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Abstract: Landau theory provides a formal basis for predicting the variations of elastic constants 
associated with phase transitions in minerals. These elastic constants can show substantial anomalies 
as a transition point is approached from both the high-symmetry side and the low-symmetry side. In 
the limiting case of proper ferroelastic behaviour, individual elastic constants, or some symmetry-
adapted combination of them, can become very small if not actually go to zero. When the driving 
order parameter for the transition is a spontaneous strain, the total excess energy for the transition is 
purely elastic and is given by: 

Gelastic = X Σ Cikeiek + Tj Σ Cikleiekel + T j Σ Ciklmeiekelem + • • • 
zα ixi i„u,m 

which has the same form as a Landau expansion. In this case, the second-order elastic constant Cik 
softens as a linear function of temperature with a slope in the low-symmetry phase that depends on 
the thermodynamic character of the transition. If the driving order parameter, g, is some structural 
feature other than strain, the excess energy is given by: 

G = |α(r-rc)ß2
+Ifeô4+ - + Σkmjtfor+%!<&& 

i,m,n i,k 

In this case, the effect of coupling, described by the term in λemQn, is to cause a great diversity of 
elastic variations depending on the values of m and n (typically 1, 2 or 3), the thermodynamic 
character of the transition and the magnitudes of any non-symmetry-breaking strains. The elastic 
constants are obtained by taking the appropriate second derivatives of G with respect to strain in a 
manner that includes the structural relaxation associated with Q. 

The symmetry properties of second-order elastic constant matrices can be related to the 
symmetry rules for individual phase transitions in order to predict elastic stability limits, and to derive 
the correct form of Landau expansion for any symmetry change. Selected examples of "ideal" 
behaviour for different types of driving order parameter, coupling behaviour and thermodynamic 
character have been set out in full in this review. Anomalies in the elastic properties on a macroscopic 
scale can also be understood in terms of the properties of acoustic phonons. These microscopic 
processes must be considered if elastic anomalies due to dynamical effects are to be accounted for 

0935-1221/98/0010-0693 $ 30.00 
© 1998 E. Schweizerbart'sche Verlagsbuchhandlung, D-70176 Stuttgart 



694 M.A. Carpenter, E.K.H. Salje 

correctly. Such additional anomalies are characterised by softening of the form ACik = ΛlVt|Γ-Γc| 
as the transition is approached from the high-symmetry side. The A coefficient is a property of the 
material, and K depends on how the branches of the critical acoustic mode soften in three 
dimensions. 

Adopting this approach allows the quantitative description of elastic variations in "real" 
systems. Albite provides a likely example of proper ferroelasticity in minerals, and values for the 
required coefficients, extracted from experimental data, yield a complete picture of the expected 
elastic properties. The ß ^ a transition in quartz provides an example of co-elastic behaviour. Data 
for TeO2, BiVO4 and KMnF3 (a perovskite) have been reviewed to illustrate the full range of elastic 
anomalies that should be expected at structural phase transitions in natural minerals. 

Key-words: phase transitions, elastic constants, ferroelasticity, Landau theory, albite, quartz, 
perovskite. 
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1. Introduction 

The elastic constants of many geological materials show a smooth and approximately linear 
increase with falling temperature (T) or increasing pressure (P). Minerals which undergo phase 
transitions can show dramatic variations in their elastic properties, however, and the influence of a 
transition can extend over a wide P, T range on either side of the transition point. Illustrations of 
these two extremes are provided by the elastic constants of olivine, showing a "normal" pattern 
(Fig. 1), and of quartz, showing significant anomalies associated with the ß ^ α transition (Fig. 
2). Exactly at a transition point individual elastic constants and specific combinations of elastic 
constants can go to zero, or at least become very small. The effects of such anomalies must have 
some influence on the seismological and rheological properties of rocks - hence the interest, for 
example, in whether or not (Mg,Fe)SiO3 perovskite remains orthorhombic with increasing depth 
in the mantle (e.g. Hernley & Cohen, 1992; Wentzcovitch et al„ 1995; Warren & Ackland, 1996; 
and references therein). 

From a thermodynamic point of view there are two sound reasons for suggesting that the 
variations of elastic constants at phase transitions in minerals warrant closer investigation. Firstly, 
the elastic energy change associated with a phase transition, Geiastic> can be a significant quantity 
in relation to the total free-energy change, Gexcess> due to that transition. This elastic energy is 
usually expressed formally as \^Cikeiek w n e r e Q* represents the "bare" elastic constants of the 

i,k 
crystal (i.e. those which do not include the influence of the transition), and eh e^ are components 
of the spontaneous strain. In the case of the Cllm ^ C\ transition in albite, |Gelastic| is a 
substantial fraction of |Gexcess| (Salje et al., 1985a) and is sufficiently large to influence the 
stability limits of albite-bearing mineral assemblages. By way of contrast, |Gelastic| for the Pβlmcc 
^ Cccm transition in cordierite is a very small fraction of |Gexcess| (Carpenter, 1988), and its 
influence in determining the stability limits of cordierite-bearing assemblages is probably 
negligible. Secondly, these elastic constants are by definition the second derivatives of free energy 
with respect to strain, d2G/deidek. As such they should be particularly sensitive to the shape of 
the free-energy potential which governs the overall transition behaviour. While several different 
formulations of GeXcess might give minima corresponding approximately to observed equilibrium 
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structural states from first derivatives, such as dG/dQ where Q is the order parameter, the correct 
formulation must be close to physical reality if it is also to predict the observed elastic constants 
from the second derivatives. This means that the closeness of fit between predicted and observed 
elastic constants can be a stringent criterion for testing the validity of any thermodynamic 
mechanism proposed for a phase transition. 
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Fig. 1. Variations of the elastic constants of forsterite 
as a function of temperature (after Suzuki et al, 
1983). The smooth decline with increasing T is 
characteristic of materials at temperatures and pressures 
far removed from any structural phase transition. 
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Fig. 2. Variations of the elastic constants of quartz as 
a function of temperature showing the marked 
anomalies associated with the ß ;=± α transition at 
-846 K (after Hochli, 1972, and Yamamoto, 1974). 

As discussed at some length in the physics literature, phase transitions which involve 
significant lattice distortions should tend to conform closely to the predictions of Landau-type 
theories (Cowley, 1976; Folk et aL, 1976a and b, 1979; Als-Nielsen & Birgeneau, 1977; 
Schwabl, 1980; Bruce & Cowley, 1981; Wadhawan, 1982; Cummins, 1983; David, 1984; 
Ginzburg et aL, 1987; and see also Carpenter & Salje, 1989; Salje, 1992, 1993; Schwabl & 
Täuber, 1996). Indeed, it is the comparative rarity of systems which do not that now attracts 
attention (Folk et aL, 1979; Mayer & Cowley, 1988; Harris et aL, 1993, 1995; Harris & Dove, 
1995). There is a high expectation that the elastic properties of most natural materials can be 
described from the same macroscopic point of view, and a selection of phase transitions for which 
the overall approach should be directly relevant is given in Table 1. 

An illustration of the link between elastic behaviour and other properties is provided by a 
simple example. For a transition in which a spontaneous strain, e^, arises by coupling with a 
driving order parameter, Q, the excess energy of the low-symmetry phase with respect to the high-
symmetry phase (at the same conditions of pressure, temperature, etc.) may be expressed as: 

^excess — tzQ + ^coupling + ^elastic (i). 
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Table 1. Phase transitions in minerals for which elastic-constant variations should conform to solutions of a Landau 
free-energy expansion. The basis of the classification is set out in section 7. There is also a reversible transition at 
high pressures in gillespite (BaFeSi^io), but the symmetry change, PAIncc -» P2X2X2, does not follow the normal 
group -> subgroup relations, and does not fit conveniently into this scheme (Hazen & Finger, 1983; Redfern et al., 
1993). 

