Российская академия наук. Уральское отделение Уральский минералогический сборник, 1998, № 8

А. Ф. Бушмакин, В. А. Вилисов, В. А. Котляров

ОКСИФЕРБЕРИТ Fe2³⁺WO₆ — НОВЫЙ ТЕХНОГЕННЫЙ МИНЕРАЛ ИЗ ГОРЕЛОГО ТЕРРИКОНА, ЧЕЛЯБИНСКИЙ УГОЛЬНЫЙ БАССЕЙН

A. Ph. Bushmakin, V. A. Vilisov, V. A. Kotlyarov

OXYFERBERITE Fe₂³⁺WO₆, A NEW TECHNOGENIC MINERAL FROM BURNT WASTE HEAP, CHELYABINSK COAL BASIN

Oxyferberite $Fe_{2^{3+}}WO_{6}$, rhombic system, was found together with krasnogorite (WO₃), krasnoselskite (CoWO₄) and ferberite in the composition of pseudomorph after the clast of the «pobedite» cutter which has arisen from high-temperature kilning under conditions of burning waste heap. In pseudomorph, the mineral forms a zone with thickness of 1.5—2 mm made up by very fine grains and by chaotically oriented crystals with size up to 0.1×0.007 mm. Colour oxyferberite is black with a brownish shade. Streak is dark brown. Lustre is semi-metal, on faces – diamond. Is not transparent. Hardness is 6. Fragile, fracture is uneven. Calculated density 6.90 g/cm³. Non-magnetic. With acids and alkali has no reactions. Under microscope, in reflected light is grey, anisotropic in grey tints. Reflective ability about 20 %. The spectra of reflection are similar to ferberite one. Chemical composition, wt. % (microprobe): Fe_2O_3 35.6; WO₃ 58.7; MnO 1.8; CoO 1.2; MgO 0.4; the sum 97.7. The empirical formula: ($Fe^{3+1.81}Mn_{0.10}Co_{0.06}Mg_{0.04})_{2.01}$ ·WO_{1.03}O₆. The main reflections on diffractogram (d, A, (I), hkl):4.419 (44) 110; 4.264 (15) 021; 3.545 (41) 130; 2.884 (100) 131; 2.437 (15) 061; 2.290 (33) 200; 1.726 (20) 190; 1.683 (15) 202; 1.669 (29) 261; 1.413 (21) 331. Parameters of an elementary cell: *a* 4.581 (5); *b* 16.79 (2); *c* 4.960 (6). Spatial gr. Pmmn (59), z 4.

Oxyferberite was generated as a result of multistage reaction between WO₃, appeared under high-temperature change WC of a solid alloy, and Fe_2O_3 , formed at the expense of steel. Is named for similarity of element composition with ferberite, differs from it in more oxidized form of iron.

В отвалы угледобывающих предприятий попадают фрагменты оборудования и механизмов, использовавшихся при разработке месторождения. Среди них иногда встречаются детали, содержащие твердые сплавы: зубки угольных комбайнов и врубовых машин, буровые и угольные резцы. Для армирования горного инструмента использовались спеченные металлокерамические сплавы марки ВК (победит), состоящие из монокарбида вольфрама (83—95 %) и металлического кобальта (3—15 %) в ка-честве связующего вещества [2].

Карбиды вольфрама химически очень устойчивы и не окисляются на воздухе при нагревании до 400 °C. В условиях же горящего террикона, где температура может достигать 1000 °C и более, твердый сплав изменяется с образованием новых соединений вольфрама, среди которых Б. В. Чесноковым и Т. А. Михаль [7] установлены ромбический WO₃ (красногорит) и моноклинный CoWO₄ (красносельскит). А. Ф. Бушмакин в псевдоморфозе по остаткам твердосплавного резца в зубке угольного комбайна или врубовой машины в 1992 году определил вольфрамат трехвалентного железа Fe₂³⁺WO₆, иначе Fe₂³⁺(WO₄) O₂ или Fe₂O₃·WO₃. Это соединение названо оксиферберитом (охуferberite), т. к. его состав может быть выведен из состава ферберита FeWO₄ заменой двухвалентного железа на более окисленное трехвалентное.

