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Abstract. For flows associated with small strains, the rheology of rocks is described
by a linear integral (having a memory) law, which reduces to the Andrade law in
the case of constant stresses. The continental lithosphere with such a rheology is
overstable. Thermoconvective waves propagating through the lithosphere without
attenuation have a period of about 200 Ma and a wavelength of the order of 400 km.
A pointwise perturbation of the initial temperature in the lithosphere excites
amplitude-modulated thermoconvective waves (wave packets). When the initial
perturbation occupies a finite area, thermoconvective waves move outside from this
area and thermoconvective oscillations (standing waves) are settled within the area.
Thermoconvective waves induce oscillations of the Earth’ surface, accompanied by
sedimentation and erosion, and can be viewed as a mechanism for the distribution

of sediments on continental cratons.

1. Introduction

A power-law non-Newtonian fluid is usually assumed
to model slow flows in the mantle and, in particular,
convective flows. However,the power-law fluid has no
memory in contrast to a real material. A new nonlinear
model with a memory was recently proposed recently
by Birger [1998]. The proposed model reduces to the
power-law fluid model for stationary flows and to the
Andrade model for flows associated with small strains.

The steady-state convection beneath continents was
studied by Fleitout and Yuen [1984], who used a power-
law fluid model and obtained a cold immobile boundary
layer (the continental lithosphere). In stability analy-
sis of this layer, the Andrade model must, however, be
used. The analysis shows that the lithosphere is over-
stable, with a period of oscillations of about 200 Ma.
These thermoconvective oscillations of the lithosphere
are suggested to provide a mechanism for the formation
and evolution of sedimentary basins on continental cra-
tons [Birger, 1998]. The vertical crustal movement in
sedimentary basins can be respresented as a slow subsi-
dence on which small-amplitude oscillations are super-
imposed. The longest period of the oscillatory crustal
movement is of the same order of magnitude as the pe-
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riod of convective oscillation of the lithosphere found in
the stability analysis. Taking into account the difference
between the depositional and erosional transport rates
we can explain the permanent subsidence of sedimen-
tary basins; as well as their oscillation [Birger, 1998].
Analysis of convective stability for a horizontal layer
involves perturbations harmonically depending of the
horizontal coordinate. For a layer with the Andrade
rheology, the instability is oscillatory and perturbations
can take the form of travelling and standing thermocon-
vective waves. In this study, we adress the problems on
the generation of thermoconvective waves under various
initial conditions: the linearized equations for thermal
convection in a layer with the Andrade rheology are
solved for given initial perturbations of temperature.

2. Governing equations
A linear rheological model (having a memory) of the

lithosphere is described by the integral relationship

t

262’]’ :/[((t—tl)ﬂ']’(tl)dtl,
0

(1)

where €;; and 7;; are the deviatoric strain and stress
tensors, respectively, ¢ is time, and K (¢) is the creep
kernel given by

K(t) =t"%3/34, (2)

where A is the Andrade rheological parameter. The
creep kernel (2) is introduced so that, in the case of
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constant stress, the strain depends on time as t/3 (the
Andrade law).

The linearized equations of thermal convection in a
horizontal layer heated from below are written as

—0p/0x 4 OTpe /02 + OTpy/dy + 07, /02 = 0,

—0p/0y + OTwy/0x + O1yy /Oy + 07y, /02 = 0,
—0p/0z+4 07y, /02 + 07y, [Oy+ 07, /02+Rabl =0, (3)

Ovg [0z + Ovy /Oy + Ov, [0z = 0,

00/0t — 9*0/0x* — 0*0)0y* — 8%0/92* — v, = 0,

where z is the vertical coordinate, x and y are the hor-
1zontal coordinates, v is the velocity, ¢ and p are the
perturbations of temperature and pressure. The set of
equations (3) is written in the dimensionless form. The
length scale is layer thickness d and the temperature
scale 1s a temperature drop AT between the hot lower
and cold upper surfaces of the layer (both surfaces are
supposed to be isothermal). The time scale is d?/x,
where & 1s the thermal diffusivity, and the velocity scale
is k/d. For a Newtonian fluid, the stress (and pressure)
scale knd? is usually taken, and the Rayleigh number is
Ra = pgaATd?/nk, where p is the density, a is the ther-
mal expansion coefficient, g is the gravitational accelera-
tion, and 7 is the Newtonian viscosity having the dimen-
sion of Pa s. For the Andrade rheological medium (the
Andrade parameter A has the dimension of Pa 81/3), we
introduce a reference viscosity

na = A(d*/x)*/°.
Then, the Rayleigh number is defined as

Ra = pgaATd® /nar = pgaATd(d? /)3 /A,  (4)
and the stress scale is knad®> = A(d?/x)=1/3.

The lithosphere is characterized by the following
depth-averaged values [Birger, 1995]:

d=210m, AT =10°°K, a=410"°°K~1

p=35100kgm™>, ¢g=10ms"2 (5)

k=10""m?s™t, A=10"%Pa s'/3,

Equations (3) were written in the Boussinesq approx-
imation, which is valid if several dimensionless parame-
ters are small; one of these parameters is « AT. This pa-

rameter is estimated for the lithosphere as « AT = 0.04.
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As the zero-order approximation in the small parame-
ter a AT, the upper free-deformable surface of the layer,
where stresses vanish, behaves like a “free” boundarys;
1.e., the condition of zero normal stress 1s replaced by a
condition of zero vertical velocity on this boundary. Let
us suppose the lower boundary of the layer to be also
“free”. Then, the boundary conditions on the upper
and lower surfaces of the layer are

z =0, (6)

Note that the use (6) permits us to find an exact solution
that is not significantly different from the numerical so-
lutions obtained for more realistic boundary conditions
[Birger, 1995, 1998].

