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A new technique of spectral analysis is proposed to deal with point processes such as
earthquakes, volcanic eruptions, etc. The technique is based on the maximum likelihood
estimation of spectral parameters of the point process and can be used to analyze catalogs
with variable lower levels of complete reporting, as well as catalogs of historical
earthquakes. The technique was used in this study to identify periodicities in the 1725-1996
Baikal seismicity and in the worldwide catalog for 1900-1995. The Baikal periodicities are
2.5, 5, 10-11, 18-19, and 35-50 years, the periods for the worldwide catalog being 1.5,
4, 9-10, and 35-40 years. Possible causes of these periodicities are discussed.

INTRODUCTION

A search for periodicities of seismicity has a long history [6], [8], [15], [16], [19], [20],
{231, [25], [26]. Periodicities can be caused by external, outer space factors and by
internal processes such as periodic oscillations of the Earth’s core or hypothetical
periodicities of tectonic processes. In his review of the role of outer space factors in
geotectonics Kropotkin [6] concluded that tectonic processes could be caused by two
factors: (1) the internal evolution of the Earth driven by heat generation due to the decay
of radioactive elements and the differentiation of the Earth’s silicate shell and (2) external
outer space factors, the leading of these being the Sun’s electromagnetic radiation and the
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74 A. A. LYUBUSHIN ET AL.

gravity fields of the Sun and Moon, which have a well-pronounced polyharmonic
composition.

Periodicities are inherent in very many natural processes, including the geologic ones.
Many investigators attempt to unravel and explain tectonic mechanisms and associated
seismicity by appealing to observed quasi-cyclicities and quasi-periodicities. The latter
have a vast range of periods, from many million years to a few hours or minutes {1}, [2].
Particular interest to periodicities in seismicity was recently evinced in relation to some
applied problems that have direct bearing on earthquake prediction and earthquake
precursory processes [11], [12], [13], [14], [18].

Since the quantitative evaluation of the effects of these periodic factors is a
complicated problem that can hardly be solved in a general form, one has to make use of
spectral analysis applied to earthquake catalogs in order to compare its results with the
periods of outer space phenomena. A few studies of this kind revealed (to varying degrees
of certainty) several periodicities of seismicity. The foremost among these are the 11- and
80-90-year periodicities related to solar activity [16], [19], [26], and also the approxi-
mately 19-year seismic periodicity which is probably related to the periods of rotation of
the Moon’s orbit nodes [19]. The latter was reported for the Baikal seismicity [8]. Also
reported was a 5.5-year periodicity [20] and several others. This list of seismic
periodicities can be considered neither exhaustive nor sufficiently reliable, because spectral
analysis, as applied to earthquake catalogs, is a specific statistical problem that cannot be
reduced to the conventional spectral analysis of continuous processes. This paper is
concerned with a statistical spectral analysis of seismicity based on earthquake sequences
assumed to be a Poisson process with a time-dependent rate. The technique proposed here
is applied to search for periodicities in the Baikal seismicity and in the worldwide NEIC
catalog.

SPECIFIC CHARACTER OF THE SPECTRAL ANALYSIS OF SEISMICITY

The first distinction to be made is that between periodic and cyclic processes. The latter
consist of several phases that alternate.in a definite order, the phases having indefinite
(shorter or longer) durations. In contrast to cyclic variations, periodic fluctuations can be
envisaged as consisting of a sum of harmonics with specified frequencies, amplitudes, and
phases. Stochastic narrow-band processes are often classified as periodic processes, an
example being a harmonic with a slowly varying amplltude and phase. This study is
concerned with periodicities in seismicity.

The seismicity of an area is described by its earthquake catalog. However, catalogs
are not homogeneous in time. An instrumental catalog reflects the evolution of an
observation seismograph network, such networks being constantly and significantly
improved during recent decades. This affected (generally diminished) the lowest
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completely reported magnitude, involving other catalog parameters as well. An analysis
of periodicities of several tens of years requires a catalog whose observation time would
be a few times as long. One is thus forced to have recourse to catalogs of so-called
"historical" earthquakes, which are inferred from written sources on structural damage
and other non-instrumental evidence. The reliability of identifying these earthquakes and
the accuracy of determining their parameters are naturally worse than those of
instrumentally recorded events. The lowest magnitude of complete reporting for a
historical catalog usually decreases as time goes on. Accordingly, the reliability of event
identification and the mean rate of earthquake occurrence increase. This seems to be due
to increasing population density in the area, hence to the lower probability of missing
relatively smaller earthquakes, though other causes may contribute as well.

