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INTRODUCTION
Sponges are the most primitive of metazoan clades and their presence

in the Proterozoic is hinted at by both molecular (rRNA) and morphologi-
cal phylogenies (Conway Morris, 1994). Although Late Proterozoic rocks
contain high concentrations of the sponge biomarker 24-isopropylcholes-
tane (Moldowan et al., 1994), this evidence may not be wholly diagnostic,
and even the fossil evidence for Ediacarian sponges has remained contro-
versial. Isolated spicule-like structures in cherts from the lower part of the
Doushantuo Formation of southern China (Tang et al., 1978; Ding et al.,
1988) are poorly illustrated and remain questionable (Steiner et al., 1993).
Spicule-like structures from the younger, Dengying Formation of southern
China (Steiner et al., 1993) are poorly preserved and illustrations appear to

include casts or molds of filamentous cyanobacteria or algae. Some medusi-
form impressions from South Australia have also been interpreted as of
sponge grade (Gehling and Rigby, 1996), though the latter authors accept
that this interpretation must be controversial. Until now, the oldest convinc-
ing hexactinellid sponge spicules have been simple tetracts of mid–
Nemakit-Daldynian to Tommotian age (Rozanov and Zhuravlev, 1992;
Steiner et al., 1993; Brasier, 1992; Brasier et al., 1993) and more diverse
spicules of Atdabanian-Botomian age (Bengtson et al., 1990; Zhang and
Pratt, 1994).

The exceptionally well preserved sponge spicule assemblages in Fig-
ure 1 come from the lowest skeletal fossil horizon in southwestern Mongo-
lia, in limestones just above a phosphorite–chert–black shale marker bed in
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ABSTRACT
Carbon and strontium isotopic data are used to show that the earliest sponge spicule clus-

ters and associated phosphatic sediments (with Anabarites) from southwestern Mongolia are
of Ediacarian age. Spicule morphologies include bundles of oxeas arranged in three-dimen-
sional quadrules, linked together at junctions by tetracts, pentacts, hexacts, or polyactines. All
are referred to the Phylum Porifera, Class Hexactinellida. These sponge spicules provide the
oldest remains that can be assigned without question to an extant phylum, and also the first
firm evidence for filter feeding and metazoan silica biomineralization in the fossil record. It is
suggested that siliceous and phosphatic members of the “Cambrian fauna” may have had
their origins in eutrophic and outer shelf facies of the Late Proterozoic.

Figure 1. Clusters of Edia-
carian hexactinellid sponge
spicules from southwestern
Mongolia, preserved in iron
oxide within early diagen-
etic chert concretions.Spic-
ule morphologies include
monaxons (oxeas, A, D, and
E; Oxford University Mu-
seum specimens A/Y. 35 to
37); triaxons (tetracts, B;
pentactines, C; triactines, F;
hexactines, G; specimens
A/Y.38 to 41),each with rays
in various planes; also flow-
erlike polyactines (focusing
at different planes shows
these to be modified hexac-
tines with one or more extra
rays, i.e., not accidentally
overlapping spicules; A at
center). Clusters can pre-
serve original skeletal archi-
tecture, such as bundles of
monaxons with reticulate
lattices arranged in three-di-
mensional quadrules but-
tressed by polyactines or
triaxons (A and D).Scale bar
= 0.1 mm.



the upper Tsagaan Gol Formation (Fig. 2). The fossil horizon lies above a
succession that includes Sturtian-age diamictites, post-Sturtian limestones,
and Ediacarian dolostones with the stromatolite Boxonia grumulosa, and
beneath limestones, sandstones, and shales yielding increasingly diverse
Nemakit-Daldynian to Tommotian-type skeletal faunas (Lindsay et al.,
1996a; Khomentovsky and Gibsher, 1996; Brasier et al., 1996). The spicules
are small (<0.1 mm long and <0.02 mm thick) and abundantly preserved in
translucent brown iron oxides within layers of small spongiform cherts,
each a few millimetres thick. Absence from associated peloidal wackestones
indicates that spicule preservation required early diagenetic mineralization
of the axial canal and spongin fibers, followed by preservation within dia-
genetically mobilized opaline silica, presumably from the spicule walls.

The morphology of the spicules is surprisingly diverse. Monaxons pre-
dominate, but triaxons are common (including spicules with rays >90°) and

flowerlike polyactines occur (Fig. 1A). Bundles of oxeas are arranged in
three-dimensional quadrules, linked together at the junctions with triaxons or
polyactines (Fig. 1, A and D). All spicules can be referred to the Cambrian-
recent glass sponges (Class Hexactinellida). Because the metazoan affinities
of the Ediacara fauna, Cloudina, and supposed worm tubes are still disputed
or unknown (e.g., Retallack, 1994; Steiner, 1994), these remains provide the
earliest clear evidence for organisms that can be assigned without question to
an extant metazoan phylum, and the first firm evidence for filter feeding and
metazoan silica biomineralization in the fossil record.