The set of equations (1)—(6) has a solution in the form
of a thermoconvective wave

z2=1; v, =Tp, =Ty, =0 =0.

6§ =CFEsinnz, E =expilkez + kyy + wit),

- C’E[iﬂ'l{foa/(]{f2 + 7T2)2F(w)] cos Tz,

212 12
k* = ki 4k
v, = CE[irk,Ra/(k* + 72)? F(w)] cos 72,

v, = CE[Ra 1472/(]{72 + 7T2)2F(w)] sinmz,

where C'is an arbitrary complex factor (the amplitude
of temperature), k, and k, are the components of wave
vector describing the periodicity in the horizontal direc-
tions, k is the wave number, w is the complex frequency
(its imaginary part describes the wave attenuation), and
F(w) is the complex viscosity defined as

F(w) = 1/iwK* (iw), K*(M):/K(t)e—iwtdt, (8)

K*(iw) being the Laplace transform of the creep kernel.
The complex viscosity is related to the wave number k
by the dispersion relation

iwF (W) (K2 4+ 72 + F(w) (K +7)? - Rak?>=0. (9)

This allows to find such a value of the Rayleigh number
Ra,, (called the minimal critical Rayleigh number) that
only a wave with & = k,,, and frequency w = w,, does
not attenuate. For the Andrade rheological model, the
complex viscosity is

Fw) = (1/3)T(1/3)(iw) =3, (1/3)[(1/3) ~ 1, (10)
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where T'(z) is the gamma-function, and Ra,, &, and
Wy, take on the following values:

bk = 37)2 7 2.7,

wm = V32 + 712 = V31?2 /4 ~ 30, (11)

Ra,, =2 3713(k2 4+ 7273 k2, ~ 150.

According to the estimated parameters the lithosphere
(5), the Rayleigh number Ra for the lithosphere is on
the same order of magnitude as Ray,. Thus, the litho-
sphere is in the state close to its instability threshold. If
Ra > Ra,,, the initial perturbations increase with time,
and at large ¢, both the linearized equations of thermal
convection (3) and the linear rheological relationship (1)
cannot be used. If Ra < Ra,,, the solution of the set of
equations (1)—(6), for a given but not too great initial
perturbation of temperature, completely describes the
evolution of the perturbations in the layer modeling the
lithosphere.

The solution (7)-(11) is obtained in the zero-order
approximation in the small parameter AT In this ap-
proximation, the vertical displacement u, of the upper
surface of the layer is equal to zero. In the the same
approximation in a AT, we find

u, = aAT[r(7? + 3k%)/(k* + m4)?]CE, (12)
which does not depend on the rheology of the layer.

If the initial perturbation of temperature at ¢ = 0 is
given in the form

Bo(z,y,2) = by expli(kez + kyy)] sin 7z, (13)
the factor C'in (7) and (12) is defined as C' = 6. How-
ever, the initial condition (13) does not completely de-
termine the evolution of the perturbations. Since the
wavenumber k, rather than the components k, and k,
of the wave vector, enters the dispersion relation (9), in
addition to the thermoconvective wave (7), there is a
solution with the wave vector (—k,, —k,) describing the
wave that runs in the opposite direction. The superpo-
sition of the waves, travelling in the opposite directions,
forms a standing wave (thermoconvective oscillation).
The solutions of governing equations (3)—(6) in the form
of both running and standing waves satisfy the initial
condition (13). This ambiguity is removed if the initial
perturbation (13) is replaced by a more realistic initial
perturbation that occupies a finite region and tends to
zero for large  and y. Such centered initial perturba-
tions are treated in the next sections of the paper.
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In this case, the initial temperature perturbation will
be given as

Oo(z,y,z) = Op(, y)sin mz,

where fy(z,y) is not zero only in a limited area on the
plane zy, and the solution is sought for in the form

H(I’yazat) = 9(1‘,3/,15) sin 7z.

Thus, the dependence of the solution on z is fixed, and
hence, the problem of three-dimensional distribution of
temperature perturbation in the lithosphere is reduced
to a two-dimensional problem. In the case, when the
initial temperature perturbation does not depend on y
and has the form @y(z), the problem of two- dimen-
sional temperature distribution is reduced to a one-
dimensional problem.

3. Transient process

The solution in the form of thermoconvective wave
is valid for a sufficiently large time elapsing from the
moment of the perturbation onset. Under this condi-
tion, the stresses harmonic in time induce strains also
harmonic in time in the rheological model (1), and the
complex analog of viscosity (10) depends only on the
frequency, rather than on time.

When the initial temperature perturbation is given in
the form (13), we seek a solution of convection equations
in the form

O(z,y,z,t) = 0(t) expli(kez + kyy)] sin wz.

Thus, the coordinate of the temperature and velocity
remains in the same form as (7) and the problem reduces
to the determination of the time dependence. We seek
the solution for & = k,, and Ra = Ra,;;, whose the values
are found in (11).

