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Metasomatic zoning : Appearance of ghost zones in the limit of pure advective mass transport 
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Abstract-The properties of mineral reaotion zones which propagate without changing shape are inves- 
tigated for a heretic ~~rn~~e~t system invoivi~g advective and di&t.sive transport in a porous 
medium. Given sufficient time the width of such zones, referred to as ghost zones, is constant and 
proportional to the characteristic diffusion or dispersion length of the system. The proportionality factor 
depends only on the equilibrium constants of the reacting minerals and on the composition of the inlet 
fluid. As the fluid velocity increases the width of the ghost zone decreases in the case of diffusive transport, 
and remains constant for dispersive transport for a dispersion coefficient proportional to the fluid velocity. 
This behavior is contrary to that of normal reaction zones which increase in width in proportion to the 
fluid velocity. For pure advective transport under conditions of local chemical ~ui~ib~um, a ghost zone 
has zero width. Nevertheless, minerals contained in the ghost zone buffer the downstream fluid composition 
in spite of their material absence, whence the term ghost. By taking into account transport by diffusion 
or dispersion, the width of a ghost zone has a finite, non-zero value with a well-defined modal composition. 
In a surface controlled representation of mineral reaction rates for pure advective transport, the width 
of the ghost zone is finite, but tends towards zero as the kinetic rate constant approaches infinity. 

LIST OF SYMBOLS Dirac delta function [cm-’ 1. 
similarity variable [dimensionless]. 
similarity variable for the kth reaction front [dimension- 

less]. 

designation for the jth primary species. 
designation for the ith aqueous complex. 
concentration of species A within the k + 1st reaction zone 

[mol L-i]. 
concentration of species B within the k + 1 st reaction zone 

[ mol L-i]. 
concentmtion of the ith reversibly reacting aqueous com- 

plex within the kth reaction zone [mot L-‘1. 
concentration of the jth primary species within the kth 

reaction zone [ mol L-l 1. 
concentration of the jth primary species evaluated from 

the left (k+) and right (-) of the kth reaction zone 
boundary [mot L-l]. 

inlet concentration of the jth species [ mol L-’ 1. 
initial concentration of the jth species [ mol L-’ 1. 
diffusion coefficient [ cm2 s-r]. 
reaction rate of the mth mineral within the kth reaction 

zone [ mol cm& y0I. s-i]. 
solute flux of thejth primary species within the kth reaction 

zone [ mol cm+ s-r]. 
~uilib~um constant co~ponding to the tih mineral 

[dimensionless]. 
differential operator [s-’ ], 
position of the kth reaction front [cm]. 
designation for the mth mineral. 
number of reacting minerals. 
number of primary species. 
concentration of the mth mineral in the kth reaction zone 

time coordinates [s] . 
Darcy fluid velocity [cm s-l]. 
molar volume of the mth mineral [ cm3 mol-’ 1. 
average fluid velocity [cm s-l]. 
velocity of the kth reaction front [cm s-l]. 
spatial coordinates [cm]. 
aqueous activity coefficients for the jth species. 
width of ghost zone in asymptotic limit [cm]. 
width of kth reaction zone [cm]. 
time step. 
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characteristic diffusion length [cm]. 
stoichiometric reaction matrix for reversibly reacting 

aqueous complexes. 
stoichiome~c reaction matrix for mineral reactions. 
time at which the downstream boundary ofthe kth reaction 

zone coincides with the observation point x [s]. 
porosity [dimensionless]. 
volume fraction of the mth mineral [dimensionless]. 
initial volume fraction of the mth mineral [dimensionless], 
concentration of conserved quantity [ mol L-’ 1. 
difference of solute #n~n~tions A and B fmol L-l]. 
generalized con~ntmtion of the jth primary species [ mol 

L-l]. 
generalized inlet concentration of the jth primary species 

[mol L-l]. 
generalized initial concentration of the jth primary species 

[mol L-l]. 
generalized flux of thejth primary species. 
d~ignating the jump in the enclosed quantity . . . across 

the kth reaction front. 
superscript to denote the upstream (+> and downstream 

(-) sides of the kth reaction front. 

INTRODUCTION 

THE APPLICATION OF MASS transport equations to describe 
quantitatively geochemieal systems involving advective and 
diffusive transport is a rapidly growing field of endeavor 
( LASAGA, 1984; WALSH et al., 1984; BALASHOV, 1985; 
LICHTNER, 1985; MERINO et al., 1986; SCHECHTER et al., 
1987; LICHTNER, 1988; NOVAK et al., 1989; STEEFEL and 
VAN CAPPELLEN, 1990; BALASHOV and LEBEDEVA, 1991; 
LICHTNER, t992a,b; LICHTNER and BHNO, 1992; LICHTNER 
and WABER, 1992). The transport equations are based on 
the simple, yet fundamental, principle of conservation of 
mass. However, many details of the actual physical system 
are neglected by averaging over a representative elemental 
volume (REV) of the porous medium. In this 
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formulation a real system is approximated by a set of inter- 
acting continua which represents, no doubt, a significant 
simplification of most natural systems. Therefore, when ap- 
plying these equations to a real system it is impo~nt to fully 
understand, from a general point of view, the basic properties 
of solutions to the governing mass transport equations. For 
example, it is now well established that one-dimensional, 
scalable solutions to kinetic mass transport equations depend 
only weakly, for su~cjentIy long time spans, on the choice 
of kinetic rate constants ( LICHTNER, 1988, 199 1, 1992a). 
The purpose of this paper is to explore yet another basic 
property of solutions to the one-dimensional transport equa- 
tions, that of the occurrence of so-called ghost zones, or min- 
eral alteration zones which propagate with constant width. 

Metasomatic zoning of a host rock resulting from infiltfa- 
tion of fluid in di~uilib~um with minerals contained in 
the rock is a commonly observed phenomena in many geo- 
chemical systems. According to the mass transport equations, 
the width of alteration zones generally increases with increas- 
ing time in proportion to the fluid velocity. Recently, how- 
ever, SCHECHTER et al. ( 1987) have pointed out the existence 
of solutions to the transport equations which describe reaction 
zones which propagate with constant width, rather than in- 
creasing in width as do normal zones. ln the present work 
these zones are called ghost zones ( BALASHOV and LICHTNER, 
I99 1). The term “ghost zone” is derived from the property 
that the width of such a zone vanishes in the mathematical 
limit of pure advective transport and for conditions of local 
equilibrium and yet, in spite of its material absence, minerals 
in the zone still buffer the downstream solution composition. 

The purpose of this work is to investigate the properties 
of ghost zones for a simple two-component system with 
transport by advection and diffusion in a homogeneous po- 
rous medium. KORZHINSKII ( 1970) was perhaps the first to 
recognize that for pure advection certain zones must disap- 
pear that normally would be expected to occur in the sequence 
of reaction zones. He pointed out that by including diffusion 
all possible zones appear, but he did not recognize the exis- 
tence of ghost zones. By continuity of the solution to the 
mass transport equations in the limit as the diffusion coef- 
ficient becomes vanishingly small, it is to be expected that a 
pure advective solution should necessarily exist. However. 
the nature of the limiting solution containing zones of zero 
width comes as a surprise. It must be emphasized that in real 
systems, in which diffusion or dispersion is always present, 
ghost zones should be observable, if they exist, possessing a 
finite width. Although these zones have yet to be identified 
in natural systems, they may play an important role in 
weathering, ore genesis, and other processes of geologic im- 
portance. A discovery of ghost zones in natural systems would 
lend strong support for further application of these equations 
towards inv~ti~ting me~somatic zoning. The main purpose 
of this paper, however, is not to address the existence of ghost 
zones in natural systems, but rather to point out their math- 
ematical existence in solutions to the mass transport equations 
and to explore some of their properties. 

‘rWO~OM~N~NT SYSTEM 

The basic problem in a quantitative description of meta- 
somatic zoning is to determine the sequence of reaction zones 

which form the spatial and time dependence of the solute 
concentrations and mineral modal abundances within each 
zone, and the velocities of the zone boundaries. Mathemat- 
ically this defines a moving boundary probtem. The quantities 
of interest are obtained as solutions to a set of partial differ- 
ential equations representing conservation of mass for trans- 
port and chemical reaction of solute species with minerals. 
The solution to the transport equations is completely deter- 
mined for given initial and boundary conditions. These are 
specified by the initial modal ~om~sition of the unaltered 
host rock, the initial fluid composition in contact with the 
minerals in the rock, and either the fluid composition or fluid 
flux entering the column of rock at one end. 

Consider a two-component system described by hypo- 
thetical species A and B which form minerals AzB, AR, and 
AB2 according to the chemical reactions 

and 

A +- 2B = AB2, (1) 

A + B = AB, (2) 

2A + B = A2B. (3) 

Fluid infiltrating into a porous column of rock containing 
one or more of these minerals produces a sequence of reaction 
zones which propagate with time. For conditions of local 
chemical equilibrium, the restriction to a two-component 
system greatly simplifies the problem. In this caSe the solute 
concentration downstream from a reaction front separating 
two monomineralic zones forms an invariant point deter- 
mined by mineral equilibria alone. Within this system a 
number of distinct alteration zone sequences are possible. 
Consider a host rock consisting initially of mineral A2B. Any 
of the reaction zone sequences shown in Fig. 1 are possible. 
Which sequence actually occurs depends on the composition 
of the infiltrating fluid at the inlet to the porous rock column, 
the equilibrium constants of the reacting minerals, modal 
composition of the host rock, and whether transport occurs 
by advection, diffusion, or both. Furthermore, the zone se- 
quence may change with time. For cases II, III, and IV the 
velocities of the zone boundaries are in increasing order con- 
sistent with the mineral sequence. The reaction zones grow 
continuously with time in proportion to the fluid velocity. 