Spectral analysis has thus to be based on a mixed earthquake catalog (of historical plus
instrumental evenis) involving a time-varying lower magnitude of complete reporting.
Moreover, this lower magnitude may sometimes vary nonmonotonically. For example, it
went up appreciably during the two world wars (1914-1918 and 1939-1945), decreasing
again after the wars. Obviously, seismograph networks operated less efficiently during
war time,

Another specific feature of the problem is that spectral analysis has to be applied to
point processes (see, €.g., [7], [21], [27], [28]) rather than to ordinary continuous
processes (such as Gaussian ones), for which the conventional technique of spectral
analysis was developed [3]. A point process is specified by a sequence of points 7, the
times at which the events of interest occurred (earthquakes in our case). A widely known
example of a point process is the Poisson process, which behaves independently over two
nonintersecting time intervals. This is a typical process with uncorrelated increments. The
probability p, for n points in a sequence {t,) to occur in a time interval (7, T") for the
Poisson process is

_ e—A(A)n

' , n=0,1,2,..., (1)
nit

n

where A = N(T—T"); the parameter A, which gives the mean number of events in unit
time, being known as the rate of the process. If the rate A is a function of time, then the
probability for an event to occur in an elementary time interval (¢, 1+dt) is A(f)dt, while
the probability of nonoccurrence is 1 —A(#)dt. In that case the quantity A in (1) need be
replaced as follows

T.

A=LMOM.

The Poisson model is obviously unsuitable for aftershocks, because the probability of
aftershock occurrence depends on the main shock occurrence time. However, once the
aftershocks have been eliminated from a catalog using procedures such as, e.g., those
described in [9], [22], that is, when a sequence of main shocks remains, the Poisson
model becomes quite acceptable.
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Our analysis of periodicities in the point process of earthquake occurrence is based on
an analogue of a periodogram, namely the square of the absolute value of the Fourier
transform applied to the sample of a random process. We use the likelihood ratio, as an
analogue in question for each frequency w, between two hypotheses H, and H,:

H, is a Poisson process with a constant rate A;

H, is a Poisson process with the rate

A-a[l +rcos(wt+g)], r <1 )

where a gives the time-averaged rate of the seismic process (hereinafter understood as a
main shock rate); r, w, and ¢ are relative amplitude, frequency, and phase of the periodic
component. The form (2) for the rate is assumed to hold over a time interval where the
recording of earthquakes can be considered to take place under Stationary conditions.
Because the observation period may comprise several of such intervals, different values
of the a parameter (q,,..., a,) may be relevant to different intervals. Note that the
parameters 7, w, and ¢ are assumed to be constant throughout the entire observation
period.

Assuming the observed process to be a Poisson process, it is easy to write down
explicitly (apart from a constant that is independent of the parameters) the log likelihood
[ for an arbitrary time-dependent rate A(r) [7], [21]:

r

n
l=—£)\(t)dt+zln)\(tj). @)
j=1
One can thus write down likelihoods /; and /, for H, and H,, respectively, at any fixed
w. The likelihood [, is a function of the a,,..., a,, and /; is a function of w, q,,..., q,, 7,
@:
Ly =1(a,....a,),

I =1(w,a,,...,a,,7,¢).
The maxima of these likelihoods are:

l_'0=

max f(a,,...,a,);
ay,...,8,

(@)= max L (w,a,...,a,,7,¢).
Ay By T 9

The difference between these maxima L(w) is a likelihood ratio for the hypotheses H,
and H,

L) =@, 4)

and is an analogue of an ordinary periodogram. Asymptotically (as the observation time
(T" —T) increases) and for small r, the function L(w) is equivalent, apart from a constant
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factor, to the periodogram of a point process represented by the sum of é-functions placed
at the points t,. These two estimates are different for moderate and small values of
(T'—T), as well as for r near unity, L{w) being the more efficient estimate of the
spectrum. We note that for Gaussian processes a periodogram at frequency w can be
derived asymptotically as a difference between log likelihoods for the following two
hypotheses H, and Hy:

H, - Gaussian white noise with a zero mean;

H, - Gaussian white noise with the mean rcos(wt+¢), where r and ¢ are some
parameters.