THe Laplace transformation of the basic equations
(1) and (3) and the elimination of all of the physical
variables, except the temperature, yields the Laplace
transform of the desired function #(¢)

07 (s)
=0o/[s — 2 3732, + 7H)Y323 1 (K2, + ©?)]. (14)
The viscosity analog is now the function
F(s) =573, (15)

Rearranging the denominator of the expression in the

right-hand side of (14),

s—2 3_1/3(14751 + 71'2)1/352/3 + (k2 + 7?)
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= (ky + )" = (3°/2) (VB 4] (16)
< [s1? = Y0 (VE = i)][s, " 43717,
where s; = s/(k2, + 72).
Since
[(31/6/2) (312 £ 0)]> = £i3!/2, (=371/%)3 = —1/3,

we may assume that the expression (16) is zero when
s1 = i31/2, s1 = —i31/2 and s1 = —1/3. However, ex-
pressions (10) and (15) for the complex viscosity imply
that only the first value of the root, for which the ar-
gument of the complex number s satisfies the condition
0 < args < 2w, must be used. Then,

(i31/2)1/3 — (31/6/2)(31/2 4 Z), (—i31/2)1/3 — 31/62"

(—1/3)/3 = 3713(1 4 i31/2) /2,

and hence, (16) is zero for s; = i31/2 but not for 51 =
—i3Y/% and s; = —1/3. The Laplace transform (14) can
be rewritten as

0o

) = AL+

(st + (V3) 5,7 4 (iVB)7)
5172 — (31/5/2)(v/3 — )](s,/" + 3-1/3)

This expression has two singularities: at the branch
point s = 0 and at the pole s = 2'31/2(14751 + 7%). In the
vicinity of point s = 0,

0" (s)
(18)
= 00/ (K2, + 7)1+ 2 3732, + 72) 723203 4],

and in the vicinity of point s = i3'/2(k2, 4 72),

07 (s)

= (3V3/T)(V3 = 20)00 /[s — iV/3(k2, +72)] + ... .

Using the theorem on the asymptotic behavior of
Laplace originals [e.g., Von Doetsch, 1967], we find the
following asymptotic solution for large ¢

(19)

0(t) = [2/3'°0(=2/3)160/[t(k}, + =*)]/°

+ (3V3/7) (V3 — 20)8y exp iwpnt, (20)
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where w,,, = 3%/2(k2, + 72), which corresponds to (11).
The first aperiodic term in the right-hand side of (20) is
much smaller than the second, periodic term, even for ¢
equal to the oscillation period 27 /w,, ~ 1/5. Thus, for
t > 27 /wy, the solution takes the form

0(t) = C1lp expiwnt, C1 = (3V3/7T)(V3 = 2i). (21)

Since |C] & 2, the amplitude of steady-state thermo-
convective wave is two times greater than the initial
amplitude of temperature perturbation 6y. The argu-
ment of complex number C defines a phase difference.
In the next sections of the paper, the factor C, which
appears in the transient process, is omitted for brevity.

4. One-dimensional problems with
initial conditions

Taking k, = 0 and k, = k, we first consider only
one-dimensional perturbations independent of the coor-
dinate y. FExpanding the complex frequency into the
Taylor series in the neighborhood of k& — &,

iw = iwy, + iV (k—kn) —alk —kn)*+...,  (22)
where the coefficient V' means the group velocity of a
packet of thermoconvective waves. Substituting (22)
into the dispersion relation (9), we find the values of
the coefficients in (22) for the Andrade model

V=3r a=(12+43Y%))7.

The group velocity V' of thermoconvective waves in a
medium with the Andrade rheology is slightly lower
than the phase velocity wy, /kn = 7Tr/2.

The initial temperature perturbation 0y (x) is repre-
sented in the form of the Fourier integral

oQ

/ O (k) exp(ikz)dk,

— 00

Oo(x) = (23)

where ®(k) is the Fourier transform of the initial tem-
perature

oQ

S(k) = (1/2m) / O () exp(—ikz)de.

— 00

(24)

The solution satisfying the initial condition is repre-
sented as

oQ

/ O (k) expli(ke + w(k)t)]dk.

— 00

0(x,1) = (25)
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Substituting the expansion of frequency (22) into (25)
and denoting k& — k,, = u, we obtain

oQ

O(x,t) = Em / D (km + u) exp[f(u)t]du,

— 00

(26)

where the integration is actually taken over a small
vicinity of the point v = 0 (k = k) and the follow-
ing notation is introduced

Em = expli(kmz + wnt)],

B=(x+Vi)/t, (27)

f(u) = iBu — au®.

The integral in (26) can then be evaluated by the saddle
point method [e.g., Copson, 1965]. The stationary point
ug 1s found from the condition

I (ug) = 0. (28)
Equations (27) and (28) give
ug = iB/2a. (29)

In the vicinity of point ug, function f(u) is represented
by the series

fu) = fluo) + f'(uo)(u — ug)/1!
+ [ (uo)(u —wg)® /2! 4. (30)

Since f'(ug) = 0 and f”(ug) = —2a, (30) takes the form

F(u) = f(uo) — alu — uo)?,

where only two first terms of expansion are retained.
Substituting (31) into (26),

(31)

O(x,1) (32)

=®(kpm + ug) Em exp[f(uo)t]/exp[—a(u — uo)zt]du.
c

The point ug is the saddle point for the complex function
f(u). According to the saddle point method, the path of
integration on the complex plane is chosen in such a way
that it passes through point u and, in the small vicinity
of this point, the path is a segment of the staight line
on which the function f(u) — f(uo) is real and negative.
In the vicinity of ug,

F(u) = f(uo)

= —a(u — ug)? = —|a|r? exp[i(a + 28], (33)
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where

a = |alexp(ie), u—ug=rexp(if).