POSSIBLE ZONE SEQUENCES 

[I; i I,, 4132 j,, ::‘:;‘Ji”, I,? .AjH (0 < ~1, i lil = toi 

\ll! F I,, Ai& 1,; .\ii I,,, A?H (fl< 1!, c: li2 f I’:$) 

till; .7- I,! AH /‘,> AH (0 i I>, < I$ 

j I\‘i F (,,1 ‘\.‘I< (0 .” ua) 

Fro. I. Several possible mineral zone sequences for a two-com- 
ponent system with the initial host rock consisting of mineral A?B. 
Case (I) corresponds to AB as ghost zone, whereas cases II, 111, and 
IV correspond to normal zone sequences. When diffusion is inciuded 
in the description the zone sequence may change with time. Not all 
possible zone sequences are shown. 
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For case I the velocity of the upstream boundary of zone AB 
is equal to the velocity of its downstream boundary. In this 
case zone AB is trapped between zones ABz and AzB, and 
its width has a constant value. The zone AB is referred to as 
a ghost zone for reasons which become apparent from the 
following text. 

Within the kth reaction zone containing the mth mineral, 
mass transport equations for solute species A and B for com- 
bined advection and diffusion can be expressed in the form 
( LICHTNER, 1985 ) : 

a&' + as:) a,(ik) 
at 

v 
,m at + -& = 0, (4) 

for j = A, B. In this equation t denotes the time and x the 
distance measured from the inlet to the porous column of 
rock, CT) denotes the concentration of the jth solute spe- 
cies, and dk’ denotes the solute flux defined by 

ac!k) 
J(jk’ = -40 -&- + UC;!', (5) 

where D denotes the diffusion coefficient and u the Darcy 
flow velocity. The quantity Sg) denotes the concentration 
of the mth mineral defined in terms of the mineral volume 
fraction &, by the expression 

s, = Vi’&, (6) 

where v,,, denotes the mineral molar volume. The stoichio- 
metric coefficients Vj, refer to the mineral reactions as written 
in Eqns. 1, 2, and 3. For conditions of local chemical equi- 
librium the transport equations are solved subject to algebraic 
constraints corresponding to the mass action equations of 
the reacting minerals in each zone, which may be expressed 
in the general form 

K,C~mC;- = 1. uj 

The mass transport equations together with the mineral mass 
action constraints provide an equal number of equations as 
unknowns. 

It is assumed that initially at t = 0, mineral AzB is the only 
mineral present in the porous column with abundance 

SoA+. The aqueous solution in equilibrium with the unaltered 
host rock has the composition 

Cj(X, 0) = CT. (8) 

An aqueous solution undersaturated with respect to minerals 
AB2, AB and A2B with composition 

C,(O, t) = c,“, (9) 

enters the porous column at x = 0. To simplify the problem 
the initial solution in contact with mineral AzB is assumed 
also to be in equilibrium with mineral AB, thus forming an 
invariant composition. This condition eliminates internal re- 
action within the zone occupied by mineral AzB in the case 
of diffusive transport. For the other zones, however, internal 
reaction generally does occur as discussed in Appendix A. 

Pure Advective Transport: Definition of Ghost Zone 

A description of fluid transport by pure advection in a 
porous medium in which diffusion is absent, combined with 

chemical reactions involving minerals and aqueous species, 
provides a simple algorithm by which metasomatic zoning 
of a host rock can be calculated. This formulation represents 
a highly idealized description of natural systems in which 
diffusion is always present. However, in many instances, dif- 
fusion is only important during the initial stages of the time 
development of a system and can be safely ignored as time 
goes on ( LICHTNER, 1992a). The case of pure advective 
transport has been analyzed in great detail in the literature 
(WALSH et al., 1984; LICHTNER, 199 1) , and only a brief out- 
line is given here with emphasis on the conditions necessary 
for mineral AB to occur as a ghost zone. 

As an advecting fluid infiltrates into a porous column of 
rock consisting of the single mineral AzB, a sequence of re- 
action zones is formed as depicted schematically in Fig. 2 
for the zone sequence 3 1 ABz 1 AB 1 AzB. The first zone de- 
noted by 3 corresponds to pure fluid in which all minerals 
have completely dissolved. The fourth zone is the unaltered 
host rock, in this case represented by mineral AzB. The quan- 
tity lo refers to the inlet to the porous column of rock. In 
certain circumstances the velocities of zone boundaries 12 and 
1, may be equal. In this case zone AB is referred to as a ghost 
zone for reasons given below. To investigate this situation 
the discussion that follows is restricted to a two-component 
system. For conditions of local chemical equilibrium this 
greatly simplifies the problem since, with the exception of 
the first zone containing mineral AB2, the solute concentra- 
tion at reaction fronts 12 and 1, form invariant points, deter- 
mined by mineral equilibria alone. This neglects the variation 
in mineral equilibrium constants with pressure, of no con- 
sequence in this work. 

Characteristic of pure advective transport and local equi- 
librium of minerals is the occurrence of chemical shock fronts 
across the boundaries of mineral alteration zones. A chemical 
shock front represents a discontinuous change in the solute 
concentration at a point in space separating two distinct 
mineral assemblages. The shock propagates with time in re- 
sponse to the flow of fluid. The velocity of propagation of 
the shock is determined by conservation of mass across the 
shock front. These equations relate the velocity of the front 
to jump discontinuities in the solute flux and mineral modal 
abundances across the front. The reaction fronts propagate 

TWO COMPONENT SYSTEM: A-B 

I 
0 ‘I ‘2 ‘3 

Distance 

FIG. 2. Schematic illustration of reaction zones in the twocom- 
ponent system A-B for pure advective transport under conditions of 
local equilibrium. Reaction fronts I2 and 1, are invariant points, the 
fluid composition fixed by equilibrium with minerals AB2 and AB, 
and AB and A2B, respectively. Zone AB is referred to as a ghost zone 
when v2 = v,. 
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with velocities determined by conservation of mass across 
each front. These equations relate the front velocity to jump 
discontinuities in the flux and mineral volume fraction, ac- 
cording to ( LICHTNER, 1985, 199 1): 

[-hlk 
uk = dt = [ +cj]k + 2 Vjm[ Sm]k ’ (10) 

m 

for the kth reaction front, with j = A, B and m = AB1, AB, 
A2B. Square brackets [a - - ]k surrounding some quantity de- 
note the jump in the enclosed quantity across the kth front: 

[flk =f 
(k+) _ f(k-), 

(11) 

where the superscripts (k+) enclosed in angular brackets 
signify that f is evaluated on the tight (k+ ) , or downstream 
side, and left ( k- ) , or upstream side of the kth front. These 
equations are referred to as the generalized Rankine-Hugoniot 
equations because of their resemblance to the equations de- 
scribing the propagation of a shock wave (LICHTNER, 1985, 
199 1). Note that each solute species which takes part in 
chemical reactions across the kth front leads to the same 
velocity vk, and thus each front represents a coherent wave. 

For pure advective transport with mineral reactions gov- 
erned by local chemical equilibrium, the mass conservation 
equations are given by 

(12) 
and 

where the solute flux Jj is given by a3 - a2 

J, = UC,, (13) 

and where I,,, denotes the reaction rate of the mth mineral 
with stoichiometric reaction coefficient v,~. For conditions 
of local equilibrium, the reaction rate is localized at each 
reaction front proportional to a h-function singularity ac- 
cording to the expression ( LICHTNER, 199 1): 

” = IL ( cb3a3 - 42%) + 2s& - &B 

b3 -- b2 

= ’ ?ii$- d&z) + s”,,, - &, ’ 
(19 

relating the front velocities u , , u2. and u3 to jump disconti 

I”, = -~k~i’[dbnlk~(~ - /k(t)), (14) 

corresponding to the kth reaction front with m = AB2, AB, 
A2B, where uk denotes the velocity of the kth front with po- 
sition fk. The minus sign ensures that the replacement front 
/k moves in the direction of fluid transport. To complete these 
equations it is necessary to combine them with the appropriate 
mass action equations as discussed in the following text. The 
pure advective problem is solved without the need to explicitly 
consider the rates of reaction of the various minerals at re- 
action fronts. The reaction rate at zone boundaries is a math- 
ematically singular quantity described by distribution theory, 
proportional to the Dirac delta function ( LICHTNER, 1985. 
199 1) . This singular rate gives rise to an instantaneous non- 
zero value for the modal abundance of each alteration mineral 
at its contact with the downstream zone describing the re- 
placement of one mineral by another. The instantaneous 
value of the mineral modal abundance resulting from re- 
placement reactions at zone boundaries is determined by 
conservation of mass across the front. 

nuities in the solute concentration and mineral volume frac- 
tion across each front. In these equations the initial concen- 
tration of mineral A2B is denoted by S”,,,, and the quantities 
&B and S,,, refer to the amounts of minerals AB and AB2 
in their respective reaction zones. The porosity &within the 
kth reaction zone is related to the mineral modal composition 
in the zone by the equation 

To simplify notation, symbols ak, bk are introduced to rep- 
resent the solute concentration within the kth reaction zone 
defined as follows: 

,(k+i) 
ClC==CA ) 

br = Ck""', 

In the following analysis, the Darcy velocity u is assumed 
constant throughout the porous rock column. For pure ad- 
vective transport, the concentration itself is discontinuous 

where C:“’ denotes the concentration of the jth species within 
the kth reaction zone as illustrated in Fig. 2 with k = 0, 1, 
2,3. In the following superscripts enclosed in round brackets 
(k) designate quantities internal to the kth reaction zone. 
The case k = 0 corresponds to the first zone in which all 
minerals are absent with the same fluid composition as the 
inlet fluid with 

