay ta_.

Theorem 3: Let G; € ©N {0 : Im(ALA_) # 0} and
Goe0ONn{f:Im(ArA_) = 0} be some open parameter
subsets in (1.1), (1.2). If h can be estimated consistently
for any 8 € G; in (1.1), (1.2) with vy > 1 then v < 5/4
fori=1 and=v < T/6 fori = 2.

Lemma 5.1: Assume that h is an estimate of h that is
consistent for 8 € Gy, Eg|h|? < oo and m(8) = Egh are
differentiable. Then the Rao-Cramer inequalily holds:

Eslh — h|? > |m(8) — h|2 + V' m(8)J5' (0)Vm(8) (5.1)
where V* = {A;} is the row-operator

V={V;}
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= (0/0Ay, 8/0A_, 8/0A,, 8/0A_, 8/0w, §/0h)

In(8) is the
(A+, A_, w, n):

JN(e) = U-2N[(V,'S, Vjs) —+ (V,’g, ng)]i,jzl,...,ﬁ (52)

Fisher matriz for the parameters

Proof: Inequality (5.1) states an obvious geometrical
fact: the element n = h — m(f) in the Hilbert space of
centered random variables with the norm || - || = E| - |2
has a greater norm than its projection on the hyperplane
spanned by

& =Vilnp(zy,...,zn]|, 8), E&=0
that is,

Enf® > En&[B&E] B
Here

Y le(n) - S(n)lz/az}

0<n<N

Pn(z16) = en () exp {

is the likelithood function. Hence

& = No~[(V;s, w) + (w, V;s)] (5.3)

In the region where m(6) is differentiable

E&i = Eo(Vipn) - ipy' = ViEei) = Vim(0)
The elements of Jy(0) = E&;€; are found from (5.3) and
from the fact that

El(a, w)|* = N~Y(a, a), E(a, w)(b, w)=0

for complex-valued white noise w.

Asymptotics of J3!(6). The case Im(aya_) # 0.
From (5.2) it follows that the analysis of the Fisher
matrix requires s to be fixed apart from the factor
zN, |zn| = 1. For this reason we represent s, as in Section
4, in the form

5(t) = (A4 cos 6t + iA_ sin 6t) exp(iwNt)
§=hN'"7

where ¢ takes on the values t, = (n — 1(N - 1))/N and
At =ay +a_. Hence V, is a column vector of the form

Vs = {eg cos 6t; ieqgsin 6t; 0; 0; i( Ay cos 6t
+iA_sinét)Ney;
(—Aysinét + iA_ cos§t)N ey}
where e, = (it)P exp(iw Nt).
For cos 6t and sin 6t we use expansions that are uniform
over h < H:

cosbt =1 —(6t)%/2 + O(6*), sinébt = 6t + 0(83)

In that case the elements Vs are decomposed into three
basic functions e = {eg(t), e1(t), ea(t)}, i.e.,

Vs = D;{ADje + O(6°)}

where
D = diag(1, 1, 1, 1, NYh™}, p71) (5.4)
D, = diag(1, 6, §?) (5.5)
[1 0000 o
A= 0 100 Ay A_
[-1/2 0 0 0 A A, ]
Similarly, Vs = D1{BD,& + O(6%)} where
(0o 1 00 o ]
B=100 0 1 Ay A_
00 -1/2 0 A_ A, |
Hence
o2J(8) = NDi1[AD,Gy Do A*
+BDQGNDZB' + RN]Dl (56)

where

GN = [(ek,er)]k,r=0,l,2 = [ik—r<tk+r>]

1 0 =2
=| 0 1/12 0

-1/12 0 (2*x 5)"!

+O(N7Y)

Ry = 53(AD2E1 + E] Dy A" + BD,E, + E; D,B™)
+0(6%)
Here E; is a 3 x 6 matrix with uniformly bounded ele-

ments.
/ Now we define the matrix block

D = diag(Ds, D;), Ty = diag(Gy, Gy)

— 4 _ | £

C=[A:B], E= [Ez]

In that case (5.6) can be written in a more compact
form

o?Jn(0) = ND,[CDTNDC™ + Ry]D,

where Ry = §°(CDE + E*DC*) + O(65).

All matrices here are square, 6 x 6. Of these, D and
I'n are evidently invertible. We now show that C is also
invertible, provided ImA; A_ # 0.