The Gaussian assumption can then be discarded, and least squares estimates be used
for r and . Therefore we have good reason to treat L(w) as the analogue of a periodo-
gram for point processes. Naturally, L(w) can be used to estimate the spectrum for any
(not necessarily Poisson) point processes, though statistical properties of this estimate for
an arbitrary point process are much more difficult to derive.

The conventional method used in the spectral analysis of point processes is to sum the
numbers of events in successive time intervals (0, 8), (8, 26, (26, 35),... . Where the
interval § is long enough and contains at least 10 events on the average, the transformed
process can be treated using conventional spectral techniques, even though this process
is not strictly continuous, taking on as it does integer values only. Incidentally, the
departure from continuity is not large and is decreasing as & increases. However, this
transformation to an ordinary process makes all periods less than & lost for analysis.
Moreover, since a catalog has a fixed length 7, this procedure reduces the number of
sample data points (which is equal to 7/8), leading to undesirable statistical effects. The
parametric method proposed here for the identification of periodicities in a point process
is free from these drawbacks.

IDENTIFICATION OF PERIODICITIES IN A POINT PROCESS USING A
PARAMETRIC MODEL

Consider an earthquake catalog with aftershocks eliminated. Let the observation time for
the catalog be (T, T"), and the occurrence times of main shocks be ¢,..., ¢,. Suppose
further that the entire observation interval (7, 7’) can be divided into stationary
subintervals (T, T\"), (T, T,'),..., (T,,, T,,'), the rate on each subinterval being

NO =a[l+rcos(wt+e)l; T, <t <T/'; i=1,..,m, (5

where a,, r < 1, ¢ are unknown parameters to be estimated for each of the analyzed
frequencies wy, < w =< ; w, and Q are the lower and upper boundaries of the frequency
range of interest; T, = T; T,,’ = T'. Two successive intervals (7,, T, ), (T;,,, T";,,) can
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be strictly adjacent (so that 7;" = T;,,), or can have intervening gaps (so that 7, < T}, )).
The parameter g; in (5) gives the background rate, while the component a;rcos(wt+¢)
describes a periodic component of the point process with frequency w, the associated
phase being constant throughout the entire interval (7, 7”). The assumption of possibly
different g; in different intervals (T;, 7,') simulates the situation in which the lower
completely reported earthquake size may vary over time, while the frequency and phase
of the periodic component, as well as the ratio of the amplitude of that component to the
background amplitude 7, remain constant throughout the entire observation time.

The use of (3) yields likelihood functions /y(a,,..., a,) and [|(a,,..., a,, 7, ¢) for the
hypotheses Hy and H,:

Iy(ay,....a,) =-2Y a;A;+Y nlna; ©)
i=1 i=1

n T"

L(0,8,,...,8,,7,0) = =Y a,l[l +rcos(wt+p)]dt+

i=1

+Y nlna;+
i=1 J
The following notation is used in (6) and (7): A; = (I";—T)/2; n, being the number

of events in (T}, T}").

It is easy to find the 4; values which maximize (5):

In[1 +rcos(wt+¢)]. (7
-1

a n;
a, = ——
2

i

The maximum {, thus has the form
1_=—n+§: nin . (8)
0 i=1 ' 2Ai

It is also easy to find @; values for which (7) attains the maximum, even though they
are functions of r and ¢:

~1

T;
a,=n, 7[[1+rCOS(wl+ga)]dl ) )
To find the maximum of [\(a,,..., a,, 7, ¢) over r, ¢ we differentiate (6) with respect
to 7, ¢ and, integrating the trigonometric functions, obtain two equations:
. sin(wA) 1 cos{w L+ )

—2ai_w—cos(w Ti+ga)+z
i=

j=1

1 +rcos(w lj+ga)

where 7, = (T"; = T))/2. Replacing the g; in (10) and (11) with the expressions for ; as
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. . " .
a!.Sln(wAi)sin(wr,.+<p)—Z Sln((.olj+<p) _o0. (11)
s w s 1+rcos(wz/.+g;)
given by (9), we obtain two nonlinear equations for estimating r and ¢. Solution of these
equations by a standard numerical technique or simple trial-and-error fitting will yield the
maximum likelihood estimates 7 and @. Substitution of these in (9) gives the desired
values of the a..