.( 1 1 
C. I = cp. (23) 

across each reaction front for those solute species which are 
involved in mineral reactions on either side of the front, with 
the jump in flux given by the expression 

[J]k = U[C;]k. (15) 

According to the previous notation, this equation may be 
expressed according to 

[J]k = U(Cjk+) - Cl”-‘). (16) 

The mass transport equations reduce to a set of algebraic 
equations representing conservation of mass across each re- 
action front. Within each reaction zone the solute concen- 
tration and mineral modal abundance are constant. Applying 
Eqn. 10 to the reaction zone sequence 9 ( AB2 1 AB 1 A2B leads 
to the equations 

a1 -- u, 

u2 = ’ (d’Za2 - ‘#‘Ial) + &B - &B, 

b2- hl 

= ” (d2h2 - dJ,b,) + SAB - 2&B, ’ 
(18) 

) 

(21) 

(22) 
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Downstream equilibrium condition and within zone A2B by the equations 

In addition to the generalized Rankine-Hugoniot equa- 
tions, the assumption of local equilibrium provides further 
constraints on the solute concentration within each reaction 
zone. To implement the condition of local equilibrium, how- 
ever, is not as straightforward as it may seem. Because there 
is only one mineral in each reaction zone, this would provide 
only one additional mass action constraint for each zone, 
which is not enough equations to determine all the unknown 
quantities (see the following text). At the reaction fronts 
themselves, for pure advective transport the concentration is 
not defined because of the jump discontinuities caused by 
chemical reactions. This results in different values of the solute 
concentration depending from which side the front is ap- 
proached. To resolve this ambiguity an additional assumption 
is required, referred to as the downstream equilibrium con- 
dition (WALSH et al., 1984; LICHTNER, 199 1). According to 
this condition, the solute concentration downstream from 
each reaction front must remain in equilibrium with the 
mineral assemblage in the immediate upstream zone, even 
though it is no longer in physical contact with the minerals 
in that zone. 

KABa3b3 = 1, KAzBa: b3 = 1. 

These equations have the explicit solutions 

and 

K a3=2, 
K 

b,+?_ (27) 
AzB AB 

The solute concentration within the second zone containing 
mineral ABz satisfies the single mass action equation 

&r@,b: = 1, 

because the upstream zone contains only fluid. Note that 
according to Eqns. 24 and 25, the solute concentration within 
reaction zones AB and ArB is in equilibrium with the mineral 
contained in that zone in addition to the mineral present in 
the immediate upstream zone. 

One way to understand the downstream equilibrium con- 
dition intuitively is to imagine what happens to a packet of 
fluid as it traverses the flow path considering both advective 
and diffusive transport. As the packet crosses the front 
AB2 1 AB, for example, it must come to equilibrium simul- 
taneously with both minerals ABr and AB located on opposite 
sides of the front. It is assumed that reaction kinetics are very 
fast so that local equilibrium is a good approximation. Fur- 
thermore, because of diffusion the fluid composition of the 
packet must change continuously from the upstream side of 
the front to the downstream side (we are considering a real 
fluid packet! ) . For very slow diffusive transport compared to 
advection (i.e., a large Peclet number) the concentration 
changes very abruptly, but nonetheless continuously, across 
the front. For a sufficiently small diffusion coefficient, reaction 
takes place only in the immediate vicinity of the front and 
the packet concentration is constant throughout each alter- 
ation zone. Therefore, as the packet advances further down- 
stream it remains in equilibrium with mineral ABr in the 
upstream zone, as well as with mineral AB in the downstream 
zone. Thus the fluid packet is able to remember which min- 
erals were present in the previous upstream zone. Note that 
the downstream equilibrium condition need not hold if the 
Peclet number is too small, because then internal reaction 
occurs, and the solute concentration is no longer constant 
within each zone. Actually the downstream equilibrium con- 
dition may be derived rigorously by considering transport by 
diffusion in addition to advection and taking the limit as the 
diffusion coefficient approaches zero (WALSH et al., 1984; 
LICHTNER, 199 1). 

Together the Rankine-Hugoniot equations and mass action 
equations provide eleven equations containing an equal 
number of unknowns consisting of {al, 6, , a2, b2, a3, b3, 
SAb, SAB , L+, 02, ~3 } . For an acceptable solution to exist the 
mineral modal abundances and solute concentrations must 
all be positive, and the reaction front velocities must satisfy 
the inequality 

UlSV2SV3, (29) 

consistent with the assumed zone sequence. In fact, depending 
on the equilibrium constants chosen for minerals AB2, AB, 
AzB, and the composition of the inlet fluid, it may not be 
possible to find a solution to these equations which satisfies 
these consistency relations. In such circumstances it may be 
necessary to change the sequence of reaction zones consid- 
ering other possibilities such as indicated in Fig. 1. Case (I) 
in which zone AB forms a ghost zone is of particular interest. 
In the pure advective limit, this situation is represented by 
the physically impossible relation 

v2 > v3. (30) 

In this case it is necessary to alter the form of the downstream 
equilibrium condition to obtain a meaningful solution 
(SCHECHTER et al., 1987). This situation is examined further 
in the remainder of this section. 

Mineral AB as ghost zone 

Applying the downstream equilibrium condition to the 
reaction zone sequence 9 1 AB2 1 AB 1 A2B, the solute concen- 
trations within the third and fourth zones containing minerals 
AB and ArB, respectively, are invariant. Thus within zone 
AB the solute concentration is determined by the mass action 
equations 

KAB2aZb$ = 1, KABa2b2 = 1, (24) 

To derive the condition for mineral AB to form a ghost 
zone, it is assumed that the terms containing the porosity in 
the denominators of the Rankine-Hugoniot equations can 
be neglected compared to the mineral volume fraction terms. 
The resulting equations may be solved explicitly to give the 
following expressions for the volume fractions of minerals 
AB and ABr : 

SAB = si*B 
2(b3 - M - (a3 - ad 

b3 - bz - (a3 - az) ’ 
(31) 

(25) 

(26) 

(28) 
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and the respective fronts. Thus, referring to Fig. 1, the transition 
from the zone sequence II to III is determined by the con- 
dition S = $A, 

42 - aI - (62 - 6,) 
Ah 

aa2 - a,> - (b2 - b,) ’ 
(32) 

obtained from Eqns. 18 and 19. With these relations the ve- 
locity of the third front AB 1 AIB may be represented by 

v3 = & IQ3 - a2 - (b3 - b211, (33) 
2 

and the velocity of the second front ABr ) AB by 

x(2(~2-~)-tb2-bo)l~b3-b2-t~3-~2)1 t34) 

2(b3 - b2) - (a3 - 02) 

To obtain the expression for v2 the solute concentrations uI 
and b, were eliminated by using the relation 

2u, - bl = 24l- bo, (35) 

which follows from Eqn. 17 by eliminating SAB, . The velocity 
v3 and SAB are independent of the composition of the inlet 
fluid and depend only on the invariant solute concentrations 
in zones AB and AzB and the initial modal abundance of 
mineral A2B. The velocity ~2 and SAa2 in addition depend 
on the inlet fluid composition. With these relations the prob- 
lem is reduced to two equations in the two unknowns aI and 
b,, obtained by solving the conservation relation Eqn. 35 
simultaneously with the mass action equation, Eqn. 28. 

The threshold condition for which mineral AB first appears 
as a ghost zone is given by the equality of the upstream and 
downstream front velocities of zone AB, or 

v2 = v3. (36) 

This constraint puts restrictions on the possible range of inlet 
fluid compositions. As follows immediately from Eqns. 33 
and 34, the composition of the inlet fluid must satisfy the 
relation 

2a, - b. = 3(uz - b2) + 263 - u3. (37) 

The right-hand side of this equation involves only the in- 
variant solute concentrations ( u2, b2) and (~3, b,), and 
therefore is a function only of the equilibrium constants of 
minerals AB2, AB, and AzB. This equation defines a straight 
line in fluid composition space with h and b. as axes. More 
generally mineral AB occurs as a ghost zone when the zone 
boundary velocities for pure advection satisfy the inequality 

v2 r v3. (38) 

This implies the relation 

2uo - b. 5 3(u2 - bZ) + 2b3 - u3, (39) 

defining a region in the inlet composition space, a~ and bo. 
As discussed in the following text, although Eqn. 38 represents 
a physically impossible situation, nevertheless, in the presence 
of diffusion this condition leads to a well-defined situation 
with the ghost propagating at a unique velocity. 

For the other reaction zone sequences shown in Fig. 1, 
similar relations can be derived by equating the velocities of 

01 = vz, (40) 

giving the requirement for disappearance of mineral AB2, 
and the transition from zone III to IV by the condition 

v2 = v3, (41) 

defining the threshold for disappearance of mineral AB. Only 
the first condition, Eqn. 36, results in a ghost zone with min- 
eral AB trapped between minerals ABz and AzB. 