A circular permutation of rows (2.3) and columns
(2,3,5,4) in C converts it to a block triangular form:

10 31
Ci=|(01 0

0 a B

(5.7)

where

1ol (4, A4 Al A
I‘[o 1]’“‘[Af Af]’ﬂ‘[/h, A+J

and

e i 1ALk o R e s S e s 4k

et Smvedtiar e s
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C1=(2,3)x C x (2,3,5,4)

The factors in C) correspond to matrices that perform
circular permutations of columns according to the cycles
shown in parentheses. It is now easy to invert C:

C™'=(2,3,5,4) x C7' x (2,3) (5.8)
I §ta -

Cl=10 I 0 (5.9)
0 —f~ta p-!

where f~! is defined, if det # = 2ilm(A;A_) # 0. Set-
ting
p=gN 2D tg-1pt (5.10)
we have
eIN()¢" =Tn + (EC*™'D™! + D7IC1E)6% + 0(8?)
=T+ O(N1)+0(8), I'=Tq

The remainder term is uniform over the parameters, if

O<en<h< H
(5.11)

Im(ata-)| >¢€, |azx]|< ca,

Therefore

"l =T (I +o(1)) > To, N — oo
where

[o= [‘5?5}3 - 6{66‘;‘3]1',]‘:1,..‘,6, 8 =0;1

1

and A > B, if the matrix A — B is nonnegative definite.
Really, since

I~! = diag(G, G)

9 0 12 000

0 12 0 {>(000

12 0 180 001
we get

I3t > 0 Top = a2h D7 Y[(3,2) x U x (3,2)]D; ' N47=5
(5.13)

G (5.12)

where U is a block matrix involving 2 x 2 blocks: U =
[0, 87 e, =B~ x [0, B~'a, —B~1]. Hence J5' — 0,
pravided v < 5/4.

We now state the above result, which is of interest in
the study of limiting theorems for MLS estimators.

Statement 5.2: The inverse Fisher information matriz
JN'(0) for parameters (Ay, A_, w, h) in (1.1), (1.2)
with v > 1 and Im(aya_) # 0 can be factorized in the
form J5' = o*(T'~! 4 o(1))p where ¢ is given by (5.10),
(5.8), (5.9), (5.4), (5.5), and T~! = diag(G, G) is a
scalar matriz (for G see (5.12)). The remainder term is
uniform over parameters on compact sets from the inter-
section © N {f : Im(ALA_) # 0}.

We have J3' — 0, provided v < 5/4.
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Proof of Theorem 8 (Im(A,A_) # 0): Let v > 5/4
and suppose there is a consistent sequence of estimates
hy for the parameter h on some open subset G; C ©N{8 :
Im(ALA_) # 0}. Let G be a region with a compact
closure from G;. In that case h < H on G. Consider
a new sequence of estimates iz*N = min(hy,H). It is
uniformly bounded and consistent for § € G. Since the
likelihood pn(z | 8) is smooth over 6 and fz}'v is bounded,
it follows that Egh* = m(f) is a smooth function of 6,
and E|hy| < H?. Hence Lemma 5.1 yields inequality
(5.1). In view of the estimate (5.13), the Rao-Cramer
inequality (5.1) can be continued:

Eq = |h* = h|* > |m(0) — h[* + *[0"m(6)]U [0m(9))]
(5.14)

where ¢? = g?h™IN¥% > ¢4(G), v > 5/4 and the

operator

0=(3;2) x D' x V
=(8/8A,, 8/8A,, 8/0A_, 8/0A_,
hN~79/0w,hd/dh)
Let f be an eigenvector of the nonnegative definite ma-
trix U having a maximum eigenvalue A > 0. Let f =

(fo, fi, f2), where f; is of dimension 2. The equation
Uf = Af can be written out as follows:

fo=0,a*B lafi—a"B ' fo = \f;

—B lafi =B lf, =)\ f, (5.15)
where
" A_|? Re(A fi_)]

B = =9 I _ +

P [Re(A+A-> A4
From the condition A # 0 it follows that

‘ . _[44 A
a.f2+f1:0) a :[A: A_] (516)

In that case, however, the last of (5.15) yields an equation
n fz:

(I+A)f2=ABfy, |Ifoll=1 (5.17)
where
A=aa* =9 IA+12 Re(A+fi—)

Re(ALA_) |A_|?

A and B are two real-valued symmetric matrices which
are positive if Im(A;A_) # 0. Hence (5.17) has two so-
lutions, real-valued vectors with the eigenvalues A;, A,.
It is easily found from (5.17) that

1 1 z
M2 =1+ §(|A+|2 +]A_]2 + 5)(ImA+A_)'2 >1

so that A = max \; > 1. ,

If vector fo = (u, v) and Re(4;A_) # 0, then v =
v(Ay, A_) # 0. Otherwise the second scalar equation of
(5.17) would have given Re(A4 A_)(1—-X)u # 0. Actually,
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however, we have u # 0, since fo # 0 and 1-A # 0. Hence
U2Afxf">fxf (5.18)
Using (5.16),

F=(0; 0; —(Ayu+ A_v); —(Ayu+ A_v); u; v)
Il =1

where A u+ A_v and v are nonzero, if Im(A4A_) # 0
and Re(A;A_) # 0.

An eigenvalue A can be multiple only on the set
(Ay, Ay, A_, A_) with the codimension 1. For this
reason u and v are smooth functions of A+, A4 outside
of this set.