Selected phase transitions in minerals 
Proper ferroelastic behaviour 

albite: Cllm ÷± Cl (ßod_= 0) 
Sr-anorthite: 121c ;= II 
leucite: Ia3d =̂ I4xlacd 

Pseudo-proper ferroelastic behaviour 
tridymite: P6322 ^ C222x 

vesuvianite: PAInnc ;= P2ln (?) 

Improper ferroelastic behaviour 
(Mg,Fe)SiO3 perovskite: cubic ^ tetragonal (?) 

tetragonal ^ orthorhombic (?) 
neighborite: Pm3m ;= Pbnm 

CaTiO3 perovskite: Prrßm ;= 14/mem ^ Pbnm 
cristobalite: Fd3m f± P432x2 or P4^i2 

calcite: R3c ;= P2xlc 

Co-elastic behaviour 
quartz: P6422 or P6222 ^ P3X2 or P322 

leucite: I4x/acd ^ I4x/a 
pigeonite: C2[c ;= P2Λ/c 

anorthite:_/l ^ PI 
calcite: R3m ;= R3c 

tridymite: P63/mmc ;= P6322 
kaliophilite: P6322 ^ P63 

kalsilite: P63mc ^ P63 
P63mc ±̂ P63mc (superlattices) 

P63 ^ P63 (superlattices) 
cummingtonite: C2lm ^ P2xlm 

lawsonite: Cmcm ^ Pmcn ^ P2\cn 
titanite: A2la ^± P2xla 

Here GQ signifies the change in energy due to the effect of Q alone and GC0Upiing is the energy due 
to interactions between Q and e& both are usually negative. Geiastic is invariably a positive quantity 
because of the condition that the elastic-constant matrix must be positive definite for a crystal to be 
in an elastically stable state (Born & Huang, 1954). These energies are shown schematically in 
Fig. 3. If the crystal is subjected to an external stress, <7,-,ext> it wiU deform by an amount e^xt 
that should depend on the bare elastic constants, C£, according to Hooke's law: 

°i,< 
i,k 

(2). 

However, a change in the strain state of the crystal from e^ to (e^ + e^ext) will result in a change 
of the equilibrium value of Q, via the Qle^ coupling term. The crystal will therefore respond to the 
external stress by adjusting its structural state to the new equilibrium condition. Such a relaxation 
implies a reduction in energy. In fact, the act of deforming the crystal will have been made slightly 
easier so that it will appear to be softer than an identical crystal which was not susceptible to 
undergoing a phase transition. The effective, or "renormalised" elastic constants, C^, will be 
smaller than C?k, with the magnitude of the effect depending on the form of GQ. The most 
important conclusion here is that the effective elastic constants depend not only on the coupling 
terms but also on the shape of the free-energy potential for Q. This "shape" is formally the 
susceptibility, %, of Q where %~x = d2G/dQ2; %~X i s generally referred to in this context as the 
inverse susceptibility of the crystal with respect to Q. 

If the driving order parameter is itself a symmetry-breaking spontaneous strain, Gexcess 

would be entirely elastic in origin. The susceptibility of a crystal with respect to this strain is the 
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"critical" elastic constant. Quite characteristic C^ variations are observed, but such behaviour 
appears to be relatively uncommon in both minerals and man-made materials. Coupling of the 
symmetry-breaking strain with other strains is still possible and causes changes in some of the 
non-critical elastic constants which may be revealing of more subtle details of the transition. 

^elastic 

^coupling 

GQ 

G = 0 

^excess 

Fig. 3. Schematic illustration of the contributions from 
different excess energies to the total excess free energy due to a 
phase transition. The relative size of each contribution varies 
greatly between transitions. (It can easily be shown that 
C = —X.C Λ 
^elastic 2 ^coupling )• 

Since the elastic constants relate directly to the order-parameter susceptibility, their 
variations are quite different from those shown by excess properties such as spontaneous strain. 
Most significantly, the susceptibility varies in both the high-symmetry phase and the low-
symmetry phase of a crystal. Consequently, evidence of an impending phase transition is often 
clearly displayed by an anomalous decrease in one or more elastic constants as the transition point 
is approached either from above or from below the transition point. Precursor behaviour is shown 
by quartz (Fig. 2), for example, although, as will be discussed later, the ß ^ α transition in 
quartz is not as straightforward in this context as some other phase transitions. The excess free 
energy, enthalpy, entropy, etc., on the other hand, are by definition zero in the high-symmetry 
phase (ignoring short-range ordering and fluctuations) and only vary as a direct function of g in 
the low-symmetry phase. 

From these preliminary remarks it should be clear that the elastic constants associated with 
phase transitions are expected to show diverse variations, and that their evolution will be quite 
specifically dependent on transition mechanism. Some possible patterns of elastic behaviour are 
illustrated in Fig. 4 for cubic ^ tetragonal (m3m ^ Almmm) transitions, for example. The key 
issues and equations which underpin the prediction and interpretation of these variations form the 
subject of this review. The intention is: (a) to describe, from a purely macroscopic point of view, 
the physical processes that are responsible for the dramatic variations in elastic constants observed 
in minerals such as quartz, (b) to present a coherent framework of theory which might allow 
quantitative analysis of such variations in other minerals, and (c) to provide illustrative examples 
from a range of different materials. As in the accompanying review on spontaneous strain 
(Carpenter et al., 1998a), the format adopted is largely pedagogical. Section 2 is designed to 
explain why strain effects lead to changes in the evolution of individual elastic constants. Section 3 
gives essential background information concerning the role of symmetry in defining formal criteria 
for elastic instabilities. Section 4 deals with the relationship between acoustic velocities and elastic 
constants. This is included because certain acoustic phonons can determine the manner in which a 

Fig. 4. (Facing page) Schematic variations of elastic constants at second-order transitions involving the point-group 
change m3m ^ Almmm, based on expressions given later in this review (Table 8); ea is the non-symmetry-breaking 
strain. For the proper and pseudo-proper cases, it has been assumed that the third-order term is negligibly small. In 
the improper case (Pm3m ^ 14/mcm), this term is strictly zero by symmetry. Note: 
( c n - C 1 2 ) = } ( C π+ C 1 2 + 2 C 3 3 - 4 C 1 3 ) , } (C„+2C 1 2 ) = l ( 2 C π + C33 + 2C12 +4C 1 3 ) . The causes of these 
variations in elastic constants for different categories of phase transitions are discussed in detail in section 6. 
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symmetry-breaking distortion occurs when an elastic constant tends to zero, and because 
dynamical effects can cause additional elastic softening in the vicinity of the transition point. In 
section 5 experimental methods for determining elastic constants are briefly described in order to 
highlight differences between data obtained by dynamic, as opposed to static techniques. Sections 
6 and 7 represent the main substance of the paper. Section 6 is devoted to the ideal behaviour 
expected at second-order phase transitions driven by small atomic displacements. Worked 
examples cover almost all the aspects of symmetry and order-parameter coupling which are likely 
to arise in practice. In section 7 ideal behaviour predicted using the appropriate Landau expansions 
is compared with actual behaviour observed in a variety of materials. Because existing data for 
minerals are sparse, phase transitions in a number of synthetic materials are used to illustrate the 
likely properties of natural systems. 

Different aspects of both theory and experimental practice relating to ferroelastic properties 
are dealt with in previous review articles, including: Rehwald (1973), Liithi & Rehwald (1981), 
Fleury & Lyons (1981), Wadhawan (1982), Liakos & Saunders (1982), Cummins (1983), 
Tolédano etal. (1983), Schwabl (1985), Bulou et al (1992) and Schwabl & Täuber (1996). For 
readers who are not at all familiar with Landau theory, basic background information will be found 
in Carpenter (1988, 1992), Salje (1992, 1993) and Dove (1997). Some familiarity with irreducible 
representations in crystallographic point groups is also helpful, but not essential. A gentle 
introduction to this topic is given by Wooster (1973). Readers of the present review who are 
already familiar with the overall approach may wish to proceed directly to sections 6 and 7, in 
which predicted and observed elastic-constant variations are compared. 