The regions mapped out by Eqns. 36, 40, and 41 are il- 
lustrated in Fig. 3a,b,c for three different values of the equi- 
librium constant KAh = 10e4, 1.4 X 10v4, and 1.6 X 10e4, 
respectively. The reciprocal of the equilibrium constants for 
minerals A& and AzB am fixed at 10e6 and 10e5, respectively. 
The axes correspond to the inlet concentration of solute spe- 
cies A and B. The regions marked I, II, III, and IV correspond 
to the possible reaction zone sequences shown in Fig. 1, with 
region I corresponding to formation of mineral AB as ghost 
zone. The dotted curve dividing region II in Fig. 3a and b, 
and regions I and II in Fig. 3c, designates the threshold con- 
dition for the absence of zone AB2 in the initial zone sequence 
for pure diffisive transport. A derivation of how this curve 
is obtained is given in Appendix B. This curve has interesting 
consequences for the case of combined advection and dif- 
fusion. For initial conditions lying below the dotted curve, 
the zone containing mineral AB2 is initially absent. Eventually 
with increasing time this zone must appear as transport be- 
comes dominated by advection. With increasing KAL, the 
field for formation of AB as ghost zone (region I) increases 
as regions II and III decrease, and region IV increases. For 
KAk > 2.15 X 10m4, zone AB does not appear for any inlet 
fluid composition. The threshold value Of&B for appearance 
of zone AB is determined by the requirement of simultaneous 
equilibrium with all three minerals AB, ABz, and A2B, leading 
to the relation 

KAB = (KAB&A,B)“~. (42) 

Modified downstream equilibrium condition 

The common velocity v3 for the boundaries of ghost zone 
AB at the threshold condition can be expressed in an alter- 
native form which is more useful and allows generalization 
to multicomponent systems (see following section on mul- 
ticomponent systems). From the equality of vz and ~3 it fol- 
lows from Eqns. 18 and 19, neglecting terms containing the 
porosity, that 

s 
AB 

= 2(a2 - @)Si,B + (a3 - a2)SABz 

a3 - aI 

= (b2 - h)so,,B + 2(b3 - b2)sAB, 

b3 - b, 
(43) 

This implies the relations 

SAB - SAB, = E (2$&B - SABz)r (44) 
3 
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FIG. 3. The regions of occurrence of zone sequences 1, II, III, and IV g&n in Fig. 1 as a function of the inlet fluid 
composition for fixed equilibrium constants of minerals AB2 and AzB of lo6 and IO’, respectively. (a) K& = 10w4, 
(b) K,i = 1.4 X 10m4, (c) K& = 1.6 X 10d4. The dotted curve designates the threshold condition for the absence of 
mineral AB2 for pure diffusive transport. The points labeled (a) and (b) correspond to inlet fluid compositions considered 
below. 

and a3 - a1 b3 - h 

v3 = u 2S& - SA& = u s”,,, - =ABz . 

SAB - =ABz = G (s”,,, - 2&R). (45) 
3 I 

Substituting these expressions into the equation for v2 yields 
the following equation for the velocity of the ghost zone v3: 

(46) 

This equation does not involve the solute concentration at 
front 12. Combining Eqn. 46 with Eqn. 17 representing con- 
servation of mass across the first reaction front, together with 
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DOWNSTEAM EQUILIBRIUM CONDITION 

(I) GHOST ZONE AB 

(II) NORMAL ZONE SEQUENCE 

F I A& 
=+(AB?j 

FIG. 4. Illustration of the downstream equilibrium condition for 
(I) sequence with AB as ghost zone, and (II) normal zone sequence. 
Mineral names enclosed in curly brackets are in equilibrium with 
the fluid downstream from the front marked by the double arrows. 
The single arrows designate the solute concentration on each side of 
the front. For the case with AB as ghost zone, mineral AB is able to 
buffer the fluid composition even though it is not materially present 
in the column. 

the mass action equations Eqn. 28 and Eqn. 25, yields seven 
equations for the seven unknowns { u, , h, , a3, b,, SABI, 
Y,, v3 > . Note that because reaction front 1, has been elimi- 
nated, it is no longer necessary to include Eqns. 18 and 24. 
Accordingly, for the situation in which AB forms a ghost 
zone, it is possible to express the mass conservation equations 
in a form that does not involve mineral AB and reaction 
front 12. Nevertheless, the fluid composition downstream from 
front I, is in equilibrium with minerals AB and AgB and not 
mineral AB2, as would be the case if the normal downstream 
equilibrium condition were applied directly to the zone se- 
quence 3 ) AB2 1 A2B. This results in a modified downstream 
equilibrium condition in which mineral AB buffers the fluid 
composition downstream from front l3 even though it is not 
materially present in the column, whence the term ghost zone. 
Mineral AB may be thought of as occupying a zone of zero 
thickness. In Fig. 4 the two cases corresponding to normal 
and modified downstream equilibrium conditions are illus- 
trated for reaction zone sequences I and II. 

Equation (46) can be further simplified. Solving for 
S,,, yields 

SAb = SF&B 2(& - h 1 - (03 - at) 
bj - b, - 2(a3 - a,) . 

(47) 

Eliminating S,,, from one of the equations in Eqn. 46 and 
making use of Eqn. 35 yields the following expression for the 
velocity of the ghost zone 

u3 = j-g [a a3 - a01 - (b3 - &,)I. 
A2B 

(48) 

These relations must of course be identical to Eqns. 33 and 
32 taking into account the threshold condition given by Eqn. 
37. However, the equations incorporating the modified 

downstream equilibrium condition are more general than 
their derivation would suppose. They also apply when the 
inequality in Eqn. 38 holds. In fact this situation is the more 
interesting case because in a transient description incorpo- 
rating advection and diffusion or dispersion, the ghost zone 
reaches its limiting width more rapidly (see the following 
text). In this case the ghost zone velocity is also a function 
of the inlet fluid composition in addition to the mineral equi- 
librium constants and the initial modal abundance of mineral 
A2B. Along the threshold curve, Eqns. 33 and 48 are equiv- 
alent and in this case the ghost zone velocity is independent 
of the inlet fluid composition. 

Three examples are considered to illustrate the theory for 
pure advective transport. These examples are developed fur- 
ther in the following text for pure diffusion and combined 
advection and diffusion. In the first example, KAL = 1.4 
X 1O-4 with the inlet fluid composition given by point (a) 
in Fig. 3b. This results in the normal zone sequence 
3 1 AB1 1 AB 1 A2B. The initial volume of mineral A2B is taken 
as 0.5. The molar volumes of all minerals are equal, set at 
100 cm3 mole-‘. The results are presented in Table 1. The 
first two rows give the solute concentration in the inlet fluid 
and in each of the three reaction zones. The next three rows 
give the volume fraction of the mineral listed in the first 
column, and finally the last row corresponds to the reaction 
front velocities at fronts I,, I,, and 1, relative to the Darcy 
velocity u. At front /3, mineral AzB dissolves and is replaced 
by mineral AB. At front I*, mineral AB is replaced by mineral 
AB2, and at front I,, mineral AB2 dissolves into solution 
without forming any other solid phase. 

In the next two examples, K& = 1.6 X 10m4 with the inlet 
fluid composition corresponding to points (a) and (b) in Fig. 
3c. In both of these cases the zone AB forms a ghost zone. 
The results are presented in Table 2. The pure advective de- 
scription is able to give the velocities of the zone boundaries 
including that for the ghost zone, but cannot determine the 
modal abundance of mineral AB. For pure advective trans- 
port it is not possible to calculate the volume fraction of 
mineral AB since the width ofthe ghost zone is zero. In order 
to obtain a non-zero width and finite value for the volume 
fraction, it is necessary to include diffusion in the transport 
equations. This is carried out in the following section. 

q”!‘+!x itht~ 2,111(~ 2 /OI,,! 3 X’.o,,C‘ 4 
____- 

A 0 001 0.00395 0.0196 0.0714 

13 II 01 0.0159 0 007’14 0.00196 
_._~____ 

O4Rl 0 332 

iJ 4 14 0 545 

0.4, ” 0.5 

ui / !I O.oon89 0.0073 0.0114 
~__. ._____ 
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A 0.001 0.00395 0.0625 0.0625 

B 0.01 0.0159 0.00256 0.00256 

iARI 0.32i 

iAR 

4AYR 0.5 

1JJU 0.0009 0.0087 0.0087 

4 0.0002 0.00637 0.0625 0.0625 

B 0.0002 0.0125 0.00256 0.00256 

cJ*Fl* 0.311 

QAR 

OA2R 0.5 

./IL 0.00198 0.00815 0.00815 

Asymptotic Width of Ghost Zone 

For the two-component system and taking into account 
transport by diffusion, it is possible to obtain an analytic 
expression for the width of the ghost zone AB in the limit as 
time approaches infinity. For the case of combined advection 
and diffusion and neglecting the porosity term in the denom- 
inator, the Rankine-Hugoniot equations for the velocity of 
reaction front AB 1 A2B with position j,(t) read 

v3 = _4D [aGlaxl3 [G%l~xl, 
2s& - sg) = -4Ds,, A2B - sg-> ’ (49) 

according to Eqn. 10, with the jump in solute flux given by 
the expression 

[Jllk = -@[aCjlaxlk. (50) 

Solving these equations for the volume fraction of mineral 
AB at front l3 yields 

#3-) = so wCBiax]3 - [acAm] 
AB 

A2B [acB/ax]3 - [dcA/ax]3 . 
(51) 

Using the following relations for the partial derivatives 

acA CA axAB _=-- 

ax CA + cB ax ’ 

and 

acB cB aXAB 

ax=-- CA + cB dx ’ 
(53) 

derived in Appendix C (see Eqns. C9 and ClO), where the 
quantity XAB is defined by the equation 

XAB = CA - CB, (54) 

it follows that 

s(3-) = AB (55) 

As a consequence, the expression for the velocity of front I3 
becomes 

w axAB 
v3=-- - 

[ 1 s!i,B ax 3 ’ 
(56) 

as follows by substituting Eqn. 55 into Eqn. 49 and making 
use of Eqn. 52 or Eqn. 53. 