To sum up, substituting the maximum likelihood estimates a,,..., @, r, ¢ into (7), we
get 71(w) and using (4) we find L(w), the quantity which will be called below the
generalized spectrum (or simply spectrum) of the point process under study.

A very important problem in spectral analysis is to estimate the significance of spectral
peaks. A rigorous solution of this problem is not yet available. In this paper we propose
merely some simplified relations that can be helpful to judge about the significance of
spectral peaks.

Suppose the observed times ¢,..., f, are drawn from a Poisson process with a constant
rate N\. According to Wilks’ theory [17] (see also {10], p.370), the spectrum L(w) at any
frequency w is asymptotically disturbed as O.szz, as the observation time increases,
where x,? is a chi-square random variable with two degrees of freedom, in accordance
with the two extra parameters r and ¢, the likelihood function /,(a,, ..., a,,, 7, ¢) involves
compared with /y(ay,..., a,). Consequently, under the null hypothesis A = constant, the
asymptotic spectrum L(w) has a standard exponential distribution for each w. Hence one
easily finds the confidence boundary u(1—¢) of level 1 —¢ for L(w):

u(l-¢)=-Ine. (12)

There is the probability 1 —¢ of L(w) remaining below u(1—¢), that is, the observed
value of L(w) is significant at the level

1-exp[-L(w)]. (13)

However, the spectrum L(w) (similarly to the periodogram) is of interest not for the value
of L(w) at some frequency w, but for the values of L(w) maxima, which will not be
distributed like 0.5%,2. To overcome this difficulty, consider the L(w) behavior as a
function of frequency. Examples of L(w) for a simulated and an observed catalog are
shown in Figs 1 and 2. The spectrum L(w) i3 seen to be oscillatory, similar to ordinary
periodograms, hence it should preferably be smoothed over the frequency, similarly to
periodograms. It can be shown in a way like that employed for the periodograms of a
continuous process that L(w) behaves like the sample of a random process for the Poisson
process with constant rate N, and even for more general processes (including those with
random rates [21]), the fluctuations of that sample around a mean having a correlation
distance equal to 1/(T'—T), where (T"—T) is the length of the observation interval.
Therefore, asymptotically, when (7" —7) is long enough, the spectrum L(w) can be
smoothed with a spectral window w(w) of width Aw containing approximately
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Aw(T" —T)/2w uncorrelated values of L(w) sampled on the axis of circular frequency at
intervals of 2#/(T" —T). In this procedure, as is usual in ordinary spectral analysis, one
has to choose a compromise between the frequency resolution as controlled by window
width Aw and the scatter of the local spectral estimate as controlled by the number of
degrees of freedom Aw(T' —T)2« (for more detail see [3] where this issue is discussed for
ordinary spectral analysis).

Vi

_[_ I 94,9

T T T T 1717 T AN B B B e AR A

T T | I B N B R T T T 1T T T 17717
/ 7 /00 T, years

Figure 1 Increments of a log likelihood function for the Baikal region based on historical and
instrumental earthquake catalogs for the period of 1725-1996 as a function of period 7 = w/27.
a - unsmoothed spectrum; b — spectrum smoothed with a window of Aw = 0.094. The dashed line
indicates the upper 95% boundary for the highest spectral peak.

Returning to our problem of the significance of L(w) spectral peaks, the above
considerations suggest that the L(w) frequency maximum in the frequency range of interest
(1w, has approximately the same distribution as the largest of the (1/2m)(Q—w)T'=T)
independent observations of a random variable having a standard exponential probability
density. The approximate character of this statement follows from the fact that it refers
to discrete values of L(w), while in practice we deal with L(w) peaks of continuously




SEISMICITY PERIODICITIES 81

varying frequency. which are slightly larger.
Denote the integer part of [(Q—w)27|(T"—T) by N:

0- 1
N =entier ) 29 o 7y

2 J

L)

a
20 -

\ 214.93)

Figure 2 Increments of a log likelihood function for simulated point processes: I - 1l-year
periodicity in a Poisson process, relative amplitude being 0.5; 2 - simple Poisson process, eight
samples. a - spectra; b - estimated amplitudes of harmonics. The dashed line indicates the upper
95% boundary for the highest spectral peak.
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Then, in the light of the above approximation, the variable { = max L(w) has the
following distribution function:

F(x)=P{r<x}$-e*)".