Using (5.18), one can continue (5.14)

By = [h* = h2 > [m(8) = hP? + colDm(6)
where D = f* x 0 is a differential operator of degree one

D=—-2Re(Ayu+ A_v)0/0A_
+uN~"h0 /0w + vh3/0h

Let 8o be an internal point in a generic parameter set,
ie., Re(A4A_) # 0, Im(ALA_) # 0, X has the multi-
plicity 1. In that case through that point passes the only
characteristic 8; of operator D for which 6, C G with
0 <t < 7. We have Dm(6,;) = dm(6,)/dt on the char-
acteristic. The fact that h* is consistent and bounded
yields Eglh* — h|?> — 0, N — oco. From (5.19) we also
get Dm(6;) — 0, m(6;) — h(t).

Estimates (5.19) and E|h* — h|? < 4H? show that
Dm(6,) is uniformly bounded over N,§. For this reason
the Lebesgue theorem yields

lim Dm(6;)dt = / limDm(6;)dt = 0
N—ed Jo 0

On the other hand, the above limit equals
lim[m(8,) — m(6y)] = h(7) — h(0) .

where h' = vh and v # 0. In other words, the limit is

h(0) [exp/or v(A4(0),A_(2))dt — 1]

and is different from zero with a suitable choice of 7 > 0.
The assumption v > 5/4 has thus led to a contradic-
tion.

* Case of equal phases, Im(A;A_) = 0. The analysis
is similar, so we shall only dwell on the points that differ
and omit details. The signal can be represented in the
form

s(t) = (A4 cos 6t + iA_ sin 6t) exp(iw Nt + i)

where ¢ = arg A4 is the common initial phase of the har-
monics, for definiteness specified as Ay = |a; +a_| > 0.
We are going to use the Rao-Cramer inequality similar to
(5.1) for the real-valued parameters 8, = (A4, A_, w, h)
(the subscript of 8 will be omitted below).

As above, we expand s in the small parameter § up to
the order 6% inclusive. We have

8s/88 = D;{CDe + 0(6*)}
in the basis e = (eo, €1, e2, e3/2) where now e, =
(it)? exp(iwNt + ip); here
D, =diag(1; 2/3; R™'N7; h71)
D =diag(1; §; 6%; 6°)

$EERAIT
032 0 1/2| _[I 41][I 0

0 AL A A4 0 al|lZ I

0 A_ A, A

We are using triangular block matrices involving 2 x 2
blocks:

_[A- A, _foo] ,_ 10
e ISl RS T

This makes C easier to invert:

o4 ]

The matrix C is invertible when det a = |A_|* = |A,|* =
—4a+&_ # 0
The Fisher matrix can be represented similarly to
(5.6):
o*Jy = 2ND,[CDTyDC™! + 6*Ry]D;

where Ry has a structure analogous to (5.6), while T'y =
[(t**Ycr&)k 1=o,... 3, where ¢y = iF for k < 3 and ¢; =
i¥/2 for k = 3. Since (t**') = 0 for odd values of k + I,
the matrix I'y is decomposable into a direct sum of 2 x 2
matrices, hence its determinant can be easily calculated:

det Ty = 3({t%) = () — (4?)
=3(20 x 10~ + O(N™1)
Similarly to the above, we get
Jyt=2"'N"1e?’DrlC’" D!
x[[~'+0o(1)]D7'C™'DfY, T'=Te
where the estimate is uniform over the parameters
O<ch<h< H; 0<e¢s<laz]|<Cq4

and 7! + 0(1) > ||66}]| when N — co. It follows that
Ty’ > %ﬁD;lf f*D7t x NT-67p6

where the vector f corresponds to row 4 in C~!, i.e.,

f=(0; -1; gfi+A'l; —gfi_A'l)

A =A% - A% =4a,a.

Similarly to the above, assuming that ¥ > 7/6 and that
there exists a consistent estimate for h € [ch, H], the
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other parameters belonging to the set
{o > 00, ca < |ax| < Ca,lay —a_| > ¢}

we arrive at a contradiction.

CONCLUSION

The main Theorems 1 and 3 reveal the utmost ca-
pabilities of harmonic analysis to resolve closely spaced
frequencies from ”short” samples. For a generic sig-
nal, two peak frequencies w; can be resolved provided
N5/%|w) — wa| > 1. The highest order of closeness for
the frequencies is considerably reduced (from 5/4 to 7/6)
for techniques based on power spectra. This is caused by
the loss of phase, which is typical of correlation methods
in practical use.

We have not dealt with the important problem con-
cerning the asymptotic distribution of the optimal fre-
quency estimators. Peculiar situations can arise here, as
can be seen from our analysis of the method of harmonic
decomposition [Molchan and Newman, 1988]. That ques-
tion is treated in the paper which follows.
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