2. Renormalisation of elastic constants: the formal basis 

Phase transitions in real materials are governed by a diversity of mechanisms. In order to 
understand how each mechanism can yield a distinctive pattern of elastic-constant variations, it is 
instructive to consider the form of the elastic energy, Geiastic> first-

In the limit of small elastic strains in a crystal, the relationship between an applied stress, 
oi, and the resultant strain, e^ is given by the tensor relationship (in Voigt notation): 

°i = Qkek (3). 

The elastic energy stored in the crystal is equal to the work done on the crystal and, from Nye 
(1985), is: 

G e l a s t i c = rΣ C / ^ Ä (4)-
U 

In most situations of stresses applied externally to a crystal, the linear relationship between stress 
and strain given by Hooke's law provides an adequate description of the energy changes. This is 
not necessarily the case when the elastic constants become very small, however. If some C/jt's in 
equation 4 became zero, a crystal might become infinitely soft - it would continue to deform 
without a change in energy even at infinite strain. Clearly, higher-order terms are needed to 
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describe the effective restoring forces beyond the equilibrium state of strain, and equation 3 should 
be given more fully as: 

° i = Cikek + Ciklekel + Ciklmekelem + - ( 5 ) ' 

Here C&, Cua and C^/w are second-order, third-order and fourth-order elastic constants. The 
elastic energy is then: 

Gelastic = 2 Σ Cikeiek + ^ X Cikleiekel + ^ X Ciklmeiekelem + • • • (6) 
*',& * i,/:,/ ' i,k,l,m 

where the prefactors are necessary to avoid counting equivalent terms (due to C^/ = Cuk = C/ifc, 
eic.) more than once. 

Equation 6 has the form of a Landau expansion in which GeXcess = G elastic- It should 
describe transitions in systems for which strain is the driving order parameter and the only excess 
energy is elastic. On the basis that such systems are expected to behave in a Landau-like manner, 
the coefficient for the second-order term (in e ^ ) might be expected to show a linear temperature 
dependence, while the coefficients for higher-order terms are expected to be weakly temperature 
dependent or constant. This contrasts with systems in which GQ and GC0Upiing contribute 
significantly to GexCess- A classical Landau expansion forms the starting point for the 
thermodynamic description of the latter case, and might be given as (see Carpenter et al., 1998a, 
for example): 

G = iβ(Γ- TC)Q2 +U<24 + Σhm,n^Qn + | Σ C ^Λ (7). 
i,m,n i,k 

In writing out the expansion in Q but truncating the elastic energy after a second-order term, it is 
implied not only that the structural feature represented by Q drives the transition, but also that 
restoring forces which prevent the crystal from becoming infinitely soft are due to the higher-order 
terms in Q and not to those in e. Different coupling mechanisms require different values for the 
exponents m and n. (Note that the subscripts for λ are only labels and do not signify tensor 
properties for the coupling constants). 

The manner in which alternative patterns of elastic-constant variations emerge from the 
different transition mechanisms represented by equations 6 and 7 may be illustrated using a simple 
example. In the following sections, an orthorhombic ^ monoclinic (mmm ^ 21m) transition with 
es as the symmetry-breaking strain is used. Only a single elastic constant, C55, need be considered 
at first and odd-order terms are excluded by symmetry from the Landau expansions, which greatly 
simplifies the algebra. The weak temperature dependence of the bare elastic constants has been 
ignored. 
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2.1 Strain as order parameter 

Taking es as the order parameter for an orthorhombic ^ monoclinic transition with second-order 
character, the elastic energy may be written in the form of a Landau expansion (GeXcess = Geiastic) 
as: 

G = ±a(T-Tc)ej+±be4
5 (8) 

where Tc is the equilibrium transition temperature. The equilibrium variation of es is obtained in 
the usual way from: 

PIC 
— = 0 = a(T-Tc)e5+be3

5 (9) 

giving e$ = 0, or: 

e\= j{Tc-T) (10). 

The elastic constant C55 is the inverse susceptibility of the crystal with respect to e$, i.e.: 

C55=^ = *{T-Tc) + 3be2
5 (11). 

At T > Γc, £5 = 0 and C55 =a(T-Tc), while at T < Tc, es is given by equation 10 and 
C55 = 2a{Tc - T). On this basis, C55 is expected to go linearly to zero at T = Tc with slopes 
below and above Tc in the ratio 2:1 (Fig. 5a). By comparing equations 6 and 8 the fourth-order 
coefficient, b, is seen to be equivalent to ^5555, where C5555 is a fourth-order elastic constant of 
the crystal (Tolédano et α/., 1983). 

The variation of C55 with temperature for tricritical and first-order transitions can also be 
derived quite simply from the relevant form of the Landau expansion in ^5, and is shown 
schematically in Fig. 5b and 5c. In the case of tricritical behaviour, C5555 is zero and the ratio of 
the slopes of C55 below and above Tc should be 4:1. A first-order transition (C5555 negative and a 
positive sixth-order term) would be marked by a discontinuity in C55 at an equilibrium transition 
temperature, Γtr, higher than Tc. 

Fig. 5. (Facing page) Schematic variations of selected elastic constants at phase transitions involving the change in 
point-group symmetry mmm ^ 2/m, with e5 as the symmetry-breaking strain. The three columns are for second-
order (left), tricritical (centre) and first-order (right) character, (a-c) Proper ferroelastic, no non-symmetry-breaking 
strain, (d-f) Pseudo-proper ferroelastic, no non-symmetry-breaking strain, (g-i) Improper ferroelastic transition 
(Pmma ^ Pile), (j-1) e5 as the driving order parameter with coupling to the non-symmetry-breaking strain 
component eh as λ^ej. (m-o) Pseudo-proper ferroelastic with coupling terms A ^ g and λγ€\Q2. (p-r) Variations 
due to coupling of the form λ4eJQ2 (or XAe\e\)- (s-u) Variations due to coupling of the form ληe4e6Q (or 
λje4e6e5). 
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The underlying thermodynamic mechanism represented by equation 8 might be described 
formally as softening of the elastic constant C55 at a proper ferroelastic transition (Wadhawan, 
1982; Salje, 1993). Wadhawan actually uses the term "true" proper, but this terminology can be 
controversial. The essential points are that the driving order parameter is a strain, the excess 
energy is purely elastic, and that this represents one limiting type of behaviour. 

2.2 Linear coupling between strain and a different driving order parameter 

If the driving mechanism for the transition comes from some structural feature other than a purely 
elastic effect, the strain arises from coupling with the driving order parameter, Q. For the case of Q 
and <?5 being associated with the same irreducible representation of the space group of the high-
symmetry phase, the coupling between e$ and Q is bilinear, and, again considering second-order 
behaviour for g, the excess free energy is given by: 

GΛa{T^Tc)Q2+hQUλ5e5Q^Cyl (12). 

C55 refers to the bare elastic constant. As in equation 7 it is assumed that the elastic energy may be 
truncated after the second-order term and, for the time being, it is also assumed that Λ5 is constant. 