From this one easily finds the upper confidence boundary U(1—¢) of level 1—¢ for
the largest L{w) peak:

U(l -&) = ~In[1 - (1 -&)"]. (14)
Accordingly, the significance level of the peak max L(w) is
{1 -exp[-maxL(w)]}". » (15)

Relations (14) and (15) provide the approximate significance of L(w) peaks.

When r is small and (7" —7) large, one can derive explicit expressions for 7(w) and
L(w) by expanding the logarithnr in the likelihood function (7) in a series in powers of r
and retaining the terms of order r* alone. The result is

(16)

n

4 n 2 n 2
P (w) ~ = [21: cosmj] + [Zl: sinwtj] :
Jj= j=

1 n 2 n 2 a7n
L(w) - [Ecosmj] + [Esinwtj]
J=1 j=1

One can see that these estimates are identical, apart from constant factors, with the
periodogram obtained from a sample of a point process with §-functions at the points
f,..., t,. It follows that our spectrum L(w) is actually identical with the ordinary
periodogram.

Figure 2 shows the results obtained for synthetic catalogs by simulating seven samples
of a simple Poisson process (1) and a sample with a periodic rate (2), the period being 11
years. Also indicated in this Figure is the upper confidence boundary U(1—¢) of level
(1—¢), equal to 0.95. It is seen that all spectral peaks of simple Poisson samples but one
are below U(1 —e¢), while the peak corresponding to the periodic rate is clearly in excess
of U(1—¢).

IDENTIFICATION OF PERIODICITIES IN THE BAIKAL EARTHQUAKE
CATALOG, 1725-1996, AND IN THE WORLDWIDE CATALOG, 1900-1995

Figure 3 shows the M = 6.0 seismicity of the Baikal region for the period 1725 to
February 1996 based on [4] and a current catalog. The rate shows an overall increase over
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time until the 20th century. The most likely explanation of this phenomenon is an
increasing population density mostly due to the settling of this new territory during the
18-19th centuries. This process was obviously neither uniform in time nor homogeneous
over the area. Large earthquakes began to be recorded instrumentally since 1900.
However, even the period of instrumental recording contains time intervals with widely
differing rates. Examples are the civil war years (1918-1923), when no earthquakes were
recorded possibly owing to the civil war conditions and subsequent economic disorganiza-
tion, as well as the years 1941-1950, during which recording might be hampered by the
world war and the postwar rehabilitation of the economy. Taking into account these and
other historical and demographic factors, we selected the following six, more or less
homogeneous, intervals of earthquake recording, which, in our opinion, were marked by
a mean constant rate of earthquake occurrence:

1) 1725-1900: M = 6, n = 40;
2) 1900-1917: M = 6, n = 18;
3) 1923-1941: M = 6, n = 21;
4) 1952-1960: M = 6, n = 15;
5) 1960-1987: M = 6, n = 25;
6) 1987-1996: M = 6, n = 14,

Our catalog thus contained 133 earthquakes of M = 6 for the time period of

I

19 7, years

’

M

Nz 77 720/
Figure 3 Time behavior of M = 6.0 Baikal seismicity for a period of 1725 to 1996.
Each of the selected intervals was assumed to have the form (2) of the rate \(¢) with

its own mean g;, the periodicity with frequency w and phase ¢ being the same for all
intervals. It should be noted that our analytical method does not engender spurious
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periodicities due to the omission of intervals that are suspicious for deteriorated recording
or none at all, or else resulting from the division of an interval into two separate
subintervals where actually no changes in recording conditions are present. These
operations can at most merely slightly reduce the identification efficiency of the
periodicity owing to more nuisance parameters to be estimated and to some slight
reduction in the total length of the time interval under study.