To obtain an explicit expression for the derivative of XAB , 
note that within the reaction zone AB, XAB is conserved. This 
implies that XAB satisfies the non-reactive transport equation. 
In the quasi-stationary state, approximation XAB satisfies the 
second order ordinary differential equation 

d2XAs &AB 
-+Ddx2+uX=0. (57) 

This equation has the solution 

X AB = 

c2) 
- XAB )e 

(x-M/X _ cx!‘, _ x~)eAl/X) 

eNX - 1 f (58) 

where Al denotes the width of the ghost zone defined by 

Al = 1, - 12, (59) 

and 

x=90 
u ’ (60) 

denotes the characteristic diffusion length. From the expres- 
sion for XAB, it follows that 

&A, t-1 dx x-1, 
(61) 

With this result v3 can be expressed as 

v3=+(x!;)-xg)-p&. (62) 
AzB 

Solving for Al yields 

f A*=X1n f-l ’ [ 1 
where the constant f is defined by 

f= 
v3 s&B 

u(xg - xi’,‘, 
(64) 

With increasing time the velocity of the ghost zone becomes 
constant, asymptotically approaching the pure advective re- 
sult given by Eqn. 48. Substituting for u3 from Eqn. 48 yields 
the following expression for the constant f: 

f= 
2( c!‘) - c:, - (C$” - C”,) 

3[C!3> - ($3) - (CP,” - C$Q)] * (65) 

The quantity J satisfies the inequality f > 1, and approaches 
unity at the threshold for appearance of AB as a ghost zone 
given by Eqn. 37. Note that as f + 1, the ghost zone width 
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Al + co _ A value of infinity for the asymptotic width of the 
ghost zone implies that an infinite amount of time is required 
to achieve that width, and as a consequence the zone grows 
indefinitely with time. 

According to Eqn. 63, the width of the ghost zone is pro- 
portional to the characteristic diffusion length X. Thus an 
increase in the Darcy flow velocity u, rest&s in a decrease in 
the width of the ghost zone. The function f depends on the 
inlet fluid composition and mineral equilibrium constants. 
The asymptotic width of the ghost zone is independent of 
the initial volume fraction of mineral A,B, as well as the 
mineral molar volumes. In the case of dispersive transport, 
the dispersion coetlicient is pro~~onal to the fluid velocity. 
In this case X is equal to the characteristic dispersion length 
of the system and is independent of the fluid flow velocity. 
Under such circumstances the width of the ghost zone is 
constant across a region of changing permeability provided 
the dispersion length is constant. These properties may be 
useful for identifying such zones in the field. Conversely, 
measurement of the width of a ghost zone may serve to de- 
termine the local Darcy velocity or dispersivity. 

Within the ghost zone the asymptotic form of the solute 
concentration profile is given by the equations 

c, = (X&B + [x&j + 4K&]“2)/2, (66) 

and 

C, = ( -xAa + [xi, + 4K,;]“*)/2, (67) 

as derived in Appendix C. The asymptotic profile of the vol- 
ume fraction of ghost zone mineral AB can be determined 
by integrating the mineral mass transfer equation 

where the internal reaction rate r!$ is obtained from the 
solute transport equations within the kth reaction zone. 
Transforming this equation to a coordinate system (x’, t’) at 
rest with respect to the ghost zone according to 

and 

yields 

x’ = x - v3t, (69) 

f’ = t, (70) 

(71) 

The term &&s/at’ vanishes at steady-state resulting in the 
equation 

d&B 
--z-Y 

dx' 
- ; ~AdXO, (72) 

where the reaction rate .Zrfts is given by Eqn. CZt?. Integrating 
this equation gives 

SAe(x') = S,,( Al) + -!_ 
s 

A/ 

vj x’ 
Y&XW)&“, (73) 

where 

&‘,a( A/) = S$-‘, (74) 

from which the spatial dependence of the volume fraction 
of mineral AB is determined. 

Numerical Exampies 

To investigate the time evolution of a ghost zone and its 
approach to a constant, asymptotic width, it is necessary to 
solve the transport equations numerically taking into account 
transport by advection and diffusion. The correct solution to 
the transport equations for pure diffusion was given only re- 
cently by NOVAK et al. ( 1989) and BALASHOV and LEBEDEVA 
( 199 1). LICHTNER ( 1991) presented a numerical solution 
for combined advection and diffusion based on the quasi- 
stationary state approximation. For the calculations presented 
below in all cases K& = 10e6 and K& = 10e5. In addition, 
a Darcy velocity of u = 10e6 cm set-‘, a diffusion coefficient 
ofi = 10m5 cm’sec-‘, and a porosity of 4 = 0.1 is assumed 
in the calculations. The initial volume fraction of mineral 
AB is taken as (bAlii = 0.5, and the molar volumes of all 
minerals equal to 100 cm3 mole-‘. The initial solution com- 
position is assumed to be invariant in equilibrium with min- 
erals AB and AzB. This gumption eliminates internal re- 
action within zone ArB. 

First consider the case where the normal zone sequence 
Eic I ABr I ABI A2B occurs. This is shown in Figs. 5-7 for 
I&$ = 1.4 X 10F4 with the inlet fluid composition given by 
the point labeled (a) in Fig. 3(B) corresponding to C”, = 10e3 
and C$ = lo-’ mol L” ’ . The solution for pure diffusion is 
used to start the combined advection and diffusion calcula- 
tion. The mineral volume fractions for pure diffusion cor- 
responding to the early time behavior of the system are shown 
in Fig. 5 as functions of the similarity variable rl (see Appendix 
B). Internal reaction results in the characteristic shapes of 
the profiles for zones ABr and AB. Internal reaction does not 
take place in zone A2B because of the choice of initial con- 
ditions. The positions of the reaction zone boundaries /k(t) 
are plotted as a function of time in Fig. 6. As can be seen 

II 

FIG. 5. The modal abundances of minerals ABZ, AB, and AzB 
plotted as a function of the similarity variable 7 for the case of pure 
diffusive transport. The parameters used in the calculation are D 
= low5 cm2 set-‘, @ = 0.1, S& = 0.5, K;;t, = 1.4 X 10V4, K& 
= 10m6, and K& = 1W5. 
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FIG. 6. The reaction zone boundaries of minerals AB2, AB, and 
ArB plotted as a function of the time for combined advection and 
diffusion with a Darcy velocity of u = lo-“ cm set-’ and otherwise 
the same parameters as used in Fig. 5. The composition of the inlet 
fluid corresponds to point (a) in Fig. 3b. 

from the figure, the width of zone AB, as well as the other 
zones, increases with increasing time. The velocities of the 
zone boundaries given by the slopes of the curves b(t) 
asymptotically approach constant values resulting in a steady- 
state. The values obtained from the figure after an elapsed 
time of 80 years are approximately 9.08 X 10m4, 7.36 X 10e3, 
and 1.14 X IO-’ relative to the Darcy velocity U. These values 
are in good agreement with the values obtained from the 
pure advective transport equations given in Table 1. 
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FIG. 7. (a, b) Mineral modal abundances and concentrations of 
solute species A and B plotted as a function of distance for the same 
conditions as in Fig. 6 and for an elapsed time of approximately 24 
years. 
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FIG. 8. The modal abundances of minerals AB2, AB, and A2B 
plotted as a function of the similarity variable q for the case of pure 
diffusive transport. The inlet conditions correspond to point (a) in 
Fig. 3c. The equilibrium constant for mineral AB has the value 
K& = 1.6 X 10m4 with otherwise the same parameters as used in 
the previous example. 

The mineral modal abundances are plotted in Fig. 7 (a) 
as a function of distance after an elapsed time of approxi- 
mately 24 years. The volume fractions within zones AB2 and 
AB approach a constant value given by the pure advective 
limit. The average values of the volume fractions are in good 
agreement with the values in Table 1. The concentrations of 
solute species A and B in zones ABz and AB are shown in 
Fig. 7b as a function of distance for the same time. The con- 
centration becomes constant towards the upstream side of 
each zone, and rapidly approaches the invariant concentration 
on the downstream side. In the limit as the diffusion coeffi- 
cient vanishes, the solute concentration profiles approach 
chemical shock fronts with jump discontinuities at the 
downstream side. 

Figures 8-l 1 depict the formation of ghost zone AB for 
KAk = 1.6 X 10e4 for the same inlet fluid composition given 
in the previous example corresponding to the point labeled 
(a) in Fig. 3c. For these conditions the initial zone sequence 
is 9 1 ABz 1 AB 1 A2B according to Fig. 3c. The corresponding 
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FIG. 9. The reaction zone boundaries of minerals AB2, AB, and 
A2B plotted as a function of the time for combined advection and 
diffusion with a Darcy velocity of u = 10e6 cm set-’ and otherwise 
the same parameters as used in Fig. 8. In this cam, zone AB forms 
a ghost zone which propagates with constant width after a sufficiently 
long time interval has elapsed. 
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FIG _ 10. (a, b) Mineral modal abundances and concentrations of 
solute species A and B plotted as a function of distance for the same 
conditions as in Fig. 9 for an elapsed time of approximately 9 1 years. 

diffusion profile of the mineral modal abundances is shown 
in Fig. 8 plotted as a function of the similarity variable f. 
The positions of the zone boundaries as a function of time 
are shown in Fig. 9. As is apparent from the figure the width 
of zone AB becomes constant after a relatively short time 
interval has elapsed. The velocities of the reaction fronts ob- 
tained from the numerical calculation after a sufficiently long 
period of time has elapsed are in good agreement with the 
pure advective limit given in Table 2 based on the modified 
downstream equilibrium condition. According to the figure, 

OS8 I 

DISTANCE (METERS) 

FIG. 11. The volume fraction of ghost zone AB plotted as a function 
of distance for various times (t, = 5.44, t2 = 21.94, t3 = 91.36, and 
kv = az years) indicated in the figure showing its approach to a 
constant width and shape with increasing time. The profile for t -t 
co is calculated from Eqn. 73. The same conditions as in the previous 
figure are used. 