Under equilibrium conditions, the crystal relaxes to a stress-free state such that: 

Ψ- = 0 = λ5Q+C°55e5 (13) 
àe5 

=>'5=--è-ô (14). 
C55 

Substituting equation 14 into equation 12 gives the usual renormalisation of Tc to a higher 
transition temperature, Tc , in: 

G = ^α( r -Γ c * ) ß 2 + ^ ô 4 (15) 

where: 

T^Tc+-%- (16). 
-55 

- * ~ • % 

One way of deriving the temperature dependence of C55 to take into account the coupling 
between e$ and ß , as discussed qualitatively in the introduction, is to first express the free energy 
in terms of £5 alone. A simplifying step in this is to make use of the order-parameter susceptibility. 
Taking that part of the free energy due to the terms in Q alone as: 
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L = U(T-TC)Q2+UQ4 (17) 

the inverse susceptibility of Q alone (unmodified by coupling with the strain) is given by: 

r 1 = 0 = α(Γ-Γc) + 3èô2 (18). 

To a good approximation for small deviations of Q from its equilibrium value, equation 17 can be 
simplified to: 

L = \x~lQ2 (19). 

Equation 12 may then be rewritten as: 

G = ̂ X~V + Vsô + \ QVs (20). 

The condition of Q being at equilibrium is expressed as: 

| ^=o=r 1 ß+Vs (2D 

= » ß — % (22). 
X 

Substituting equation 22 into equation 20 gives G as a function of e$ alone, as required: 

GΛ ( & \ 
c55 =Γ \e\ (23). 

The variation of C55 for a crystal which is free to undergo the transition is then given simply by: 

C55=^[ = C0
55-λ2

5x (24) 

and it is only necessary to explore the behaviour of %. At T > Tc , the equilibrium value of Q is 
zero so that equation 18 becomes: 

X-l=a{T-Tc) (25) 

and, hence: 



706 M.A. Carpenter, E.K.H. Salje 

C5S - C?5 ~ 
% 

<T-TC) 
(26). 

At T= Tc , the renormalised elastic constant falls to: 

C55 - C55 7" 
λ\ 
2Z = 0 (27). 

aCl 55 

Below Γc , the equilibrium value of ß is obtained by applying the equilibrium condition, 
dG/dQ = 0, to equation 15, giving: 

Equation 18 can then be written in the form: 

X-l=a{T-Tc) + 3a[T*c-T) 

= 2 β ( r * - r ) + β( r * -Γ c ) 

and the renormalised elastic constant becomes: 

(28). 

(29) 

C*< — C« — λ\ 
-55 55' 2 β ( r * - r ) + β ( r * -Γ c ) 

(30). 

Tc-T\ are respectively -laic%Λ λ\ and The slopes, dC55/dT, below and above Γc at small 

a(c$5) / /I5. As for the case of the driving order parameter being ^5, the measured value of C55 
should go smoothly to zero as the equilibrium transition temperature is approached, with the ratio 
of the slopes tending to 2:1. In this case the transition occurs at Tc rather than at Γc, however, and 
the form of the variation of C55 given by equations 26 and 30 (illustrated in Fig. 5d) is quite 
different from that given by equation 11 (illustrated in Fig. 5a). As an aside, it is worth pointing 
out that, while C55 is no longer identical to %~l, it can still be thought of instructively as a probe 
for the susceptibility of Q since it is linearly dependent on % (equation 24). The variations of C55 
for tricritical (zero fourth-order term) and first-order transitions (negative fourth-order term) may 
be derived by following the same lines of argument; they are shown schematically in Fig. 5e and 
5f. 

Bearing in mind that Tc represents the transition temperature for a transition driven by Q 
* with no strain coupling, a useful relationship between Cik, C55, Tc and Tc is obtained by 
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combining equations 16 and 26 to eliminate λ\/a (Feile et al., 1982; Knorr et al., 1986). In the 
present example this yields (for T>TC): 

^55 - C55 
(π J*\ lT-Tc

 λ 

T-T , 
(31). 

From one set of measurements of C55 over a range of temperatures above Tc and an experimental 
value of Tc it is therefore possible (in principle) to extract values of C55 and Tc. This expression 
also provides a test of whether strain is the driving order parameter or a driven order parameter, in 
the sense that has been used here, since T -T xc L c is a measure of the strength of the coupling 

coefficient (equation 16). 
Implicit in this treatment is the assumption that the response time of Q to some external 

stimulus is small relative to the response time of the strain, 25. There are actually two important 
time scales involved, the first depending on the rate of structural relaxation with respect to Q and e, 
and the second on the rate of thermal equilibration. When local regions of a crystal are deformed 
during the passage of an acoustic wave in an ultrasonic experiment, for example, it is assumed that 
there is time for internal atomic adjustments to occur according to relationships predicted from the 
equilibrium dependence of Q on e$. If Q involves only small atomic displacements in a soft optic 
mode, this assumption is not unreasonable. Under these conditions there might not be time for 
thermal equilibration on a local scale, however, so that, while the theory describes isothermal 
behaviour, the experiment would give adiabatic behaviour. Under most circumstances the 
difference between isothermal and adiabatic limits is small (see section 5 below), and this is not a 
serious issue. On the other hand, if the relaxation with respect to Q involves a relatively slow 
process with some significant activation energy, the assumption of structural equilibration will be 
invalid, and equations 26, 30 and 31 will not provide an adequate description of the elastic 
properties. Strictly speaking, the predicted (isothermal) elastic-constant variations will only be 
matched by data from static or very-low-frequency experiments (e.g. Schranz & Havlik, 1994). 

Behaviour of this overall type, involving bilinear strain/order-parameter coupling, falls into 
the category of pseudo-proper ferroelastic phase transitions according to Wadhawan (1982). 
Clearly it represents a wide range of possibilities controlled by the strength of the coupling. 

2.3 Quadratic coupling between strain and the driving order parameter 

If a strain component and the driving order parameter have different symmetries, i.e. they are 
associated with different irreducible representations of the space group of the high-symmetry 
phase, the coupling between them will usually be linear in the strain and quadratic in the order 
parameter. For the illustrative orthorhombic ;= monoclinic transition being considered here, two 
situations can be envisaged. Since all macroscopic strains are associated with the Brillouin zone 
centre, any driving order parameter associated with some other point in the Brillouin zone, to give 
a doubling of the unit cell, for example, must have different symmetry. Coupling with the 
symmetry-breaking strain, e$, would then be of the form λe5Q2, and, in relation to the categories 
of Wadhawan (1982), this would be described as improper ferroelastic behaviour. Alternatively, 
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when the driving order parameter is £5, coupling to a non-symmetry-breaking strain, ens\>, will be 
of the form λ^nsb £5 since the two strains are associated with different representations. 

For the case of a zone-boundary transition, an additional consideration is that the 
degeneracy of the order parameter may increase relative to that of a related zone-centre transition. 
If such a degeneracy arises, the specific terms allowed by symmetry depend on the exact change in 
space group. The usual symmetry rule still applies, namely that each term in the expansion must be 
invariant with respect to all symmetry operations of the space group of the high-symmetry phase. 
However, the formal group-theoretical manipulations are not straightforward. Illustrations of the 
necessary steps are provided by Dvorak (1971), Torres (1975) and Hatch (1981). A useful 
starting point for any system of interest is provided by the tables of Stokes & Hatch (1988), 
though a compilation of all allowed coupling terms is not yet available. 

As an example of a zone-boundary transition, the symmetry change Pmma ^ Pile has 
been chosen, somewhat arbitrarily. From the tables of Stokes & Hatch (1988), this symmetry 
change is seen to be associated with the X point of the Brillouin zone, giving a doubling of the 
unit-cell dimension in the direction of the Jt-axis of the orthorhombic lattice. The order parameter is 
two-dimensional and the free-energy expansion must be written in terms of components q\ and #2 
in place of Q. Considering only one strain, £5, the excess free energy may be written as (from 
Stokes & Hatch, 1988, and Hatch, pers. comm.): 

G = \a{T - Tc)(qf + «§) + \b\q\ + q2f + h"(qf + q$) 
+λ5e5(qf-q2

2) + ^ 5 e 2
5 (32). 