It is clear from (33) that the straight line for which
B = —a/2 must be chosen as the path of integration.
On this straight line, the function f(u)— f(ug) takes on
real negative values and the integral in (32) reduces to
the simple expression

/exp[—a(u — up)t]du

c
:exp(—ioz/?)/ exp(—|a|r?t)dr

= exp(—ia/2)(x/|alt)'/?

= (m/at)/? = [~2m/ " (un) ]2,

In transformation (34), the integral is reduced to the
real error integral, and the transition to the infinite
limits of integration can be made under the condition
lalt > 1. Since |a| &~ 10, the result given by (34) is
holds true for ¢ > 1/10.

Thus, the solution in the case of an arbitrary initial
perturbation has the form

O(x,t) = (ﬂ/at)l/zq)(km + o)

M) . (35)

X exp (i(wmt + kma) — Aol
a

This is a wave packet moving to the left. To obtain the
total solution, a term corresponding to the wavenumber
k = —kpy must be added to the right-hand side of (35).
This term, which is readily obtained by changing the
sign of k., and V' in the right-hand side of (35), describes
a wave packet moving to the right.

The quantity & = z + V¢ can be interpreted as a
coordinate in the reference frame that moves together
with the wave packet at the group velocity V. The
right-hand side of (35) goes to zero at &2/4|alt > 1.
The width of the wave packet can be considered to be
of the order of 2(2|alt)!/?; i.e., the wave packet exists
only for |¢] < (2|alt)/?. Under this condition, it follows
from (29) that

Juol = [€]/2]alt < (2]alt)'/?.
Since |alt > 1, we find that |ug| < k. Consequently,

in the expression ®(k,, + ug) in (35) can be replaced
with ®(ky, ).



BIRGER: MODULATED THERMOCONVECTIVE WAVES

0

o
— t=1

0

'1 | [ | [ | [ [ [ | [ | [ | 1 X
-0 -60 -40 -20 0 20 40 60 80
0

o

0

-1 | ' | ' | ' | ' | ' | ' | ' | | X
-0 -60 -40 -20 0 20 40 60 80
0

K

o_—va\/\/\IWWW\I\]\/va MWWV\AN\MMW

-1 | | | | | | | | | [ | [ | [ | 1 X
-0 -60 -40 -20 0 20 40 60 80

Figure 1. Propagation of thermoconvective wave packets.

In the case when the initial perturbation of temper-
ature takes place in a fixed point # = 0, function fy(x)
and its Fourior transform are written as

where §(z) is the delta-function satisfying the relation-
ship

q)(k) = 60/271-’

oQ

2rd(z) = / exp(ikz)dk.
Note that (36) retains its form in the dimensional vari-
ables since the delta-function has the dimension of re-
ciprocal length and the quantity ©¢ has the dimension
of temperature multiplied by length.
As follows from (35), the asymptotic (|alt 3> 1) solu-
tion under the initial condition (36) takes the form

O(x,1)
- (@0/27r)(7r/at)1/2 exp (i(wmt + k) — %)
(Ot 1 exp (it — ko) = )

This solution represents two wave packets running in
the opposite directions from the point # = 0, where
the initial perturbation takes place. The distributions
of temperature at fixed moments of time are shown in
Figure 1.

Let the initial perturbation be represented by the sum
of two delta functions

0o () = Oo[d(x + 1) + 8(x — )] (37)

The Fourier transform of (37) is

O(k) = (Og/m) cos kl = (Oy/2m)[exp(ikl) + exp(—ikl)],

but it cannot be used in the problem with the initial
condition (37) because its solution is a simple superpo-
sition of two solutions obtained for the initial perturba-
tions specified at points * = [ and * = —[. Four wave
packets move away from these points: two of them move
From 2 = [ toward the left and the other two move from
x = —[ toward the right. Their velocities are £V, re-
spectively. At the moment tqg = {/V, the centers of the
packets, moving in the opposite directions, meet each
other at point @ = 0. The perturbation of temperature
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at = < & <[ is the superposition of two wave packets
0(x,t) = (©g/2m)(r/at)"/?

x (exp[ikm(aj ) 4wt — (x— L+ V)2 /4at]  (38)

+ exp[—ikm(z +1) +iwnt — (x+ 1 — Vt)2/4at]).

Denoting 3 = t — tp (¢1 is positive after the meeting
and negative before it), substituting ¢ = tg +1¢; into the
right-hand side of (38) and observing that

r—l+Vi=az+Vty, z+l-Vt=zx—-Vi,

after algebraic transformations, we obtain
0(x,t) = (00/2m)(r/at)/? exp[—iknl

— (22 + V3) /4at)] (2 exp(iwmt) cos ky x

+ [exp(Vit12/2at) — 1] exp(—itkm @ + iwmt) (39)

+ [exp(=Vitix/2at) — 1] exp(thkme + iwmt)),

<z <l

Thus, (39) represents the perturbation of temperature
as the superposition of a standing wave and two run-
ning waves moving in the opposite directions. The am-
plitudes of the running waves is zero for small  and ¢,
and in the vicinity of # = 0, the solution (39) reduces
to

O(x,1)