WIDTH OF GHOST ZONE AB 
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FIG. 12. The asymptotic width ofghost zone AB plotted as a func- 
tion of the inlet concentration of species A for a fixed value of C”, 
= IOm2 mol L-’ for K;b = 1.6 X IO-“. 

the relative reaction front velocities Q/U after an elapsed 
time of approximately 90 years are approximately 9.15 
X 10e4 and 8.70 X 10m3. The mineral modal abundances 
and solute concentrations are shown in Fig. l0a and b, re- 
spectively. Within the ghost zone AB the concentration profile 
remains controlled by diffusive transport. The time evolution 
of ghost zone AB is shown in Fig. 11 where the volume frac- 
tion of AB is plotted as a function of distance for the indicated 
times for a coordinate system fixed at the upstream boundary 
of the ghost zone. The asymptotic width and volume fraction 
profile of the ghost zone calculated from Eqns. 63 and 73 are 
in good agreement with the numerical calculation. 

To investigate the behavior of the width of the ghost zone 
on the inlet fluid composition, in Fig. 12 the asymptotic width 
is plotted as a function of the inlet concentration of species 
A for fixed concentration of species B. The width approaches 
infinity as C’i approaches the threshold for the onset of the 
ghost zone of 0.005335 mol I,-‘, indicated by the vertical 
dashed line. Thus precisely at the threshold for formation of 
a ghost zone, the ghost actually grows continuously with time 
and its width never reaches a constant value. 

Figures 13- 17 depict the formation of ghost zone AB for 
the initial condition given by point (b) in Fig. 3c correspond- 
ing to C”, = C”, = 2 X 10e4 mol L-i. In this case, the initial 
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FIG. 13. The modal abundances of minerals AB and A2B plotted 
as a function of the similarity variable n for the case of pure diffusive 
transport. The inlet conditions correspond to point (b) in Fig. 3c 
with otherwise the same parameters as used in the previous example. 
The mineral AB2 does not appear for transport by pure diffusion. 
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FIG. 14. The reaction zone boundaries of minerals ABz, AB, and 
AzB plotted as a function of the time for combined adveetion and 
diffusion with a Darcy velocity of u = 10e6 cm set-’ and otherwise 
the same parameters as used in Fig. 13. (a) The reaction zone bound- 
aries shown for times up to I .5 years. Mineral ABz first appears after 
an elapsed time of approximately 0.3 years. (b) The reaction zone 
boundaries shown for times up to 140 years. Zone AB forms a ghost 
zone. 

zone sequence is 3 I AB I AzB according to Fig. 3. The pure 
diffusion profiles for the mineral modal abundances are 
shown in Fig. 13. The positions of the zone boundaries as a 
function of time are shown in Fig. 14a and b. Zone A& 
appears after approximately 0.3 years have elapsed. With in- 
creasing time, zone AB propagates at constant width as can 
be seen in Fig. 14b. The reaction front velocities are shown 
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FIG. 15. Relative reaction front velocities plotted as a function of 
time for the same conditions as in Fig. 14. With increasing time the 
velocities of boundaries of zone AB become equal characteristic of 
the property of a ghost zone. 
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FIG. 16. (a, b) Mineral modal abundances and concentrations of 
solute species A and B plotted as a function of distance for the same 
conditions as in Fig. I4 after an elapsed time of approximately 140 
years. 

in Fig. 15. The values of the relative velocities nk/ u after an 
elapsed time of 200 years of 1.98 X 10V3, 8.08 X 10e3, and 
8.22 X lo-’ are in excellent agreement with the asymptotic 
values for pure advective transport given in Table 2. The 
modal abundance and solute concentrations are shown in 
Fig. 16a and b. The time evolution of the ghost zone AB is 
shown in Fig. 17. In this case a longer time is required for a 
steady state to be established compared to the previous ex- 

0.60 . 

0.58 -: 
: 
: 
: 

0.56 ; 

-L. . ._ 

D6 
DISTANCE (METERS) 

FIG. 17. The volume fraction of ghost zone AB plotted as a function 
of distance for various times (t, = 2.13, t2 = 17.04, t3 = 138.49, f, 
= 199.47, and t, = cc years) indicated in the figure showing its 
approach to a constant width and shape with increasing time. The 
profile for t = cc is calculated from Eqn. 73. 
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MULTICOMPONENT SYSTEM 

Modified Downstream Equilibrium Condition 

The same considerations leading to the modified down- 
stream equilibrium condition for a two-component system 
also apply to a multicomponent system. This section consid- 
ers the general case of a multicomponent system in which 
both homogeneous and heterogeneous reactions may take 
place described by the reactions 

c v,444 = 4, (75) 

to form the aqueous complex 34/, and 

c v,lnJ$ = J&n, (76) 

for mineral A,,,. The species 34, occurring on the left-hand 
side of these reactions represent an independent set of solute 
species referred to as primary species. The quantities vj, and 
vi44 denote the stoichiometric reaction coefficients for minerals 
and aqueous complexes, respectively. The Rankine-Hugoniot 
equations can be expressed in the form ( LICHTNER, 199 1) 

uk = [ d\k,]k + c vlm[ Sm]k ’ 
m 

(77) 

analogous to Eqn. 10 for the two-component system, where 
%, denotes the generalized concentration defined within the 
kth reaction zone by 

(k) KIf’lk) = Cjk) + c vyc, , (78) 

where C:“’ and Cik’ denote the concentration of the jth pri- 
mary species and ith aqueous complex, respectively, and 
Qjk) denotes the generalized flux defined by 

Q;“’ = J;"' + c vl, Jj , 
nq (k) 

(79) 

where J:“’ and Jik’ denote the flux of the jth primary species 
and ith complex, respectively, defined in Eqn. 5. For pure 
advective transport 

9jk’ = l&j? (go) 

To these equations must be added the downstream equi- 
librium condition stating that the fluid composition within 
each reaction zone is in equilibrium with the minerals in the 
zone, in addition to being in equilibrium with the mineral 
assemblage in the neighboring upstream zone. This results 
in the mass action equations 

K,,, n (y;k’C;k’)‘~m = I, (81) 

where the subscript m runs over all minerals present in both 
the kth and k - 1st reaction zones. 

To derive the form of the Rankine-Hugoniot equations 
when a zone of zero width is present, consider the situation 
in which the kth reaction zone forms a ghost zone. At the 
threshold for ghost zone formation, the velocities of the kth 
and k - 1st reaction fronts which border the kth zone must 
be equal: 

t& = t&e,. (82) 

This implies the relation 

[ ‘k,lk [*j]k-l 

c Vjm[Sm]k = 2 vjm[sm]k-I ’ 
(83) 

as follows from Eqn. (77) neglecting terms containing the 
porosity in the denominator. Solving this equation for 
c m Qnslnk) yields the result 

c %?s!? 
“l 

[\kj]k 1 V,,Sl,k-') + [\kj]k-1 c VjmSg+') 
m m 

zz 

[*,lk + [*,lk-l 
. (84) 

Noting that from the definition of the square brackets [ - - - ] 
it follows that 

[ *,]k + [ \Il/]k+, = \kjk+‘) - qjk-“, (85) 

the equation for vk becomes 

vk = u 2 v,m(spo - ‘$-I’, . (86) 

Therefore, the Rankine-Hugoniot equations can be expressed 
in a form in which the kth zone is missing from the expression 
for uk. Applying the downstream equilibrium condition in 
the usual way, taking into account the kth zone of zero 
width, implies that the fluid in the k + 1st zone must be in 
equilibrium with the minerals in the kth zone, this in spite 
of the fact that its width is zero. Thus whenever a ghost zone 
occurs in the reaction zone sequence, mass balance equations 
are calculated as if this zone did not appear, while mineral 
mass action equations must take into account the presence 
of minerals in the ghost zone. This result may be further 
generalized to the occurrence of n consecutive ghost zones 
beginning with the kth zone. In this case mass balance con- 
straints apply between the k - 1st and k + nth zones, while 
mass action constraints apply to minerals in the k + n - 1st 
zone and the k + nth zone. The intervening n -- 1 ghost 
zones, labeled k, k + 1, . . . , k + n - 2, do not affect the 
mass conservation equations or the mass action equations, 
and therefore do not influence the solution to the pure ad- 
vective mass transport equations. Note, however, that there 
may exist special situations where the above analysis does 
not apply ( LICHTNER and WABER, 1992). 

Existence of Solutions and Kinetics 

Aside from their possible geochemical significance, the 
presence of ghost zones has important implications on the 
existence and properties of solutions to the mass transport 
equations in the limiting case of pure advection, for conditions 
of local equilibrium and surface controlled reactions. The 
pure advective transport equations represent an attractive 
simplification compared to a description including diffusion 
or dispersion. This is because a pure advective description 
and that for combined advection-diffusion/dispersion yield 
similar solutions for sufficiently large time spans ( LICHTNER, 
1992b). However, the pure advective case is computationally 
much more efficient. For conditions of local equilibrium in 
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an isothermal system, the pure advective transport equations 
result in a system of non-linear, algebraic equations that need 
only be solved once for all time. For surface controlled min- 
eral reactions within the quasi-stationary state approximation, 
the pure advective transport equations require solving a set 
of first order, ordinary differential equations ( LICHTNER, 
1988). While either of these equations is far easier to solve 
than the corresponding second order differential equations 
that result if diffusive transport is included, nevertheless, the 
existence of ghost zones greatly limits the usefulness of the 
pure advective limit. For conditions of local equilibrium and 
pure advective transport, a ghost zone has zero width; and it 
is not possible to determine the modal abundance of minerals 
in the ghost zone. Although a solution to the transport equa- 
tions for pure advection always exists in a kinetic description 
of mineral reaction rates, the width of the ghost zone is an 
artifact of the choice of kinetic rate constants and must tend 
to zero as the rate constants approach infinity. By contrast, 
if diffusion is included in the kinetic description the width 
of the ghost zone tends to a non-zero limiting value in agree- 
ment with the local equilibrium formulation. In many ways, 
a kinetic approach is computationally superior to local equi- 
librium. First, because the difficulties associated with deter- 
mining the sequence of reaction zones, which in a local equi- 
librium description require trial and error methods, disappear. 
And second, a kinetic description contains local equilibrium 
as a special case as the kinetic rate constants tend towards 
infinity. 