CHEMOSTRATIGRAPHY
The Proterozoic age of this Mongolian sponge assemblage can be

demonstrated by means of carbon and strontium isotope stratigraphy on
associated carbonates (Fig. 2). Globally proven temporal fluctuations in
δ13C are thought to reflect global changes in ocean chemistry, in response to
shifts in the rate of photosynthesis and/or carbon burial (Kaufman and
Knoll, 1995). Variations in least-altered 87Sr/86Sr are thought to indicate
gradual changes in the erosion rate of older, radiogenic continental crust rel-
ative to the formation rates of new oceanic crust (Derry et al., 1992;
Nicholas, 1996).

In Mongolia, it is convenient to distinguish four time intervals charac-
terized by distinctive isotopes and biota (Brasier et al., 1996) and separated
by breaks in sedimentation (Fig. 2; Lindsay et al., 1996b). Interval NP1 (be-
neath the sponge assemblage) has a pronounced carbon isotope excursion
(feature U), reaching values of <8.0‰, calibrated by a sharp rise in 87Sr/86Sr
values from 0.7072 to 0.7079. These values allow correlation with the mid-
dle range of the Ediacara fauna in northwestern Canada, and the lower range
of the Ediacara fauna and Cloudina tubes in Namibia (Fig. 2), dated as
ca. 548.8 ± 1 Ma (Grotzinger et al., 1995). Glacial deposits beneath this cy-
cle in Namibia are generally regarded as Varangerian, and dated at
ca. 600 Ma (Grotzinger et al., 1995) but glaciations in Algeria, and possibly
in Oman, appear to be younger than ca. 556 Ma (Betrand-Sarfati et al.,
1995; Burns et al., 1994).

Interval NP2 begins with phosphorite–chert–black shale, followed by
limestones with sponge cherts. At Tsagaan Gol, δ13C values begin at +0.2 to
+0.5 and then drop sharply to –5.5 (negative anomaly W), while 87Sr/86Sr
values remain at around 0.7084 (Brasier et al., 1996). Phosphatized cnidar-
ian(?) skeletons of Anabarites trisulcatus and Cambrotubulus decurvatus
appear at a similar level to the sponges in Orolchayn Gol (Khomentovsky
and Gibsher, 1996). Although comparable carbon and strontium isotope val-
ues occur with the latest Ediacara fauna of northwestern Canada (Narbonne
et al., 1994), it is notable that the supposedly prolonged interval with δ13C
values of 1‰–2‰, known from Canada, Namibia, and Siberia, is not rec-
ognizable in Mongolia (Fig. 2). It is within this interval, dated at 545.1 ± 1
and 543.3 ± 1 Ma (Grotzinger et al., 1995) that the most diverse assem-
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Figure 2. Calibration of Precambrian and Cambrian fauna against
87Sr/86Sr and δ13C stratigraphy from Mongolia and other key sections.
Intervals with parallel lines are presumed gaps in record. Radiogenic
dates in square boxes after cited sources. Carbon isotopic features T,
U, W, E, and F after Brasier et al. (1996). Southwestern Mongolia (white
circles = least-altered 87Sr/86Sr data; Brasier et al., 1996); northwest
Siberia (Pokrovsky and Missarzhevsky, 1993; Knoll et al., 1995a; Kauf-
man et al., 1996; St = Staraya Rechka, Mn = Manykay, Me = Medvezhin);
eastern Siberia (Brasier et al., 1994; Us = Ust-Yudoma, Pe = Pestrotsvet);
northeastern Siberia (Bowring et al., 1993; Knoll et al., 1995b; Pelechaty
et al., 1996; Ma = Mastakh, Kh = Khatyspyt, Tu = Turkut); Iran (Brasier
et al., 1990; Ld = lower dolomite; Ls = lower shale; Md = middle dolo-
mite; Us = upper shale); Oman (Burns and Matter, 1993; Ab = Abu Ma-
hara, Kh = Khufai, Sh = Shuram; Bu = Buah, Ar = Ara); Namibia (Kauf-
man et al., 1991; Grotzinger et al., 1995; Bu = Buschmanns, Ku = Kuibis,
Sc = Schwarzrand, No = Nomtsas); northwestern Canada (Narbonne
et al., 1994; Ice = Icebrook,Tp =Teepee; Sh = Sheepbed, Gt = Gametrail,
Bf = Blueflower, Ri = Risky, In = Ingta, Bb = Backbone Ranges).



blages of Ediacarian fossils have been found. Phosphorite facies at this level
in Mongolia, however, indicate that the lower part of interval NP2 is likely
to be condensed. Recent radiometric dating also shows that the prolonged
interval of stable δ13C in Namibia cannot have lasted more than a few
million years (Grotzinger et al., 1995). This implies that the earliest sponge
fauna in Mongolia may well have been coeval with the acme of the Ediacara
fauna elsewhere.