= (@0/7r)(7r/at)1/2 exp(—ikml) exp(iwmt) cos kmaz  (40)

Equation (40) holds for |#| < Az and |t1] < At, where
2Az is the width of the standing wave zone, 2Af is
the lifetime of the standing wave. These quantities are
estimated as

20z & (2lalto)?, 24t & (2]alto)?/V,  (41)
where |a| & 10. The typical dimension of a craton is
on the order of 2000 km, which corresponds to [ & 10.
Then, to = [/V ~ 1, the width of standing wave zone
is 2Az ~ b, and its lifetime is 2A¢ &~ 1/2. Since the
wavelength is 27/k,, &~ 2 and the period of convective

oscillation is 27 /wy, & 1/5, the zone of standing wave

[
[
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envelops two wavelengths, and two periods of oscillation
occur for the lifetime of the standing wave.
Consider another example of the initial perturbation

90(1‘):90 if |l‘|<l,
Oo(z) =0 if |z|>L (42)
The Fourier transform for function (42) is
O(k) = (0o/mk) sinkl
= (0o /27ki)[exp(ikl) — exp(—ikl)]. (43)
With transform (43), the solution is
O(x,1)
= (B /271) / (1/k) explik(z +1) + witldk  (44)
- / (1/k) explik(x — 1) + wt]dk

Since the dominant contribution to the integral in (44)
comes from small vicinities of points & = k,,, and k =
—km, (44) can be rewritten in the form

f(x,1) =
= (00 /27kymi) _7 explik(z + 1) + iwt]dk
__7 expl—ik(e + 1) + iwt]dk (45)
__7 explik(z — 1) + iwt]dk
+_7 exp[—ik(x — 1) + iwt]dk |

where w is a function of k and w(ky,) = wy,. Each of the
four integrals in (45) describes a wave packet associated
with the initial perturbation in the form of §-function.
The first packet moves from point # = —[ toward the
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left, the second one moves from & = —! toward the right,
the third one moves from x = [ toward the left, and the
fourth one moves from ¢ = [ toward the right. The

first and fourth packets move outward from the initial
region of temperature perturbation, and the second and
third packets move inward this initial region. When
they meet, the standing wave is formed in the vicinity
of x = 0, like in the problem with the initial condition
given by the sum of two delta functions.

5. Two-dimensional problems with
initial conditions

Considering two-dimensional perturbations, we intro-
duce, for brevity, the notation &k, = p and &y = ¢. Then,

Do + o = ki,

ke = V37/2. (46)

The complex frequency w is expanded in the power se-
ries

iw = twm +iV1(p— pm) + iVa(q — gm)

—ai(p—pm)? = 2as(p — pm) (g — qm)  (47)
—az(qg—qm)® + ...,
where
Vl == 2\/§pma V2 = 2\/§Qma
ay = —/3i + (32/2172)(9 + iv/3)p2,,
as = (32/2172)(9 + iV3)pmdm, (48)

az = —/3i + (32/217)(9 + iv3)q2,.

The solution, satisfying the initial conditions, is writ-
ten as

O(x,y,1)

| [ ey esvlitve+ ay+wtdp o, (19)

— 00 —0Q

where ®(p, q) is the Fourier transform of the initial tem-
perature distribution fq(x, y)

B(p, q) = (1/47?) / / oz, y) expl—i(pz + qy))dz dy.

— 00 —OQ

Substituting (47) for w into (49), we get

O(x,y,1)
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:Em/ /q)(pm—l—u, am + ) exp[f(u, v)t]du dv, (50)

— 00 —0Q

where

U=P—=Pm, V=4q—0m,
Em = exp(ipm@ + igmy + twmt),
flu,v) = iByu+ iBav — a1u’® — 2asuv — azv?,
By = (¢ 4+ WVit)/t, By = (y+ Vat)/t.

The stationary point (ug,vg) of the function f(u,v) is
defined by the condition

Of/0u=0f/0v =0,

which allows us to find

uo = i(asBy — asBs)/2(aras — a3),
vo = i(ay By — asB1)/2(a1asz — a3). (51)
Since

O*f)0u* = —2a1, O*f/Oudv = —2as,
% f/ov* = —2as,

the function in the neighborhood of point (ug, vg) is rep-
resented as

Ju,v) = f(ug,vo) — ag(u — ug)?
(52)

— 2as(u — up) (v — vg) — az(v — vo)?,

where

f(UQ, Uo) = —(ClgB% — 2&23132 + alBg)/4(a1a3 — a%)

Substituting expansion (52) into (50),

O(x,y,1)
= En®(pm + w0, ¢m + vo) M exp[f(uo,vo)t], (53)
where o e
M= / /exp[—tal(u—uo)2

—2tas(u — up)(v — vo) — tag(v — vo)z]du dv.

Using the substitution

r=v—vy, Yy=u—ug+(az/a)(v— ),
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M 1is represented in the form

M = M, Mo,
M, = / exp [—t (Clg — —2) xz] dz,
ay
M, = / exp(—ta;y?)dy.

Evaluating the integrals M7 and M5 by the saddle point
method, we reduce (53) to

O(x,y,1)

= qu)(pm + uo, gm + UO)(T‘-/a‘lt) eXp[f(Uo, vo)t]’ (54)
where

ag = (aras — a2)?, a2 = 3(1 —i24 31/%)/7.