In this case, the problem is simplified by the fact that one component of the order 
parameter remains zero in the monoclinic phase. The final form of the predicted elastic constants is 
not compromised if qi = 0 is assumed from the start. Equation 32 can then be reduced to: 

G = ±α(Γ - TC)Q2 +\bQA + λ5e5Q2 + ±C&*5
2 (33) 

where è = 6' + fe", ß 2 = {<$ +ql)> and q2 = 0. 
At equilibrium the value of Q under the influence of the strain coupling is given by: 

— = 0 = a(T-Tc)Q + bQ3+2λ5e5Q (34). 

Hence, Q = 0, or: 

Q2 = - i - 5 / 2_i (35). 
\ b ) 

Expressing the excess free energy in terms of eç, alone gives, for T< Tc: 

file:///b/q/
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G = -a{T-Tc)\ 

+ V 5 

a(Tc-T)-2λ5e5 

b 
a(Tc-T)-2λ5e5 

b 

4 
a(Tc-T)-2λ5e5 

b 

+ %<&$ (36). 

For transitions in which changes in ß are rapid relative to changes in e$, C55 is given by the 
second derivative of G (equation 36) with respect to e$: 

C55 = d
2G ^ 2λ\ 

de5
2 = C£ •55' (atΓ<Γc ) (37). 

Since Q = 0 at T> Tc, the excess free energy would simply become: 

G = 2 C 5 5 e 5 (38) 

and the second derivative with respect to e$ is: 

d2G C 5 5 = 
de5

2 =a 55 (39). 

At T = Γc, therefore, there should be a step in the elastic constant C55 with no softening in 
anticipation of the transition as Tc is approached from either the high-temperature or the low-
temperature side (Fig. 5g). 

The algebra becomes more complicated for a tricritical transition, but the general solution 
discussed in a later section (equatiori 79) yields an expected temperature dependence for C55 of the 
form (at T<TC): 

C«< — C<« — 2λ2 

-55 55 b + 2cQ2 (40) 

as illustrated in Fig. 5h. Here c is the coefficient of the sixth-order term in Q, and the fourth-order 
5|C r\ 5jC r\ / 

coefficient, b , as renormalised by the coupling between Q and es (b =b-2λ /C55 ), is zero. 
A schematic representation of the possible behaviour of C55 at a first-order transition is illustrated 
in Fig. 5i. 

The non-symmetry-breaking strains e\, ^2 and e$ can be added to equation 32. Because 
they couple with qf +q%,it follows that C\\, C22, C33, C12, C13, C23 would also show a step at 
T=TC for a second-order transition. C15, C25 and C35 are constrained by symmetry to be zero in 
the orthorhombic phase but may be non-zero in the monoclinic phase, when they should show 
variations that are qualitatively similar to those of C55. In all cases, of course, the precise values of 
the elastic constants in the monoclinic phase would depend on the signs and magnitudes of the 
relevant coefficients. 
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The alternative situation in which quadratic coupling arises is when e$ is the driving order 
parameter for the transition and there is also a non-symmetry-breaking strain, such as β\. In this 
case, the excess free energy becomes: 

G = ±a{T-Tc)e2
5+het + λlele2

5+±C?le? (41). 

Here the coupling coefficient λ\ is also proportional to the third-order elastic constant Cγ55 

(Tolédano^α/., 1983). 
The elastic constant C55 remains the inverse susceptibility of the crystal with respect to e$ 

but is now: 

C55=÷-^ = a(T-Tc) = a(T-Tc) + 3bej+2λlel (42). 
äe5 

Under equilibrium conditions the crystal is stress free and the condition dGjdex = 0 yields: 

Substituting this into equation 41 and manipulating terms in e\ gives, for the renormalised fourth-
order coefficient: 

b* = b-*ß- (44) 
M l 

and, for the equilibrium variation of £5 at T < Tc in a second-order transition: 

e2
5=-^(Tc-T) (45). 

b 

The temperature dependence of C55 derived from equation 42 is then: 

C 5 5 =α(Γ-Γ c ) (atΓ>Γc) (46) 

C55=2a-^{TC-T) (atT<Γc) (47). 
b 

Thus, due to the non-symmetry-breaking strain e\, the ratio of slopes for C55 below and above Tc 

in Fig. 4a becomes 21 b/b 1:1 instead of 2:1. 
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At a tricritical transition a sixth-order term, \ce\, is needed in equation 41 and b = 0, 
e\ = (a/c)(Tc - T). Above Γc, C55 behaves as in equation 46, but for T < Tc, it can easily be 
shown that: 

- A~Λ Λ.1UΛ C55=4ceS + 2bej 

= 4a(Tc-T) + ^(Tc-T)] 1/2 (48). 

The behaviour illustrated in Fig. 5b is therefore modified by a non-linearity in the stability field of 
the monoclinic phase, the magnitude of which depends on λ\. 

Whatever the thermodynamic character of the transition, the variation of C\\ is given 
simply by: 

C i i = ^ = c f l ( 4 9 ) 

with no anomaly predicted. Other elastic constants can be derived as easily, with C15, for example 
being given by: 

Cl5 = ^ - = 2λxe5 (50). 

This produces variations of the form illustrated in Fig. 5j, k, 1 for second-order, tricritical and 
first-order transitions, respectively. C15 is strictly zero in an orthorhombic crystal. 

2.4 Simultaneous linear and quadratic coupling of strain components to the 
driving order parameter 

For an orthorhombic ^ monoclinic transition driven by Q in a real crystal there would almost 
certainly be both a symmetry-breaking strain, e$, and non-symmetry-breaking strains, e\, ei and 
e$. Again using only es and e\ for simplicity, the free-energy expansion for a second-order 
transition is: 

G = ta{T-Tc)Q2+UQ4 + λlelQ2+λ5e5Q + ±C?1ef+±C0
55e2

5 (51) 

where es and Q are both associated with the active representation. 
From all the preceding examples, the physical origin of the elastic-constant renormalisation 

should be apparent. Rather than follow the same approach, which becomes increasingly more 
laborious as strain terms are added, a general mathematical solution given towards the end of this 
section is anticipated and the behaviour of C55, C\\ and C\s are merely quoted here without 
derivation. For the free-energy expansion in equation 51 the renormalised elastic constants are 
expected to behave as: 
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C55 = C°55 - λ\X (52) C n = Cft - 4λ?ß2Z (53) 

C1 5=-2λ1A5ßZ (54). 

Here the order-parameter susceptibility is itself renormalised by the coupling between e\ and ß 2 

such that, from equation 51: 

Z"l = I S = β(Γ " Γc) + 3èß2 + 2 ^ ! (55) 

which, after the usual substitutions, yields for a second-order transition: 

X-l=a{T-Tc) (a tΓ>Γ*) (56) 

^ - 1 = 2 αΛ ( 7 * - r ) + α( r * -Γ c ) (a tΓ<Γ*) (57). 

This gives, for T> Tc 

2 
C55 = C0

55- λ'5 (58) Cn = C?x (59) 
aV-Tc) 

C1 5=0 (60). 

At Γ < Γc , the equilibrium value of ß depends on the renormalised values of Tc and the 
renormalised value of b as Q2 = la/b j(Γc - 7 j , which may be substituted into equations 52 -
54, together with the susceptibility given in equation 57, to obtain C55, C\\ and C15. C55 behaves 
as shown in Fig. 5d except that the ratio of the slopes as T -» Tc is 2(b/b ):1 rather than 2:1. 
C\\ does not have a step of the form shown in Fig. 5g, but varies continuously through Tc as in 
Fig. 5m. C15 decreases continuously to zero at T = Tc , though more steeply than shown in Fig. 
5j. 