The base of the Cambrian in northeastern Siberia may be taken at the
first appearance of Phycodes sp. in the Kessyuse Formation (Bowring et al.,
1993). Carbon isotopes suggest correlation of this level with one of the
troughs of negative anomaly W in Mongolia (Fig. 2), which occur on either
side of a major sedimentary break. It may be significant that major sedi-
mentary breaks occur close to anomaly W across the globe (Fig. 2).
Whereas these breaks may well be diachronous, they could also indicate a
synchronous regression, during which the first troughs of negative anomaly
W, at the end of NP2, were locally removed by erosion. The latter certainly
appears to be the case across northeastern Siberia (Pelechaty et al., 1996).
Because the trough of anomaly W is unlikely to be much younger than
543.9 ± 1 Ma (Bowring et al., 1993), and the sponge assemblage described
above clearly lies below anomaly W, then the sponges are likely to be older
than ca. 544 Ma. This draws us again toward the conclusion that the sponge
fauna is likely to be coeval with the diverse Ediacara fauna of Namibia,
dated at ca. 543–549 Ma (Fig. 2; Grotzinger et al., 1995).

Interval C1 in Mongolia is marked by a distinctive, oscillatory rise in
δ13C from –3.6 to +4.3, and by least-altered 87Sr/86Sr values that vary little
from 0.7084 (Fig. 2; Brasier et al., 1996). In Mongolia, this suite contains
the first appearance of Cambrian-type ichnofossils and Purella zone skele-
tal fossils (Goldring and Jensen, 1996; Khomentovsky and Gibsher, 1996;
Brasier et al., 1996). If the break at the base of C1 is assumed to be syn-
chronous, then it could be correlated with the break at the base of the Many-
kay, Kessyuse and Ust-Yudoma formations reported across Siberia by Kho-
mentovsky and Karlova (1993).

These data indicate that the first appearance of Cambrian-type skele-
tal fossils was diachronous. In most parts of the world, the Cambrian fauna
appears above negative anomaly W. In southwestern Mongolia, however,
the first skeletal fossils appear below this anomaly, at a level similar to that
of the anabaritid tube Cambrotubulus in northeastern Siberia (Karlova,
1987; Knoll et al., 1995b) and the latest Ediacara fauna in Namibia
(Grotzinger et al., 1995). Our carbon isotopic correlation between Iran and
Oman (Fig. 2) is consistent with previous correlations made on the basis of
basin history and lithofacies and indicates that the Nemakit-Daldynian (i.e.,
Cambrian) fauna and the Ediacarian skeletal fossil Cloudina coexisted in
separate environments. This Nemakit-Daldynian fauna (including siliceous
sponges, anabaritids, siphogonuchitids and protoconodonts) is typically
found on platform margins subjected to phosphogenesis, whereas Cloud-
ina may have preferred less-oceanic conditions. We suspect that members
of the “Cambrian” and “Ediacara” faunas partially overlapped but seldom
coincided, perhaps because of adaption to water masses of differing
chemistry.

DISCUSSION
Our discovery that the earliest known hexactinellid spicules occur in

assemblages of relatively advanced form (Fig. 1), including flowerlike
spicules hitherto unknown below the Upper Cambrian (Dong and Knoll
1996), implies that hexactinellid sponges had achieved skeletal diversity by
the latest Precambrian, earlier than previously demonstrated (Steiner, 1994;
Zhang and Pratt, 1994; Gehling and Rigby, 1996). Together with molecular
evidence, this implies that sponges had a largely unpreserved history prior to
their entry into the skeletal fossil record. It is valid, therefore, to look for en-
vironmental factors that may have enhanced the taphonomic preservation of
sponge spicules and other early skeletal fossils at this point in Earth history.

In Mongolia, the first sponge cherts and phosphatized anabaritids ap-
pear above phosphorite–chert–black shale facies, which in turn overlie ex-

tensive dolomites. This succession may be taken to indicate the drowning of
a peritidal carbonate platform by cooler, eutrophic, oxygen-depleted waters
(cf. Muchey and Jones, 1992; Brasier, 1992, 1995a). This drowning event
also punctuates a rise in the rate of sediment accumulation (Lindsay et al.,
1996b) so that the entire facies shift may be explained in terms of increasing
rates of crustal subsidence during the Late Proterozoic–Cambrian rift-to-
drift transition (e.g., Bond et al., 1988; Brasier, 1995b). This implies that the
delayed appearance of well-developed sponge spicules and biogenic cherts
in the fossil record was related not only to biological evolution (cf. Maliva
et al., 1989), but also to the delayed and tectonically controlled appearance
of suitable biofacies and taphofacies.

Our data confirm that siliceous biomineralization preceded calcareous
biomineralization in sponges (e.g., archaeocyaths, Fig. 2) by more than
10 m.y. Because the former are mainly found in eutrophic settings and the
latter in more interior, oligotrophic ones (cf. Brasier, 1992), it seems likely
that the biomineral secreted within a given clade was closely related to
localized Si, P, or Ca enrichment of the water column. Furthermore, the bio-
mineral revolution that ushered in the so-called Cambrian fauna may have
begun in eutrophic and outer shelf facies of the late Neoproterozoic and
spread shoreward with the Cambrian transgression.
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