The wave vector components p,, and g,,, satisfying
condition (46), can be represented as
Gm = km sin @,

P = km cos @, (55)

where ¢ varies from 0 to 27. Since all the directions of
the wave vector (pm, ¢m) are equivalent, the integration
over ¢ is implied in the right-hand sides of (53) and
(54).

If the initial perturbation takes place at point (0, 0),
then

Oo(x,y) = Ood()d(y),

and we must substitute in (54) the Fourier transform of
this function

®(p,q) = Og/47". (56)

It is convenient to introduce the polar coordinates r and

(G

z=rcost, y=rsingy, 0<y < 2. (57)

As follows from (55) and (57), the factor E, in (54)
becomes

Em = exp(ipm@ + iqmy + iwmt)

= explikmrcos(p — ¢) + iwnt].

Thus, the temperature perturbation 6 induced by the
initial point-concentrated perturbation is given by the
equation

O(x,y,1)

THERMOCONVECTIVE WAVES

145
= (Oo/4Am?) (7 /tas) exp(iwmt)I(z, y, 1),
I(z,y,t)

27

= /exp (ipmx + igmy — [as(z + Vlt)2
0

— 2as(x + Vi) (y + Val) +ar(y+ vzt)Z]/4a§t) de,

where the dependence of integrand on ¢ is defined by
equations (48) and (55). Since it is clear that 6 de-
pends on r rather than on ), for the case of the ini-
tial point-concentrated perturbation, we can take ¢ = 0
(and hence # = r, y = 0) in the integrand. Then,

I(x,y,1)

= I(r,t) = exp[(ivV3r? + i9V/31%?) /4a2t] 11 (r, 1),

(1) = / explfs (¢)r]dy,

0

(59)

fi(e) = ilkm + (33/37/2a3)] cos ¢
— (rby/4a3t) sin? ¢

= by[—3mcos p + (r/2t) sin” ],

where

by = (94 i3Y%)8/7, by = (4/3)(9 — i31 31/%)/247

The integral I;(r,t) at large r is calculated using the
saddle point method

Lr,t) = [=2n/ f{ (wo)r] * explfi(w0)r],  (60)

wo =7, [i(po) = —ilkm+(3V37/2a3)] = 3mby, (61)

(o) = i[k’m—i—(3\/§ﬂ'/2ai)]—rb1/2ait = ba[(r/t)—3m].

After simple algebraic transformations, we find an
asymptotic solution (valid only for sufficiently large ¢
and r) of the problem with the initial condition speci-
fied at the given point:

O(x,y,1)
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= (O /4may)[—27 /botr] 2 expli(wmt — kmr)  (62)

— (£*/4at)],

where

E=r—3nt, a=(724i3%)/7.

Note that parameter a has already appeared in the one-
dimensional problem. Solution (62) describes a cylindri-
cal wave because the dependence on coordinates reduces
to the dependence only on r = (2 + y*)1/2.

The function fi(p) introduced in (59)—(61), in addi-
tion to the saddle point ¢y = 7, has the second saddle
point ¢y = 0. The use of the latter would lead to an ad-
ditional term in the right-hand side of (60). This term
describes a wave running to the point » = 0 from outside
and includes the factor

expi(wmt + kmr)] exp[—(r + 37t)/4at],

which becomes zero for sufficiently large positive r and
t.

In the center of the wave packet, i.e., at & = 0(r =
3nt), equation (62) violates. When ¢ = 0, the second
derivative fi'(ypg) is zero (the third derivative is also
zero). In this case, the saddle point method leads to

Li(r,t) = (1/2)T(1/4)/[= 7 (o)r/24]/,

instead of (60). Note that T'(1/4) ~ 4. The derivation
of the asymptotic relation (63) that holds for large r, is
analogous to that of (30)-(34), with the exception that
the Taylor series is trancated at the term including the
fourth derivative, and furthermore, the integral

(63)

/exp(—x4)dx = (1/9)T(1/4)

is used instead of the error integral.
Substituting the value of the fourth derivative

1 (o) = ~97?

into (63), we find the solution valid in the small vicinity
of the wave packet center, 1.e., at r & 37,

0(z,y,1)
(64)

= (00 /8mast)T(1/4) (8/3mbor) /4 expli(wmt — k)]

BIRGER: MODULATED THERMOCONVECTIVE WAVES

6. Simple and composite sources of
thermoconvective waves

A simplified approach of this section to the problems
under consideration is not to expand w in the power
series but to set w = w,, for values of k = (p* + ¢*)*/?
close to kp, in equation (49). Then,

O(x,y,1)

= / / O(p, q) expli(pr + qy + wt)]dp dg

— 00 =00

R ke Ak exp(iwm?)

27

X /q)(km cos i, km sin ) exp[f(p, ¥)r]dey,
0

where

Flp, ) = iky, cos(p — ).

Here the polar coordinates are used and the integral is
taken over a ring on the plane p,q. The radius of the
ring is equal to k;,, but its thickness Ak is indeterminate
in the framework of the simplified approach used now.
In the interval 0 < ¢ < 27, function f(p, ) has the
following stationary points

Yo = 7T+1/)a 1f0§1/)<7ra
po=—m4w, if << om (66)
o = .