At a tricritical transition, b* = 0, ß 4 = (α/c)(Γ* - Γj and # - 1 = 4α(r* - T\ + 

(4Ai/Cπ)Γ(α/c)[r* - T \ \ 2 + α(r* - Γ c j , which can be substituted into equations 52 - 54 to 

predict the variations of C55, C\\ and C15. Schematic representations of C\\ at tricritical and first-
order transitions are shown in Fig. 5n and 5o, respectively. 
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2.5 Other couplings 

In principle, the correct free-energy expansion to describe a phase transition should always contain 
all six of the possible strain components. Usually these are incorporated in the lowest-order form 
allowed by symmetry, and higher-order terms are assumed to be negligibly small in comparison. 
As discussed above, in the case of an orthorhombic ^ monoclinic transition where the active 
representation is associated with the Brillouin zone centre, the symmetry-breaking strain, e$, 
couples with Q. The non-symmetry-breaking strains, e\, ei and e3, which are associated with the 
identity representation, each couple with Q2. To show how the remaining two strain components, 
£4 and eβ, contribute to the transition it is necessary first to examine the irreducible representations 
of the point group of the high-symmetry phase. 

The condition for any term appearing in the Landau expansion is that it must be invariant 
with respect to all symmetry operations of the high-symmetry space group, or, in other words, the 
product of the related irreducible representations must contain the identity representation. For a 
zone-centre transition involving the symmetry change mmm ^ 2/m, the active representation is 
B2g when the retained diad is parallel to the crystallographic v-axis (Table 2). Thus the symmetry 
of a term in e^Q is B2g ® B2g which necessarily contains the identity representation Ag. Similarly, 
the symmetry of terms in exQ2, e2Q2 and e3Q2 is Ag<8> B2g ® B2g which, again, necessarily 
contains the identity representation. The remaining strain components, t^ and eβ, are associated 
with B3g and Big respectively (Table 2), and the lowest-order coupling terms in e$ or eβ allowed 
by symmetry have the form e2Q2 and e\Q1. [B3g ® B3 g ® B2 g ® B2 g and Big (8) Big (8) B2 g ® 
B2g obviously contain Ag]. It is always necessary to check other possibilities, however, and in 
this case Big <8> B3g = B2g. Thus a term in e^eβQ is also invariant and is allowed in the free-energy 
expansion. The full free-energy expansion of the transition with Q as the driving order parameter 
should therefore be: 

G = ±a(T-Tc)Q2 +hQ4 + V i ß 2 + λ2e2Q2 + λ3e3Q2 + λ5e5Q 

+λAe2Q2+λβelQ2+ληeAeβQ + \ Σ ^ Λ ^ ΣCu^i 
2, (61). 

U=l-3 ' /=4-6 

Table 2. Irreducible representations and basis functions for point group mmm. Only basis functions up to second 
order are shown. Individual strain components are related to the basis functions as: x2 —> eλ> y2 —> e2, z2 —> e3, yz 
-> e4, xz -» e5, xy —> e6. Rx, Ry and Rz relate to properties which involve rotations about the principle axes, such 
as optical activity; x, y and z become polar properties. 

E 

te ~ B i g 1 
B 2 g 1 
B 3 g 1 
Au 1 
Biu 1 
B 2 u 1 

|B3u 1 

c2 c2 
[001] [010] 

1 -1 
-1 1 
-1 -1 

1 -1 
-1 1 
-1 -1 

c2 
[100] 

-1 
-1 

-1 
-1 

i 

Γ 
I 
I 
I 

- l 
- l 
- l 
- l 

α 
(001) 

-1 
-1 
-1 
-1 

α 
(010) 

-1 

-1 
-1 

-1 

a 
(100) 

-1 
-1 

-1 

-1 

Basis 
functions | 
x2, y2, z2 

Rz, xy 
Ry, xz 
Rx,yz 

z 
y 
X 
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The terms in e2Q2 are frequently not specified because they are expected to be small. They are 
significant in some materials, however, including, for example, K2Se04 (Cho & Yagi, 1981; 
Cummins, 1983) and quartz (LÜthi & Rehwald, 1981). 

Under equilibrium conditions the crystal must be at a free-energy minimum with respect to 
e4 and e& giving: 

2L = 0 = 2 λ4e4Q2 + λ7e6Q + C°44e4 (62) 
ôe4 

and 

| ^ = 0 = 2 V ô ß 2 + V 4 ß + C&6 (63) 
äe6 

for which the only solution is, as expected for a monoclinic crystal, e4 = eβ = 0. The second 
derivatives are: 

y = 2λ 4 ß 2 + C^ (64) ^ l = 2λ6Oz + C6
0
6 (65) 

= A7ß (66). 

de4 de{ 

d2G 
de4de6 

These are independent of e4 and e^ and are not constrained to be zero. By inspection of equation 
61 it is in fact evident that the renormalised elastic constants C44, C^β and C4β could have been 
given directly as: 

C44 = C°u + 2λ4Q2 (67) C66 = C6°6 + 2 A6ß2 (68) 

C 4 6 =λ 7 ß (69). 

Such variations of C44, C^β and C4β are illustrated for second-order, tricritical and first-order 
transitions in Fig. 5p-u. Again the precise values of the elastic constants depend on the signs and 
magnitudes of the coupling coefficients λi, λβ and λη. 

These coupling terms clearly do not have any influence on the minima of the free-energy 
expansion describing a transition, and need not be considered in an analysis either of the 
equilibrium free energy or of the equilibrium values of ß , e\, β2, e?> or e$, therefore. Their 
influence is only in modifying the shape of the free-energy function away from the equilibrium 
point and, hence, in renormalising some of the elastic constants. 

2.6 Temperature-dependent coupling coefficients 

In Landau theory the excess entropy due to a phase transition driven by some order parameter Q is 
taken as being proportional to Q2, and the coefficient of the second-order term in the free-energy 
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expansion is made explicitly temperature dependent as \a(j ~ ^c)ß2 • ^ ^ e transition is driven by 
a symmetry-breaking strain, such as e$ in the preceding discussions, the equivalent term is 
^a(T - Tc)e2 and it is the elastic constants which are explicitly temperature dependent. These two 
cases correspond to two extremes - either Q or es drives the transition. The coupling term λ^e^Q 
also has the same form, however, and might be temperature dependent in the same manner, i.e. 
with λ5 = λ'5(T- Γc), where λ'5 is a constant. The driving mechanism would be ascribed to the 
temperature dependence of the coupling coefficient and not to either of Q2 or e\. Equation 24 can 
be adapted to give C55 as: 

C55 = Cl5-[λ'5(T-Tc)]2
X (70) 

where % may or may not be explicitly temperature dependent. The behaviour of C55 would be 
quite different from the previous examples and, although this point is not considered further in this 
paper, equations of the form of equation 70 provide a basis for predicting the elastic behaviour of 
such systems. 

Following the same line of reasoning, it is not expected that the coefficients of coupling 
terms with the form λeQ2 would be strongly temperature dependent since they contribute only to 
the fourth-order Landau terms. 

2.7 General solutions 

In summary, it is evident that the elastic constants of a material vary at a phase transition in a 
manner that is highly sensitive to the transition mechanism. Three mechanisms, in particular, have 
been considered: (i) strain as the driving order parameter at a purely elastic instability, (ii) some 
structural feature other than strain acting as the driving parameter, and (iii) a temperature 
dependence of the coupling between strain and some other structural feature. In each case, a full 
set of elastic-constant measurements through a transition would show some pattern characteristic 
of mechanism and thermodynamic character. While the underlying causes of this sensitivity can be 
understood by following the step by step approach adopted up to this point, it is fortunately not 
necessary to follow every step for every material of interest. A general solution can be used to 
predict the same effects more economically. 