A more detailed spectral analysis was done for the instrumentally recorded seismicity
of 1952-1996. For one thing, the cutoff magnitude was lowered to M = 4. Secondly, we
examined the seismicity for the entire Baikal region as a whole and separately for three
subregions (western, central, and northeastern), here denoted as Q,, @,, and (O,
respectively. Subregion Q, is the western part of the Baikal region, bounded on the east
by longitude 104°E. Subregion Q, is adjacent to Q, and is bounded on the east by a
straight line approximately passing through the cities of Bratsk and Chita. The remaining,
northeastern part of the region is denoted ;. The results of our spectral analysis are
presented in Fig. 4. We will discuss individual results for the three subregions. Three
magnitude ranges were examined for each subregion: M = 5, M = 4.5, and M = 4.
This was done to compare almost completely different sets of earthquakes occurring in
the same region and examine spectral peaks for stability. In subregion Q,, three peaks
were identified with the periods about 2.6, 6, and 18 years primarily based on the most
complete variant of M = 4. We note that the 10-11-year periodicity was not found,
although it was significant at various levels in all of the other spectra; one can just discern
a kind of a peak around 8-9 years for relatively higher magnitudes (M = 5.0, M = 4.5).
Peaks with periods of 2.2, 5, 10-11, and 18 years were identified for the highest-
magnitude seismicity (M = 5.0) in subregion Q,. The most prominent periodicity of
10-11 years was found in all three variants. This periodicity was also identified in
subregion Q,, in addition to a 2.6-year peak. An analysis of the entire Baikal region for
the same observation time, 1952-1996, as well as individual analyses, revealed two most
significant peaks with periods of 10-11 and 2.7 years. There was another peak around a
period of 40 years for the largest earthquakes (M = 6), and also a small one with a
period of 18 years for the M = 4.0 seismicity.

We now turn to the results of the entire 1725-1996 catalog whose spectra are
displayed in Fig. 1. The total period being about 250 years, the plot of the L(w) spectrum
in Fig. 1, a looks very jagged. Figure 1, b shows a smoothed variant of this spectrum
with a spectral window being 0.094 wide, that is, equivalent to 3.75 discrete frequency
values. One can see that the analysis of the complete catalog gave results that were not
very different from those for the 1952-1996 catalog. One can see a 10-11-year period,
although the peak is smaller, as well as peaks with periods of 1.8, 2-2.5, 5, 8-9, and 50
years. The most significant are periods of 2.5 and 5 years. The doubling of the 2-2.5-year
peak may have been due to some slow variation of the relevant phase over time.

The 10-11-year period, which is very prominent in the instrumental 1952-1996
catalog, might have been related to the known periodicity in solar activity, as reported in
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Figure 4 Increments of a log likelihood function for western subregion Q, of the Baikal region,

1952-1996: A - middle Baikal subregion Q,, 1952-1996; B - northeastern Baikal subregion Q;,

1952-1996; C - entire Baikal region, 1952-1996; D - as a function of period 7 = w/27. The M
values: a - =5.0; b - 24.5; c - 24.0; b' - 26.0.
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[16], [26]). The ~2-2.5-year periodicity is fairly strong, its relative amplitude 7(w) being
0.48. This periodicity had not been identified before, and its further analysis may prove
to be very useful both theoretically and practically. Figure 4, D, a’ possibly contains a
peak around 18-19 years. This periodicity was first mentioned in [8] and later in [19};
these authors related it to the rotation period of the Moon’s nodal line. This implication
requires further study. The periodicity seen around 40-50 years in Fig. 4, D, b’ is not
very significant, but still there is a peak. We recognized this peak as identified, because
the 35-50-year periodicity was clearly identified in the worldwide catalog (Fig. 5) and was
mentioned in a review of seismic energy release for the 1910-1990 seismicity [24]. This
periodicity had also been identified previously in the Baikal seismicity [11], {12], [13].
A possible cause of the 35-50-year periodicity was suggested in [24]: the conversion of
spheroidal (subvertical) disturbances into toroidal (subhorizontal) ones by a plate tectonic
mechanism. Note that the worldwide spectrum in Fig. 5 also contains a periodicity around
9-10 years and short-period ones of 1.5-2 and 4 years.

Our spectral analysis of seismicity was based on the times 7,,..., #, of earthquakes with
energies above a specified cutoff magnitude. The question may arise as to the possibility
of applying spectral analysis directly to a sequence of seismic energies released, say, for
one year instead of to times ¢,,..., f,. The fact is that this analysis would have given very
indefinite results from the standpoint of statistics, because earthquake energy estimates are
unstable (this can be demonstrated by handling simulated catalogs). We prefer our
technique of spectral analysis as applied to point processes, in which earthquake energy
can be incorporated into the analysis by a suitable choice of magnitude ranges, as shown
above.