For the initial perturbation in the form of delta func-
tion (an elementary radiator of thermoconvective
waves), substituting ® = ©g/4x? into (65), using the
saddle point method, and omitting the solution corre-
sponding to the saddle point ¢y = ¢ (a wave arriving
at point » = 0 from outside), we find the solution for
large r

6(r,t)
(67)
= (00 /47 ) by AR (273 / ey 1) 2 expli(wWimt — k)]
In contrast to solution (62), which takes into account the
wavenumber dependence of w (i.e., dispersion), equation
(67) describes a wave with nonmodulated amplitude.

It is noteworthy that the simplified approach gives the
factor =12 in (67), which determines attenuation of
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any cylindrical wave [e.g., Whitham, 1974]. Comparison
of solution (67) with solutions (62) and (64) shows that,
in order to take the dispersion into account, it is enough
to substitute into (67) the following expressions for Ak

Ak = (7 )k ag) ik [bo&t) 2 exp(—£2/4at), € #0,
(68)
Ak = (7/2kmast)T(1/4)(=2k2,7/37%0) 1/ € = 0.

We then use the same simplified approach for the case
when the initial perturbation has the form

Oz, y) =00, if —Il<a<l —I<y<|,

O(z,y) =0,

that is, the uniform temperature perturbation fy at the
initial moment is given within a square with a side 2.

if |zl >1 |yl >,

For such initial condition,

®(p, q) = (fo/n)(sin plsin gl) /pq. (69)
It is convenient to rewrite (69) in the form
®(p, q) = —(00/47?)[exp(ipl)
— exp(—ipl)][exp(iql) — exp(—iql)]/pq. (70)

Substituting (70) into (65),

O(x,y,1)
27

= — (0 /A7) ke Ak exp(iwmt)/ (exp[ipm(x +1)

+ iqm(y + )] + explipm(z — 1) (71)

+igm(y — )] — explipm (z — 1) + igm(y +1)]

— explipm(z + 1) + igm(y — l)]) do/Pmim-

Consider separately the integral corresponding to the
first term. The vector (# 4+, y + 1) connects the apex
(=1, =1) of the square with the point (z,y). Introducing
a polar coordinate system whose origin is located at this
apex,

(72)

x+1l=rycosty, y+I[=risiny;.

Then,

27

Ji = /eXp[ipm(erl) + iqm (y + D]de/pmgm-
0
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27

= (2/1{751)/ expltkmry cos(p — ¢1)]dp/sin2¢p  (73)

Using the saddle point method and omitting the term
that describes the wave running to the apex from out-
side, we obtain the expression for J; at sufficiently large
1

J1 = (2/k2, sin 201) (275 k1 ) exp(—ikpr1). (T4)

Equation (74) is valid when t; is outside of a small
vicinity of points 0, 7/2, m, and 37/2. Substituting
these values of ¢ into (73), we readily verify that the
integral Ji goes to zero for these values of 9.

The total solution is obtained as the sum of four in-
tegrals

O(x,y,1)

= —(00/47° ) kpn Ak Z expli(wmt (75)

j=1

— k) (2/ K2, sin 200) (270 ke i ) M 2.
Here, the angles ¥3 and 14 corresponding to the apexes
({,=l) and (—=I,]) are measured clockwise, whereas ;
and 1 are measured counter-clockwise. Substituting

ry = [(£0)” + (=02, oy = arctan[(y£1)/ (« £1)],

1/sin 2¢; = (1 + tan®y;)/2tan ¢; =
=[(z £+ (y £ )?]/2(x £ 1)(y £ ),

into (67), we write the solution in the form

0(w,y,1)
= —(90/47‘(’2)(Ak’/k’m)(Qﬂ'i/k’m)l/zF(l‘, y) exp(iwmt),

where

Fla,y)
= exp ik [(z + 1) + (y + 1?17 [(x +1)?
+ WO @+ Dy +1)

+exp =ikl — ) + (5 = )72 [(e = )?

+ (=P (@ =1y D) (76)
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Figure 2. ( versus ¢ for various values of {.
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+ (=0 (@ + )y = 1).

Equation (76) is valid for all z and y except the points
located on the lines # = I, ¥y = +{ and in the neigh-
borhood of these lines having the width of the order of
the wavelength 27 /k,,.

Introducing the polar coordinates @ = rcosv, y =
rsin ¢ and using the simple relationship

[0+ (y D)2 =r4(£cost +sine), r>1,

we obtain that, for » > [ (the great distance from the
initial square), solution (76) reduces to

0(x,y,t) = —(00/47%) ( Ak kp) (275 ki) /2 X
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x G(Y) exp[i(wmt — km7)], (77)

where

G(v) = [sin(kml cos ¢) sin (k! sin ¢)]/ cos ¢ sin ¢
Equation (77) describes the wave running outside from
the initial square. Note that G and hence the right-
hand side of (77) does not depend on ¢ only under the
condition k!l < 1 (the length of the side of the initial
square 1s small in comparison with the thermoconvective
wavelength). Under this condition, the initial pertur-
bation given in the square acts like an initial pointwise
perturbation.

Function G() is plotted for various values of [ in Fig-
ure 2. The directivity pattern of the thermoconvective
radiation is defined by the amplitude factor |G/(¢)|. As
follows from the plots in Figure 2, the directions of the
most intense radiation are ¢ = 0, ¥ = x/2, ¥ = =,
¢ = 3mw/2. When [ > 2, the real function G(¢) periodi-
cally changes its sign, and hence, arg G(v) takes on the
values 0 or m. Thus, the phase of the wave described by
(77), as well as the amplitude, is direction-dependent.