By definition a second-order elastic constant is given by: 

c*=Tir (71)-

When G is expressed purely in terms of strains, this double differentiation gives the elastic 
constants directly. All relaxations of the crystal, when a stress is applied, are accounted for 
explicitly. For example, if the excess free energy is written in terms of elastic energies and a 
coupling energy, equation 41 can be written as: 

G = ic5 5e5
2
 + λ1€1€5

2+ic1V1
2 + C1V1e5 (72). 
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The bare elastic constant Ci°5 has been added for completeness, although it is strictly zero by 
symmetry. A stress, 05, produces strains according to: 

dC 
05 = —- = C55e5 + 2λλexe5 + C%5eλ de5 

(73). 

C55 is the constant of proportionality for e$ and the additional relaxation, ei, is accounted for by 
the elastic constant C15 (which is given by Ci5+2λxe5 = 2λλe5; equation 50). When the same 
stress is applied to a crystal with e$ coupled to Q, the relaxation of Q is not accounted for in the 
same way. The inverse susceptibility of the crystal with respect to £5, i.e. C55, now also involves 
the susceptibility of the crystal with respect to Q. 

To find a general solution for systems driven by ß , it is convenient to take a general 
expression for the excess free energy as a function of Q and a strain e, G(Q,e). The first derivative 
of this with respect to e is: 

áG 
de 

3G 3G do 
de dQ de 

(74). 

Here the second term on the right-hand side is zero under equilibrium conditions because 
dG/dQ = 0, though dQ/de is not zero. Any elastic constant is then: 

^_á2G_ áfáG^_d2G d2G dQ 
dez de ^ áe J de2 dedQ de 

dQ/de is found by considering the derivative: 

de{dQJ dedQ + dQ2' de 

(75). 

(76) 

which, taking dG/dQ = 0, is also equal to zero. Thus: 

M= 
de dedQ 

d2G (d2G^ 

W) 
(77). 

Substituting for dQ/de in equation 75 then gives: 

C = d
2G d2G 

de2 dedQ dQ2 
d2G 

dQde 
(78). 

This is the general result for a transition with a driving order parameter which is not a strain, as 
first obtained by Slonczewski & Thomas (1970). d2G/de2 is the inverse susceptibility of the 
crystal with respect to strain alone, i.e. the unrenormalised or bare elastic constant C°k. The terms 



Elastic-constant variations due to phase transitions 717 

in d2G/dedQ incorporate the coupling between e and Q, while (92G/3ß2) is the order-
parameter susceptibility, %. 

For standard applications, equation 78 is usually written in a form such as: 

Ofc-C*~z/ 
d2G d2G 

%deßQn {dQmdQj dekdQn 

4 3*G (79) 

where, for m = n, Qm and Qn are the same order parameter, and, for m * n, Qm and Qn might be 
two discrete order parameters or two components of a single order parameter. This equation yields 
elastic-constant variations in a quite straightforward manner. Some useful expressions for %~x at 
second-order transitions are listed in Table 3. 

Table 3. Order-parameter susceptibilities for second-order transitions with a single, one-component order parameter. 
esh is the symmetry-breaking strain, ensh is a non-symmetry-breaking strain. 

Role of iSb 

driving order parameter 

M II II 

bilinearly coupled to Q (λ^Sbô) 

π H it it ii 

quadratically coupled to Q (λe&Q2) 

Value 
Of 0nsb 

0 1 

" 0 i 

0 

*° I 
* o < 

x~l 

a(T-Tc) at T>TC 

2a{Tc-T) = 2bei at Γ<ΓC 

α(Γ-Γ c ) at T>TC 

2a\{Tc-T) = 2bel at Γ<ΓC 
b 

a(T-Tc) at T>T* 

2α( r * - 7 J + α( r * -Γ c ) at T<T* 

a{T-Tc) at Γ>Γ* 

2a—\Tc-T]j + a\Tc -Γ c ) at T<TC 

Γβ(Γ-Γc) at T>TC 

2aAjr(Tc-T) = 2bQ2 at Γ<ΓC 

3. Criteria for stability with respect to elastic lattice distortions 

For a crystal to be in an equilibrium state, its free energy must be at a minimum with respect to any 
distortion. In other words, the elastic energy, j^C^e^, must be positive for all strains e^ e^ 

i,fc 

This requires, formally, that the elastic-constant matrix is positive definite (Born & Huang, 1954). 
An identical expression of the stability condition is that all the eigenvalues of the elastic-constant 
matrix must be positive. Should one (or more) of the eigenvalues go to zero the crystal will 
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become unstable with respect to some spontaneous lattice distortion (Boccara, 1968; Cowley, 
1976; McLellan, 1980; Liakos & Saunders, 1982). The resulting strains have the symmetry of the 
corresponding eigenvector(s). A simple set of stability criteria based on the properties of the C^ 
matrix may therefore be derived. For this, the diagonalised form of the elastic-constant matrix is of 
more practical use than its conventional form. In the following sections, a brief outline of the 
symmetry properties of the elastic constants is given, before returning to the criteria for stability. It 
can also be convenient, when writing out Landau expansions, to express strains and elastic 
energies in their symmetry-adapted forms. 

3.1 Symmetry properties of the elastic-constant matrix 

Elastic properties are centrosymmetric since they do not depend on whether the stress in a given 
direction is positive or negative (compression^ or tensile). Rather than having to deal with 
different sets of elastic constants for all thirty-two crystallographic point groups, it is therefore 
necessary only to consider the eleven Laue classes. The second-order elastic constants allowed by 
symmetry for Laue classes rrß and nßm are the same, however, as are those for Laue classes 61m 
and 6/mmm, which reduces the number of distinct matrices to nine. These are given in many 
standard texts {e.g. Nye, 1985), and each is a real, symmetric 6 x 6 matrix with six eigenvalues 
that are also real. Associated with each eigenvalue is at least one eigenvector. The eigenvectors are, 
or can be chosen to be, orthogonal to each other. They have six components which may be 
understood most easily in terms of their relationship to the six components of the strain tensor. 
Each eigenvector has a symmetry which is specified by reference to the irreducible representations 
of the thirty-two crystallographic point groups. In the present context of trying to understand 
elastic anomalies at structural phase transitions, it is not necessary to be able to derive all the 
eigenvalues and eigenvectors. They are tabulated and discussed in detail elsewhere (e.g. Boccara, 
1968; McLellan, 1980; Liakos & Saunders, 1982; David, 1983a; Nye, 1985; Terhune etal., 1985; 
Bulou, 1992; Bulou etal, 1992). 

The most, significant aspects of the symmetry constraints may be illustrated with two 
examples, mhm and 422, as the point-group symmetry of a parent crystal. For a cubic crystal the 
conventional form of the second-order elastic-constant matrix is: 

(CXX 

C\2 
C\2 
0 
0 

^o 

C\2 

Cπ 
C\2 
0 
0 
0 

C\2 

Q2 
C11 
0 
0 
0 

0 
0 
0 
C44 

0 
0 

0 
0 
0 
0 
C44 

0 

0 ̂  

0 
0 
0 
0 
C44J 

Diagonalisation yields: 
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CU+2C1 2 

0 
0 
0 
0 

I o 

Qi 

0 
- c 1 2 
0 
0 
0 
0 

Cπ 

0 
0 
- C 1 2 

0 
0 
0 

0 
0 
0 

C44 
0 
0 

0 
0 
0 
0 

C44 
0 

0 > 
0 
0 
0 ' 
0 

Cuj 

The eigenvectors and their corresponding irreducible representation labels are given in Table 4. 
The eigenvalue (Cn + 2C12) is associated with the eigenvector (:^>:^>:^>0'0'0)> which has the 
symmetry of the identity representation, Aig. The six components of the eigenvector scale as the 
six strains, e\ - e& so that the equivalent spontaneous strain becomes ea = 4f (^I + ^2 + ^3) i*1 its 

symmetry-adapted form. This is a pure volume strain. There are two degenerate eigenvalues 
associated with eigenvectors with Eg symmetry and three degenerate eigenvalues associated with 
T2g eigenvectors. The symmetry-adapted spontaneous strains describe orthorhombic distortions, 
e0 = -j^{ex -e2), or tetragonal distortions, et = 4r(2e3 - e λ - e 2 ) , for the former, and trigonal (D 

= E = F,β4 = es = eβ), monoclinic (D = E*F,e4 = es*e^) ortriclinicdistortions ( D * E* F, e^ 
* £5 * eβ) for the latter. The coefficients D, E and F (introduced in Table 4) are related by D2 + E2 

+ F2 =1, and are needed to ensure that the eigenvectors have unit length. 