DISCUSSION OF RESULTS

The results obtained by the spectral analysis technique proposed here can be interpreted
and used as follows.

The periodicities of 2.5, 5, 10-11, 18-19, and 35-50 years identified in the seismicity
of the Baikal Rift Zone are not equally significant, the 2.5- and 10-11-year ones being the
most significant. It is as yet difficult to say anything definite as to the causes, origins, and
mechanisms that are responsible for periodicities or quasi-cyclicities in the release of
seismic energy. However, physical experiments on prefailure and failure in solids yielded
results that suggest certain possible causes of seismicity fluctuations by relating these,
e.g., to some triggering mechanisms in the form of discrete wave movements of various
origins. These can be subdivided in size into extraterrestrial, worldwide, regional, and
local ones. The last two types can be observed as strain waves that are radiated from
regions of high tectonic activity, for instance, from the area of collision between the
Hindustan and the Eurasian plate. The origins of extraterrestrial and worldwide triggers
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Figure 5 Increments of a log likelihood function for worldwide NEIC catalog, 1900-1995; M =
7.5. depth < 100 km, 296 earthquakes: a - plotted against frequency w/2w; b - plotted against
period 7 = w/27. The dashed line indicates the upper 95% boundary for the highest spectral peak.

vary greatly and are not yet clear, though judging from the observed harmonics, some of
them can be related to the Earth’s rotation, the Chandler wobble, the orbital position of
the Earth relative to the sun during different months of the year, lunar and solar tides, and
possibly to some other outer space-related causes. The action of a triggering mechanism
as it affects seismicity can be envisaged as follows. In rock volumes under extreme
dynamic instability, very small disturbances due to some oscillators would be sufficient
to start avalanche-unstable cracking or rapid slip between the two walls of an earthquake-
generating fault (stick-slip model). The authors of [5], for example, give the following
explanation of changes in the velocity of the Earth’s daily rotation, which can trigger
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earthquakes. The energy of solar wind coming to the Earth can be transformed to the
electromagnetic energy of currents which flow through the ionosphere and are transformed
to thermal and mechanical energy. The quasi-periodic effect of the interplanetary space
on the Earth is transmitted via magnetospheric-ionospheric-atmospheric disturbances,
which have sufficient energy to trigger fracture processes in the crust of seismic regions,
and hence outbreaks of seismicity activity. For instance, the energy of magnetic storms
is estimated as 3Xx10% ergs, and that of the solar wind as 6Xx10% ergs, the values
comparable with the energy of large earthquakes. It is significant that seismicity peaks
generally occur 3+1 days after magnetic storms, that is, after a time interval that is
required to transmit and transform the magnetic-storm energy via the Earth’s magnetic
field and ionospheric-atmospheric disturbances that do the part of the triggers. The
mechanisms of external quasiperiodic disturbances may be very diverse but, even though
their origin is as yet unknown, it can be supposed that they exert some regulating effect
on seismicity. Therefore the 2.5-, 10-11-, 18-19-, and 35-50-year periodicities identified
in the seismicity of the Baikal Rift Zone or other regions can already today be used in
earthquake prediction for extrapolating a specified time interval. Such attempts were made
in the Baikal region. The results indicate that expected periodic changes in the seismicity
“weather" in the region should be taken into account when forecasting for the future few
years or tens of years. Obviously, assessments of seismic risk and earthquake hazard for
the Baikal region will also be modified in accordance with the observed periodicities in
the seismicity of the region.

This work was in part supported by INTAS grant 94-232. We are grateful to
T. A. Rukavishnikova for her assistance in preparing the manuscript of this paper.

REFERENCES

1.  H. Benioff, Bull. Geol. Soc. Amer. 62, N4: 331-352 (1951).

V. N. Dech and L. D. Knoring, Metody izucheniya periodicheskikh yavlenii v geologii

(Methods for Studying Periodic Phenomena in Geology)(Leningrad: Nedra, 1985).