For transport by diffusion and advection, as first pointed 
out by KORZHINSKII ( 1970), a solution to the transport 
equations always exists. It is to be expected that diffusion 
should be an important factor in describing the properties of 
ghost zones because of their vanishing width in the pure ad- 
vective limit. For structures in solute and mineral concen- 
tration profiles with length scales on the order of, or less than, 
the characteristic diffusion length of the system, transport by 
diffusion must play an important role. These considerations 
also apply to the sharp reaction fronts obtained for pure ad- 
vective transport in the form of chemical shock waves. Nev- 
ertheless, certain properties of ghost zones can be investigated 
in the limit as the diffusion coefficient vanishes resulting in 
pure advective transport. 

The Possible Existence of Ghost Zones 

A basic characteristic of mineral reaction fronts is that 
they move extremely slowly compared to the fluid flow ve- 
locity. This presents a difficult problem to determine from 
field observations whether a zone is advancing with constant 
width, or is increasing or perhaps decreasing in width. The 
fundamental property of ghost zones that their width is in- 
versely proportional to the fluid flow rate and directly pro- 
portional to the diffusion or dispersion coefficient suggests a 
possible means for observing such zones in natural systems. 
For a situation in which the permeability, and hence fluid 
flow rate, varies spatially over a region in which the host rock 
has a relatively uniform composition (so that chemical re- 
actions could be presumed the same at neighboring points), 
the appearance of a ghost zone would manifest itself by ex- 
hibiting a behavior that was distinct from normal zones. In 

regions of higher permeability the width of normal zones 
would be larger compared to regions of lower permeability. 
By contrast the width of a ghost zone would either be more 
narrow in regions of higher permeability compared to regions 
of lower permeability, or remain the same independent of 
the fluid flow velocity. This latter situation would occur in 
the case of dispersive transport since the dispersion coefficient 
is proportional to the fluid velocity. 

Ghost zones have been shown to occur in several numerical 
calculations involving multicomponent geochemical systems 
applied to weathering and supergene enrichment of a por- 
phyry copper deposit ( LICHTNER and WABER, 1992; LICHT- 
NER and BIINO, 1992). Another possible occurrence of ghost 
zones may be in the formation of bauxite deposits. It has 
been observed that in bauxite deposits the maximum width 
of the kaolinite zone may vary over several orders of mag- 
nitude for different deposits ranging from millimeters to tens 
of meters or more for comparable sized zones containing 
bauxite ore (GORDON et al., 1985). A possible explanation 
of this observation is that the kaolinite zone forms a ghost 
zone for those deposits where it is more narrow. As noted by 
LICHTNER ( 199 1) , with decreasing Pco,, or equivalently in- 
creasing pH by charge balance, the kaolinite zone formed 
from the weathering of K-feldspar becomes a ghost zone. 
This is demonstrated in Fig. 18 where the ratio of the up- 
stream to downstream reaction front velocities of the kaolinite 
zone is plotted as a function of the Pco2 of the inlet fluid for 
two different log K values for kaolinite corresponding to 7.0 
and 7.4. A ratio of less than one corresponds to a consistent 
solution, whereas a ratio greater than one implies that ka- 
olinite forms a ghost zone. The threshold value unity desig- 
nates the onset of ghost zone behavior. In this case the actual 
width and modal abundance of the kaolinite zone can only 
be determined by including transport by diffusion and dis- 
persion in the calculation. One possible mechanism to explain 
the variation in the Pm2 could be different soil compositions 
ranging from sandy or gravelly soil to silty or clayey soils. 
However, a much more detailed investigation of individual 
sites would be necessary to confirm this hypothesis. There 
are also other plausible explanations. For example, the drastic 
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FIG. 18. The ratio of upstream to downstream reaction front ve- 
locities of the kaolinite zone in the weathering of K-feldspar plotted 
as a function of the PW of the inlet fluid for two different Log K 
values. A ratio greater than one corresponds to the kaolinite forming 
a ghost zone. 
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change in permeability across the saprolite-unaltered rock 
interface causing deflection of downward percolating water 
could be responsible for these observations. 

CONCLUSION 

The existence of reaction zones which propagate with con- 
stant width, referred to as ghost zones, has been demonstrated 
for a simple two-component system. An analytical expression 

for the asymptotic width of the ghost was derived by consid- 
ering transport by advection and diffusion. For conditions 
of local chemical equilibrium of mineral reactions, there may 
exist no physically acceptable solutions to mass transport 
equations representing pure advection. It was demonstrated 
that by modifying the downstream equilibrium condition in 
some cases a consistent solution could be found which agreed 
with numerical calculations for reaction front velocities of 
the ghost zone. However, it is not possible to calculate the 
width or modal composition of the ghost zone without taking 
into account diffusive transport. The pure advective kinetic 
transport equations yield the correct reaction front velocities 
in agreement with the local equilibrium limit, but the pre- 
dicted width of a ghost zone is an artifact of the kinetic rate 
constants used in the calculation. Nevertheless, a kinetic de- 
scription provides much greater flexibility than the assump- 
tion of local equilibrium and is to be preferred. 

Editorial handling: F. A, Frey 
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APPENDIX A 

Internal Reaction and the Quasi-Statioaary State Approximation 

In this appendix equations are derived to determine the mineral 
modal abundance within an alteration zone for conditions of local 
equilibrium taking into account advective and diffusive trans- 
port. Consider the monomineralic sequence of reaction zones 
9 1 AB2 1 AB 1 AZB as illustrated in Fig. 2. It is essential to take into 
account internal reaction whenever diffusion is included in the de- 
scription. Otherwise the correct asymptotic behavior as the solution 
approaches the pure advective limit of the transport equations cannot 
be obtained ( LICHTNER, I99 I ). The Rankine-Hugoniot equations 
may be solved explicitly for the mineral modal compositions Sx) 
and Sg) at fronts 12 and &, respectively, to yield 

S (2-) _ SAB (2+) [JAIz - [Jr& 
-2 

2iJ~12 - [J~12 ’ 

and 

s(3--j _ s(3+) [JAIs - ~[JB~s 
AB 

A2B [Jet13 - [Jab 

(Al) 

(A21 

For the special choice of invariant initial conditions, the concentration 
of mineral AB at boundary !, reduces to a constant given by 

(A3) 

To determine S!‘,l’ from Eqn. Al it is first necessary to know 
Sic’, the value ofthe volume fraction of mineral AB at its upstream 
boundary 12. This can be computed as follows. Alteration of the mth 
mineral within the kth reaction zone is described by Eqn. 68. Ac- 
cording to Eqn. 4 an expression for the internal reaction rate can be 
derived given by 

aSk) 
I(k) = m 

m at 

I =_ 

*,m I _!!$+?&$?!$!!$ (A4) 

Integrating Eqn. 68 gives the modal abundance of the mth mineral 
at a fixed distance from the inlet as a function of time according to 
the expression 

S?(x, t) = wx, Tk(X)) t s I$(x, t’)dt’, (A5) 
r*(x) 

where the lower limit of integration TV denotes the instant at which 
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the downstream boundary of the kth reaction zone arrives at the 
observation point x, or in symbols 

fkbk(x)) = x. (A61 

To obtain the value of S$ at its upstream boundary /k-r at time t, 
x in Eqn. A5 is replaced by &_r( t) and the upper limit of integration 
t by the time required for the front /k-r to arrive at the position 
[k-r ( t) . This gives the expression 

$,?(b-,(t),t) = @(lk-,(t),7k(lk-I)) 

s 

v-IUk-l(O) 

+ l$f'(lk-l(t) t')dt' I . (A7) 
rtUt-,(0) 

Note that Tk-I(/k_l(t)) 2 7k(&_r(t)), since at the time the k - 1st 
front arrives at the position f&i, the kth front has already passed 
this position and has arrived at &. 

As an example of the evaluation of 7k(x) consider the situation 
of pure diffusive transport for which the position of the front is given 
by 

b(t) = h,kfi, (‘48) 

for some constant coefficient nk. Therefore, the time T&(X) for the 
front to advance to position x is equal to 

X2 
rk(x) = - 

4n:D 
(A91 

Note that the partial differential equation, Eqn. 68, or its equivalent 
integrated form given by Eqn. A5 apply to the general case of com- 
bined advection and diffusion for arbitrary boundary conditions of 
concentration, flux, or some mixed form. 

Quasi-Stationary State Approximation 

The time evolution of a geochemical system can be expediently 
calculated over geologic time spans using the quasi-stationary state 
approximation ( LICHTNER, 1988, 199 1). In this approximation the 
partial time derivative of the solute concentration in Eqn. 4 is ne- 
glected compared to the remaining terms. This results in the ordinary 
differential equation 

_i(,@&&u!$~vjm!$ (AlO) 

in which the time t enters only as a parameter through the positions 
of the reaction zone boundaries. The evolution of the reaction zone 
boundaries with time is obtained by integrating the Rank&-Hugoniot 
equations given by Eqn. 10. These equations must be solved simul- 
taneously with mineral mass transfer equations accounting for internal 
reaction within each alteration zone. 