Зубок, содержащий оксиферберит, найден среди красного горельника в верхней части разработанного старого террикона ш. Капитальной, г. Копейск. Тело зубка очень сильно изменено и сложено гематитом с многочисленными «прикипевшими» обломками обожженной породы. Облик образца говорит о том, что он подвергся интенсивному и длительному нагреву в окислительной обстановке. Это подтверждается наличием на дифрактограмме одного из кусочков породы, взятого с образца, отражений кордиерита, образующегося при высокотемпературном обжиге аргиллитов и глин [8].

Псевдоморфоза по остатку пластины твердого сплава имеет грубослоистое строение (рис. 1). В ней выделяются зоны красногорита, красносельскита, смеси красносельскита и ферберита и, наконец, оксиферберита, примыкающего к шестоватому гематиту, покрывающему тонкой коркой все тело бывшего зубка, состоящее из мелкозернистого гематита. Границы между зонами неровные и, как правило, нечеткие.

Рис. 1. Упрощенный схематический разрез минерализованного остатка твердого сплава в зубке:

1 — красногорит; 2 — красносельскит; 3 — смесь красносельскита и ферберита; 4 — оксиферберит; 5 — шестоватый гематит; 6 — зернистый гематит

Рис. 2. Электронномикроскопический снимок агрегата кристаллов оксиферберита.

Слой оксиферберита (толщиной 1.5—2 мм), сложенный весьма мелкими зернами и беспорядочно ориентированными кристаллами (рис. 2), пористый, особенно на контакте с гематитом. Кристаллы, образованные комбинацией пинакоидов и ромбических призм (рис. 3), имеют длину до 0.1 мм при толщине до 0.007 мм.

Оксиферберит черный с коричневым оттенком. Блеск полуметаллический, на гранях кристаллов алмазный. Цвет черты темно-коричневый. Не прозрачен, но самые мелкие индивиды под микроскопом просвечивают от красновато-коричневого до ярко-красного. В ультрафиолетовом свете ($\lambda = 360$ нм) не лю-минесцирует. Твердость 6. Твердость микровдавливания VHN при нагрузке 15—25 г составляет в среднем 860 кг/мм² при колебаниях от 440 до 1320. Хрупкий, излом неровный. Наблю-дается несовершенная спайность вдоль удлинения кристаллов. Вычисленная плотность 6.90 г/см³. Не магнитен. С кислотами и щелочами не реагирует.

Рис. 3. Кристалл оксиферберита. Формы: а {100}, b{010}, c{001}, l {140}, L {1.12.0}, d {106}, V {109}

В отраженном свете под микроскопом светло-серый. В иммерсии при большом увеличении в срезах поперек кристаллов светло-серый, параллельно удлинению — серый с розоватым оттенком. Анизотропен в серых тонах. Красные внутренние рефлексы. Отражательная способность (табл. 1) низкая, около 20 %. Спектры отражения (рис. 4) подобны спектрам ферберита [6].

Таблица 1

					-
λ, нм	\mathbf{R}_1	R_2	λ, нм	R ₁	\mathbf{R}_2
440	20.0	22.8	580	16.9	19.5
460	19.3	21.8	589	16.8	19.3
470	19.1	21.5	600	16.6	19.2
480	18.8	21.3	620	16.2	18.6
500	18.4	20.8	640	15.7	18.1
520	18.0	20.3	650	15.6	17.9
540	17.7	20.1	660	15.4	17.7
546	17.5	20.0	680	14.9	17.4
560	17.3	19.7			

Отражательная способность оксиферберита, %

Примечание: Измерения выполнены в лаборатории музея Ильменского государственного заповедника им. В. И. Ленина на приборе типа ПООС-1, эталон — кремний.

Микрозондовый анализ оксиферберита приведен в табл. 2. Эмпирическая формула имеет вид $(Fe^{3+}_{1.81}Mn_{0.10}Co_{0.06}Mg_{0.04})_{2.01}W_{1.03}O_6$ и близка к идеальной $Fe^{3+}_{2.3}WO_6$. Присутствие марганца объясняется тем, что зубки изготавливались из стали, содержащей до 1.1 % этого легирующего элемента [2].

ИК-спектр оксиферберита, снятый С. В. Батуровым (UR-20, таблетка с КВг), приведен на рис. 5 в сравнении со спектром ферберита.