3. G. M. Jenkins and D. G. Watts, Spectral Analysis and its Applications (San Francisco:
Holden Day, 1968).

4. M. A. Sadovsky, ed., Karta seismicheskogo raionirovaniya SSSR. Obiyasnitelnaya zapiska
(Seismic Zonation Map of the USSR. Explanatory Notes)(Moscow: Nauka, 1984).

5. V.1 Kozlovand P. F. Krymsky, Fizicheskie osnovaniya prognoza katastroficheskikh yavlenii
(Physical Principles Underlying Prediction of Catastrophic Phenomena)(Yakutsk: YaNTs SO
RAN, 1993).

6.  P. N. Kropotkin, Geotektonika N2: 30-46 (1970).

7. Yu. A. Kutoyants, Otsenivanie parametrov sluchainykh protsessov (Estimation of Parameters
of Random Processes)(Yerevan: AN ArmSSR, 1980).

8. V. V. Lamakin, Dokl. AN SSSR 170, N2: 410-413 (1966).

B




10.
11.

12.

13.

14.

15.
16.
17.
18.
19.

20.
21.
22.
23,
24.
25.
26.
27.
28.

SEISMICITY PERIODICITIES 89

G. M. Molchan and O. E. Dmitrieva, in: Seismichnost i seismicheskoe raionirovanie Severnoi
Evrazii, Vyp. I (Seismicity and Seismic Zonation of North Eurasia, Iss. 1)(Moscow: Nauka,
1992): 62-69.

C. R. Rao, Linear Statistical Inference and Its Applications (New York: Wiley, 1965).

V. V. Ruzhich, in: Baikal i gory vokrug nego (Lake Baikal and the Surrounding Moun-
tains)(Irkutsk: Abstr. Interreg. Geomorph. Seminar, 1994): 40-41.

V. V. Ruzhich, in: Tez. dokl. Mezhdunar. soveshch. "Baikal — prirodnaya laboratoriya dlya
issledovaniya izmenenii okruzhayushchei sredy i klimata” (Abstr. Internat. Conf. "Lake
Baikal: a Natural Laboratory for Investigating Changes in Environment and Climate") vol.
4 (Irkutsk, 1994): 40-41.

V. V. Ruzhich and V. Yu. Buddo, in: Tez. dokl. V Vseros. shkoly-seminara "Fizicheskie
osnovy prognozirovaniya razrusheniya gornykh porod” (Abstr. All-Russia School "Physical
Principles for Predicting Rock Failure")(Irkutsk, 1994): 50-51.

V. V. Ruzhich, V. S. Khromovskikh, and V. A. Peryazev, in: Inzhenernaya geodinamika i
geologicheskaya sreda (Engineering Geodynamics and the Geologic Medium)(Novosibirsk:
Nauka, 1989): 72-81.

L. N. Rykunov and V. B. Smirnov, Izv. AN SSSR. Fizika Zemli N1: 97-103 (1985).

A. D. Sytinsky, Geomagnetizm i Aeronomiya 3, N1: 148-156 (1963).

S. S. Wilks, Mathematical Statistics (Princeton University Press, 1946).

A. V. Chipizubov, Geol. Geofiz. N12: 138-150 (1994).

V. A. Shirokov, in: Geologicheskie i geograficheskie dannye o BTTI, 1975-1976 gg.
(Geological and Geographic Data on the Great Tolbachik Fissure Eruption, 1975-1976)
(Moscow: Nauka, 1978): 164-170.

A. M. Shurygin and M. G. Odinets, Volcanol. Seismol. 6, N6 (1984).

D. R. Brillinger, Canad. J. Statistics 7, N1: 21-27 (1979).

J. K. Gardner and L. Knopoff, Bull. Seismol. Soc. Amer. 64. 1363-1367 (1974).

T. H. Heaton, Geophys. J. 43: 303-326 (1957).

B. Romanowicz, Science 260: 1923-1926 (1993).

J. F. Simpson, Earth Planet. Sci. Lett. 2, N5: 473-478 (1967).

J. F. Simpson, Earth Planet. Sci. Lett. 3, N5: 417-425 (1968).

D. Vere-Jones, J. Phys. Earth 26, N4: 129-146 (1978).

D. Vere-Jones and T. Ozaki, Amer. Inst. Statist. Mathem. 34: 189-207 (1982).



https://www.researchgate.net/publication/264736699