In order to carry out the integration of the Rankine-Hugoniot 
equations, it is necemary to know the initial jumps in the mineral 
modal abundances across each reaction front. The Rankine-Hugoniot 
equations themselves determine the mineral modal abundance on 
the upstream side of each reaction front in terms of the modal abun- 
dance of the mineral on the downstream side of the front which is 
not present on the upstream side. This is the case for zones AB2 and 
AB for which Ssi’ and S!‘,-’ are determined by the Rankine-Hu- 
goniot equations according to Eqns. A 1 and A2. However, this still 
leaves the modal abundance of minerals on the upstream 

b? 
undary 

of each reaction zone undetermined. These correspond to S,&) and 
S!‘,“. To obtain these quantities it is necessary to integrate the min- 
eral mass transfer equations given by Eqn. 68, accounting for internal 
reaction within each zone. 

APPENDIX B 

Pure Diffusive Transport 

The first correct solution to the transport-reaction problem for 
diffusion with constant porosity for conditions local equilibrium was 
given only recently by NOVAK et al. ( 1989). BALASHOV and LEBED 
EVA ( 199 1) considered kinetic reactions and took into account 

changes in porosity as well. This appendix considers the general form 
of solutions to partial differential equations with the structure 

tB1) 

Equations of this form for a set of independent primary species aug- 
mented by algebraic equations representing mineral equilibria, de- 
scribe transport by diffusion taking into account mineral precipitation 
and dissolution reactions represented by the function S(x, t). 

If the transformation 

and 

x’=ax, (B2) 

t’ = a’t, (B3) 

is carried out on the diffusion-reaction equation for some real number 
a, it follows that the equation remains invariant under the transfor- 
mation, that is 

Thus, provided the initial and boundary conditions are also invariant, 
the solutions to the transport equation must be the same. It follows 
that the concentration at position x’ and time t’ is equal to the con- 
centration at position x and time t: 

C(x’, t’) = C(x, t). (B5) 

Similar relations hold for the mineral concentration Sand the porosity 
4: 

S(x’, t’) = S(x, t), (B6) 

and 

$(x’, t’) = 6(x, t). (B7) 

Furthermore, it follows that the pairs (x’, t’) and (x, t) are related 
by 

08) 

This implies that solutions to the transport equation can be repre- 
sented as a function of a single variable 9, referred to as a similarity 
variable, defined by 

X’ 
q(x, t) = x = - 

2Gi 2V%’ 

where the factor of 2 and the diffusion coefficient D are included for 
convenience. The proof given for the existence of a similarity variable, 
although limited to concentration boundary conditions, is otherwise 
very general and also applies to situations in which the porosity varies 
throughout the system. 

In terms of the similarity variable 7, the’transport equation becomes 

(B10) 

and thus the transport problem is reduced to solving an ordinary 
differential equation in the similarity variable t). In the quasi-stationary 
state approximation these equations become 

up ds,_ 4~ d2C, 
ds 

- --2. 

29 4 
The Rankine-Hugoniot equations reduce to the expression 

@ [&i/d& 
qk = - ti 2 vj,,,[L!&]k ’ 

m 

(Bill 

tB12) 

which no longer involves the derivative ofthe position ofthe reaction 
front with respect to time. The porosity is a function of the mineral 
volume fractions through a relation of the form 
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#(‘I) = 1 - c &f(v). (B13) 
m 

This equation, however, does not take into account the possible cre- 
ation ofdisconnected pore spaces that do not contribute to transport. 

It is interesting to note that the existence of a similarity variable 
T implies that all quantities evaluated at zone boundaries must be 
constant in time. Differentiating the relation for the concentration 

C(ax, n2t) = C(x, f). (B14) 

with respect to the parameter a yields the partial differential equation 

x~+2t%o 
ax at . (B15) 

after replacing u by unity. The velocity of a point I(f) of constant 
concentration is given by the equation 

dl aciat _-- 
z- aciax' (B16) 

Using Eqn. B 15 and replacing x with I(t) the expression for the ve- 
locity becomes 

dl l(t) 
z=-F (B17) 

which may be integrated to yield 

I( I) = constant X t”*. (B18) 

This equation has the same time dependence as obtained for the 
dependence of the reaction front positions on time from the definition 
of 7 by substituting l,(t) for x yielding the expression 

b(I) = 2?kG, (B19) 

where Q is a constant different for each front. Thus in q-space the 
zone boundaries are fixed at positions q,, q2, q3. The solute concen- 
trations and mineral volume fractions are constant at each boundary. 

To evaluate the Rankine-Hugoniot equations, it is necessary to 
compute the jump in the concentration gradient across each reaction 
front. Within each monomineralic reaction zone there exists one 
conserved quantity that does not involve chemical reactions. By 
forming the appropriate linear combinations of Eqn. Bl I one obtains 
for the kth reaction zone containing the mth mineral the conservation 
relation 

d2xk 
---=O 

dq' ’ 
(BZO) 

where 

Xk = “a&$) c (kl 
- UArn s . (B21) 

Integrating this equation once yields 

dXk AXI, _=- 
dtl &k ’ 

with 

and 

Axk = X; - x:-l, 

Atlk = l)k - l)k-I. 

A further integration yields the result 

17 - tlk-I 
Xk(T) = - Aqk AXk + Xi-‘, (B25) 

RSUkiIIg in a linear variation of & with 7 characteristic of transport 
by diffusion. An equal number of equations as unknowns are obtained 
by writing Eqn. B22 in the form 

combined ,.ith derivatives of the mass action equations 

I dC:’ 
+‘“C(k) d,, 

1 d&’ = o. 
-- 

- + vBm (k) d,, 
A Ce 

(~27) 

Mineral modal abundances at opposite ends of a reaction zone 
are related by the equation 

4J ‘1x 

SW))+) = sg,“- / + _ s i &Cck’ 
-Adq 

2Qn V-I 1) dq= ’ 
(B28) 

obtained by integrating Eqn. B I I. The variation of the mineral modal 
abundance within the kth reaction zone is given by 

In order for an acceptable solution to exist, it is necessary that the 
quantities 77) satisfy the inequality 

71 s 72 ZZ 13. (B30) 

similar to Eqn. 29 for pure advective transport. In addition the mineral 
modal abundances and solute concentrations must be positive. 

Referring to Fig. 3, the short dashed line dividing the field labeled 
II represents the condition 7, = Q, giving the threshold condition 
for zone AB2 to be absent in the alteration column. Above this curve 
the sequence 9 j AB2 1 AB 1 A2B is obtained, whereas below the curve 
the sequence 9 1 AB 1 A2B occurs. 

APPENDIX C 

Internal Reaction Rates 

This appendix derives expressions for the internal rate of reaction 
in zones AB2 and AB. Within reaction zone AB, the solute concen- 
tration satisfies the differential equations 

LC, = -JAB, (Cl) 

and 

.iCB = -JAB, (C2) 

where i‘ denotes the differential operator 

Subtracting these equations leads to the conservation equation 

i [C, -- C,] = 0. (C4) 

The relation Eqn. C4 implies that the quantity in square brackets is 
conserved ( LICHTNER, 199 1). Denoting this quantity by XAe the 
solute concentration within zone AB can be determined in terms of 
the function xAB by solving the following two equations simulta- 
neously: 

and 

(;, c, = XAB, (C5) 

These equations have the explicit solution 

C,, = (xAB + [x:B + 4K,A]“‘)/Z, 

and 

(C7) 

C, ~2 ( xAB + [x:, + 4K,;]“L)/2. (Cg) 

By differentiating Eqns. C5 and C6 implicitly yields the following 
expressions for the derivatives of C,., and C, in terms of the derivative 
of X,&B: 

(C9) 
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and 

Substituting these results into Eqn. A2 and noting the derivative of 
XAB cancels yields Eqn. A3. 

Similar remits can be derived for the reaction zone ~n~ning 
mineral ABz. In this case the solute concentration satisfies the dif- 
ferential equations 

IC, = -J,,, (CI1) 

and 

&+s = -2J,,. (Cl2) 

Eliminating the reaction rate I leads to the equation 

-t[2C, - Ca] = 0. (C13) 

Denoting the quantity in brackets by xAb, the solute concentration 
within zone AB2 w1 be determined in terms of the function xABl by 
solving the following two equations simul~neously: 

and 

2C, - Ca = XA&, (Ci4) 

c,c’, = K&. (ClS) 

These equations lead to a cubic equation in CA or Ca which may be 
sotved an~~c~ly. The resulting expression, however, is too long to 
present here. Aitemativeiy a numericai solution can aho be easily 
found. By differentiating Eqns. Cl4 and Cl 5 implicitly with respect 
to x yields the following expressions for the first derivative of C,, and 
Ca in terms of the derivative of XA&: 

ac, 2cA %B, 

dx=--, 4cA + cB ax 

and 

acB -= CB a&B, --- 

ax 4c, + cB ax . 

(Cl61 

(C17) 

To derive expressions for the internal reaction rate in zones AB 
and A& note that the operator L applied to the product of two 
functions f and g yields 

For zone AB take f = C, and g = Ca which yields 

JhB= -2c$D~----, =h KB 
c, + cB a~ ax 

(C)9) 

making use of Eqns. C 1, C2, and C6. Substituting Eqns. C9 and C 10 
yields 

For zone ABz, take f = C, and g = C&. This yields the result 

e{C,C:] = L[C,]C2, f C&C;] - 4’DCa$2. tc211 

Applying Eqn. C I8 to the term 2 [ C$] taking f = g = Ca yields 

-c[C$] = 2C&[Ca] - 2@Ca *. ((32) 

Combining these relations yields the result 

3 
1 

IraZ = -2dD (4C, + CB)CB I 
2C ac,+c acs 

B ax 
!%? 

h ax ax . 1 
(~23) 

Substituting Eqns. C 16 and C I7 for the partial derivatives yields the 
expression 

CACB ( 1 
2 

3 ah 
AB2 = @*(4cA + Cg)3 -G- - (C24) 

Equations C20 and C24 may be further evaluated using explicit 
expressions for X,+s and XAr+. 
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