1	la	ол	ИІ	цa	2
---	----	----	----	----	---

Компоненты	Ферберит (теорет.)	Fe ₂ ³⁺ WO ₆ (теорет.)	Оксиферберит
FeO	23.66	-	-
Fe_2O_3	-	40.79	35.6
WO_3	76.34	59.21	58.7
MnO	-	-	1.8
CoO	-	-	1.2
MgO	-	-	0.4
Сумма	100.00	100.00	97.7

Химический состав ферберита, соединения F е2³⁺ WO₆ и оксифербита, мас. %

Примечание: Анализы оксиферберита выполнены В. А. Вилисовым в ИГиГ УрО РАН на ЈХА-5 при ускоряющем напряжении 20 кВ. Использованы стандарты: гематит, шеелит, пироп, чистые Mn, Co. Приведены средние значения из 12 определений состава. Кроме того, в некоторых точках установлены в незначительных количествах Si, Al, Ti и Ca.

Рентгенограммы оксиферберита и его синтетического аналога (табл. 3) показывают хорошее совпадение. Из-за весьма малых размеров индивидов монокристальное исследование оксиферберита провести не удалось. Для него может быть принята пространственная группа Рттп (59), как и у искусственного соединения [9].

Вещество состава Fe₂³⁺WO₆ было получено Ю. Д. Козмановым [1] прокаливанием ферберита на воздухе при тем-пературе 600 °С и выше, а также реакцией между оксидами двух- и трехвалентного железа и трехокисью вольфрама при тех же условиях (при выдержке несколько часов). Образование оксиферберита из ферберита обратимо при смене воздушной среды на вакуум. Интересно, что в случае использования вместо ферберита вольфрамита соединение трехвалентного железа не возникает. К тому же результату пришли Н. Л. Раденко и др. [4], которые, отжигая вольфрамит на воздухе при 1000°С, установили вхождение Fe³⁺ в структуру этого минерала, но образование новой фазы не зафиксировали. В. К. Трунов и Л. М. Ковба [5], прокали-

Рис. 4. Спектры отражения оксиферберита

Таблица 3

Рентгенограммы	оксиферберита	(1)) и синтетического	Fe ₂ ³⁺ WO ₆	(2)
т спп спотраммы	оксифероерита	(1)		1 02 06	(4)

	- ,	1		<u>-r</u> pm				2 2 11	-0 (-)	
A b	1.	1	т	1.	1-1	۸ ۲۵	1	 		h1-1
$u_{\rm M3M}, A$		_{выч,} А		n n	<u>кі</u> 10	u, A		1		11KI
4.412	4	.419	44	1	10	4.425		28		110
4.264	4	.270	15	0	21 40	4.274		30		021
4.213	4	.19/	9	0	40	4.198		8		040
3.544	3	.545	41	l	30	3.549		33		130
3.305	3	.300	8	111		3.306		9		111
3.213	3	.204	5	0	41	3.207		4		041
2.881	2	.884	100	1	31	2.889		100		131
2.797	2	798	11	0	60	2.800		8		060
2.481	2	480	8	0	02	2.487		13		002
2.436	2	.437	15	0	61	2.440		21		061
2.378	2	.377	2	1	51	2.380		3		151
2.291	2		33	2	00	2.295		13		200
2.179	2	.181	3	1	02	2.186		3		102
2.160	2	.163	3	1	12	2.168		6		112
2.151	2	.151	7	1	61	2.155		6		161
2.134	2	.135	3	0	42	2.139		1		042
2.097	2	.098	2	0	80	2.1005		1		080
2.028	2	.032	8	1	32	2.0367	,	11		132
2.016	2	.018	10	2	21	2.0218		7		221
1.953	1	.953	6	1	71	1.9560)	6		171
1.929	1	.933	1	0	81	-		-		-
1.855	1	.856	5	0	62	1.8595		5		062
-		-	-		-	1.8321		3		152
1.772	1	.772	8	2	60	1.7756		5		260
1.727	1	.726	20	1	90	1.7294		12		190
1.683	1	.683	15	2	02	1.6869		18		202
1.669	1	.669	29	261		1.6726		22		261
1.619	1	.622	2	0	23	1.6263		1		023
1.600	1	.602	$\frac{1}{2}$	082		1.6045		1		082
1.561	1	.562	$\frac{-}{2}$	2	42	1.5656		3		242
1.545	1	.547	$\frac{-}{2}$	2	80	-		-		-
1.5.15	1	521	5	3	10	-		-		-
-	-	-	-	C	-	1 5040)	2		1 10 1
1 499	1	498	8	1	33	1 5018		13		133
1 473	1	473	3	3	30	1 4769		2		330
1 444	1	442	4	2	67	1 4450		$\frac{2}{4}$		262
-	1	-	-	2	-	1 4764		т 6		063
_		_	_		_	1 / 10/		12		192
1 413	1	412	21	2	31	1 / 1 / 1 52		12		331
1 300	1	390	6	2	50	-		-		-
1 1 2 1	1	182	5	300 300				_		
1.101	1	1/15	0	390 400		-				-
1.175		.175	15	<u>+</u> 81(5)	00	-	/	1 502		-
		u b	4.5	79 <i>(2</i>)		a b	1	+.J72 6 800		
			10.	(2)(2)			1	1072		
			4.9	21 4			2	+.712 2021		
		и Пл	ىر مەر م	01.4 0mn	(50)		С П	203.4 mmn	(50)	
		7	p. Pli	лпп Л	(37)	7	г	1	(37)	
		L		4		L		4		