In the theory of radiation, a radiator whose dimen-
sions are much smaller than the radiated wavelength is
called simple. The simple radiator has an omnidirec-
tional radiation. A composite radiator 1s one whose di-
mensions are not small compared to the wavelength and
which emits a directional radiation. Thus, the square
where the temperature is initially perturbed is a simple
radiator of thermoconvective waves if k,,l < 1, but this
square is a composite radiator if k1 > 1.

In order to account for the dispersion that leads to
the amplitude and phase modulation, it is enough to
substitute the expressions (68) for Ak into (77).

For r <l (in the neighborhood of the center of the
initial square), the following relationship takes place

[(2)?+ (y£1)2]? = 2Y 214 (212 /2) 1 (& cos ¢ Esin o),

where 21/2] is the distance between the apex and the
center of the square. By using this approximate equa-
tion, we reduce (76) for r < [ to the form

0(z, y,1)
(78)
= H(l) exp(iwmt) cos[(V2/2) kmx] cos[(V2/2)kmy],
where
H(l)

= — (00 /7Y (Ak k) 2%/ (271 k) 1? exp(—i2H 2 kpal).

As is seen from (78), a standing wave with square cells is
formed in the central part (r < 1) of the initial square.
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The sides of the cells are parallel to the sides of the ini-
tial square and the length of the cell side is 227 /k,,.
The same standing wave is formed in the neighborhood
of the point (0,0) in the case when the initial tempera-
ture perturbation is given at four points: ([,{), ({, =),
(=1, 1), and (—=I,—!) i.e. when the initial perturbation
square 1s replaced by the pointwise perturbation at its
apexes.

Note that in order to obtain the solution (77), valid
for r > [, we could use the expression (69) for &. We
represents @ in the form (70) to find the solution for
r <& [1i.e. in the neighborhood of the center of the initial
square. The result (78), obtained by the saddle point
method, is holds true under the condition kI > 1.
(length of the side of the initial square is much greater
then thermoconvective wave length). This condition
is satisfied when the initial temperature perturbation
covers a craton as a whole, and therefore, [ &~ 10. for

k,, =2.7.
Discussion

The distribution of temperature in the lithosphere is
represented in the form

T(x,y,z,t) =1 —z+0(x,y,t)sinrz, 0<z<1,
where 0(x, y,t) can be interpreted as a temperature per-
turbation in the middle of the lithosphere (z = 1/2).
The temperature perturbation 6(z,y,t) is found under
a few simple initial conditions: the initial perturbations
Oo(z,y) are given on the straight line (x = 0), in the
strip (—! < 2 <), at the point (z =0, y = 0), at four
points, or within a square.

For a plane thermoconvective wave with the wave vec-
tor (ky, ky), the displacement of the upper surface of the
layer (lithosphere) is related to the temperature pertur-
bation by (12). This relation is easily generalized to
the case of a packet of thermoconvective waves with the
wave numbers close to k,,

u,(x,y,t) = ozAT[ﬂ'(ﬂ'2 + 3]{751)/(71'2 + kﬁl)z]ﬁ(l‘, y,t).

When more real boundary conditions on the upper and
lower surfaces of the lithosphere are considered [Birger,
1988], the dependence of temperature perturbation on
the vertical coordinate z is not determined by the func-
tion sin 7z and the wave number k,, is not equal to 2.7.
However, the displacement u,(z,y,t) remains equal to
the temperature perturbation #(z,y,t) multiplied by a
constant whose value depends on the boundary condi-
tions. This 1s also valid for the case when the depth
dependence of physical parameters (in particular, the
Andrade rheological parameter) of the lithosphere is
taken into account. Thus, functions #(x,y,t), found
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above under various initial conditions, describe the ver-
tical displacements of upper surface of the lithosphere,
with accuracy to a constant factor. These displacements
determine sedimentary processes.

The initial temperature point-concentrated perturba-
tion can be treated as a source of thermoconvective
waves in the lithosphere. When the initial perturbation
occupies a finite area, thermoconvective waves propa-
gate outward from this area and thermoconvective oscil-
lations (standing waves) are settled inside the area. The
thermoconvective oscillations create a system of convec-
tive cells in the lithosphere. Over the convective cells,
the surface of the lithosphere subsides (or rises) forming
sedimentary basins. Since the Rayleigh number for the
lithosphere is not greater than Ra,,, the shape of cells
and hence the shape of basins is determined by initial
perturbations. The initial perturbation in the square
considered above leads to the appearance of square cells.
However, other initial conditions may lead to rectangu-
lar, hexagonal, and other shapes of cells and basins.

Thermoconvective oscillations may be considered as a
mechanism inducing the formation and evolution of sed-
imentary basins on continental cartons [Birger, 1998].
In this paper, we have studied the excitation of ther-
moconvective waves and oscillations by initial pertur-
bations of temperature. Note that these waves are
also generated from initial vertical displacements of the
Earth’s surface (relief perturbations).

Packets of thermoconvective waves propagate in the
lithosphere with the velocity 37k /d &~ 0.15 cm/year and
create sediment-filled depressions on the upper surface
of the lithosphere. The age of sediments increases pro-
portionally to the distance from the front of the wave
to its source. Thermoconvective waves may be related
to the development of peripheral depression on a cra-
ton. In this process known in geology [Beloussov, 1978;
Khain, 1973], the initial depression occurring in a geo-
logically active area (“geosyncline”) adjacent the craton
slowly develops within the craton.
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