Примечание: 1 — проба 059Б-64-1. ДРОН-0.5, Си-излучение, Ni-фильтр. Аналитик: Н. Г. Сапожникова. 2 — гидротермально синтезированный. Дифрактометр, Си-излучение, монохроматор. Карточка 42-492 [9].

1300 1100 900 700 600 500 400 V, *см⁻¹* Рис. 5. Инфракрасные спектры поглощения оксиферберита (а) и ферберита (б) по [3]

вая в течение нескольких часов смеси стехиометрических количеств Fe_2O_3 и WO_3 при температурах от 700 до 1200 °C в платиновых тиглях получили $Fe_2^{3+}WO_6$.

На основании сведений по синтезу и учитывая состав и строение псевдоморфозы по твердому сплаву, можно предположить, что оксиферберит сформировался в результате многоступенчатой реакции между оксидом вольфрама, возникшим при высокотемпературном изменении карбида вольфрама, и оксидом трехвалентного железа, образовавшимся за счет стали.

Авторы выражают признательность сотруднику ИЗК СО РАН Е. К. Васильеву за помощь при поисках рентгеновских данных для синтетического вольфрамата трехвалентного железа.

Литература

1. Козманов Ю. Д. Рентгенографическое исследование реакций между твердыми окислами железа и окислами вольфрама и молибдена // Журнал физической химии. 1957. Т. 31, вып. 8. С. 1861—1865.

2. Михайлов В. Г. Горный инструмент. М.: Углетехиздат, 1950. 168 с.

3. Плюснина И. И. Инфракрасные спектры минералов. М.: Изд-во Моск. ун-та, 1976. 175 с.

4. Раденко Н. Л., Козловский А. А., Лавриненко Л. И., Савостин Б. А. О влиянии окислительного потенциала и других факторов на изменение состава вольфрамитовой минерализации // Геохимия. 1992, № 10. С. 1476—1487.

5. *Трунов В. К., Ковба Л. М.* О взаимодействии трехокисей молибдена и вольфрама с полуторными окисями железа и хрома // Изв. АН СССР. Неорганические материалы. 1966. Т. II, № 1. С. 151—154.

6. Чвилева Т. Н., Безсмертная М. С., Спиридонов Э. М. и др. Справочник — определитель рудных минералов в отражен-ном свете. М.: Недра, 1988. 504 с.

7. Чесноков Б. В., Михаль Т. А. Красногорит и красносельскит из горелых отвалов Челябинского угольного бассейна // Минералы и минеральное сырьё горно-промышленных районов Урала. Свердловск: УрО РАН, 1989. С. 25—30.

8. Чесноков Б. В., Щербакова Е. П. Минералогия горелых отвалов Челябинского угольного бассейна (опыт минералогии техногенеза). М.: Наука, 1991. 152 с.

9. JCPDS. Joint Committee on Powder Diffraction Standards. USA. Pennsilvania. 1997.