Table 4. Symmetry-adapted elastic constants (eigenvalues) and strains (from the eigenvectors) of the elastic constant 
matrix for point group m3m. Note: A2 + B2 = D2 + E2 + F2 = 1. 

Irreducible 
1 representation 

A i g 

Ü 

Eg 

T2g 

Eigenvalue 

C\\ +2C\2 

\Cn - C 1 2 

{Cn-Cl2 

JC44 
AC44 
[C44 

Eigenvector 

(i'i'i'0'0'0) 
A(à'-à>0>°>°>0) 
ß(-W'-W'W'0'0'0) 

0(0,0,0,1,0,0) 
£(0,0,0,0,1,0) 
F(0,0,0,0,0,1) 

Symmetry-adapted 
spontaneous strain | 

ea=^{ei+e2+e3) 

eo=^(e\-ei) 
et=-^(^3-eλ-e2) 

e4 

The most obvious difference for a parent crystal with symmetry less than nßm is that some 
of the eigenvalues are not such simple functions of the standard elastic constants. For a tetragonal 
crystal with point group 422 (Laue class 4/mmm), the eigenvalues of the elastic-constant matrix 
are (Cn - C12), C^β, C44, C44 and the eigenvalues of a submatrix: 

I cn + cl2 
I V2C13 

Λ/2C13" 

-33 ) 
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which are: 

l|(C11 + C12 + C33) + [(C11 + C12-C33)2
+8Cf3f j 

and 

lj(C11 + C12 + C33)-[(C11 + C12-Q3)2+8C1
23]>1| 

(Table 5). The coefficients α, a\ ß and ß' in Table 5 describe the eigenvectors. They are 
constrained by 2a2 + ß2 = 2a'2 +ß'2 = 1 to ensure, again, that the eigenvectors have unit length. 
An additional constraint, 2aa' + ßß' = 0, ensures that the two Ai eigenvectors are orthogonal. 

Table 5. Symmetry-adapted elastic constants (eigenvalues) and strains (from the eigenvectors) of the elastic constant 
matrix for point group 422 (Laue class 4/mmm). Note: 2 a2 + ß2 = 2 Of'2 + ß'2 = 1, 2aa' + ßß'= 0, A2 + B2 = 
1. A semi-colon is placed between two strains to signify that, although they have the same symmetry, they would 
develop in different proportions according to the values of the coefficients a, ß, a' and ß'. 

Irreducible 
representation 

A l 

Ai 

B l 

B2 

E 

Eigenvalue 

1 
2' 

1 
2] 

\cn+cn + c33) 

-[{Cn + Cl2-C33f+SC2
3f2^ 

(c11 + c12 + c33) 

+ [(C11+C12-C33)2
+8C1

23^ 

C\\-C\2 
^66 
JQ4 
[C44 

Eigenvector 

• {a,a,ß,0,0,0) 

> (a',a',ß',0,0,0) 

(i'-W'0'0'0'0) 
(0,0,0,0,0,1) 

A(0,0,0,1,0,0) 
5(0,0,0,0,1,0) 

Symmetry-
adapted 

spontaneous 
strain 

(ei+e2);e3 

(e1+e2);e3 

eo=^(ei-e2)\ 
eβ 
e4 

For parent crystals with still lower symmetry, some of the eigenvalues and eigenvectors 
become algebraically more complex in a similar manner, but the essential features remain the same. 
The eigenvectors are of less practical use than the symmetry-adapted strains which are derived 
from them. Note, however, that the parameters A, B..., a, ß ..., refer to real properties of a 
material. The values of coefficients specified here by capital letters determine the symmetry of the 
product structure at the instability due to a degenerate eigenvector. They determine, for example, 
whether a crystal becomes orthorhombic or tetragonal at an Eg instability in a cubic crystal. Values 
of the coefficients specified by greek letters characterise the relative magnitudes of two (or more) 
strains with the same symmetry belonging to non-degenerate representations. 
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3.2 Stability criteria 

Stability with respect to spontaneous elastic distortions can be assessed by inspection of the 
eigenvalues of the relevant elastic-constant matrix. Thus, if (Cπ - C12) became zero with pressure 
or temperature, a cubic crystal would be expected to deform spontaneously to an orthorhombic or 
tetragonal form (Table 4). In this case the active representation for the transition is Eg. If C44 

became zero the crystal would become unstable with respect to shearing, leading to trigonal, 
monoclinic or triclinic states, with T2g as the active representation. Similarly, a spontaneous 
volume change, in excess of the normal effects of thermal expansion, would occur if (Cn + 2C12) 
became zero, though this would not involve a change in symmetry. For a tetragonal crystal with 
point group 422 (Table 5) the condition (Cπ - C12) —> 0 would lead to the development of an 
orthorhombic form (Bi or B2 active), and C44 -» 0 would yield a monoclinic form for A * 0, B = 
0 (e4 * 0, e5 = 0), or A = 0, B * 0 (e4 = 0, e5 * 0), or A = -B * 0 (e4 = -e5 * 0), and a triclinic 
form for A * B Ψ 0 (e4 =£ es ^ 0). Rather than using the eigenvalues to predict elastic stability 
limits with respect to Ai strains, however, it is simpler to refer to the determinant of the submatrix 
(the determinant of a matrix equals the product of its eigenvalues). Thus, considering the 
submatrix given in the previous section, if ( C n + C12)C33-2C1

2
3 tended to zero, a tetragonal 

crystal would become unstable with respect to an Ai (non-symmetry-breaking) strain. This is the 
same limiting condition as for the full Ai eigenvalue. It is unlikely that two or more eigenvalues of 
the elastic-constant matrix which are not related by symmetry would tend to zero simultaneously in 
a real material. 

These elastic stability criteria are summarised for all possible symmetry changes in Table 6 
(after: Boccara, 1968; Cowley, 1976; Liakos & Saunders, 1982; Terhune et al., 1985; Bulou, 
1992). Note that, more often than not, it is a combination of elastic constants and not the value of 
an individual elastic constant that determines whether an elastic instability develops. Also, while 
the diagonal elements, C„, of the conventional elastic-constant matrix must be positive for 
stability, the off-diagonal elements, C^ (* * k) need not be. In the limiting case of a triclinic 
crystal, the general stability condition with respect to any elastic distortion reduces to the 
requirement that the determinant of the full elastic-constant matrix remains positive. If an elastic 
instability point of this type is reached, the low-symmetry form of the crystal remains triclinic, but 
has a different unit cell. 

Instabilities determined by elastic effects of this type are approached both when the 
spontaneous strain acts as the driving order parameter and when it is linearly coupled to a different 
driving order parameter. The symmetry-adapted elastic constant might go to zero (or at least 
become very small) at the equilibrium transition temperature if the transition is thermodynamically 
continuous. For first-order transitions, the symmetry change certainly occurs before the eigenvalue 
reaches zero, though the relevant elastic constants would be expected to show significant softening 
as the transition is approached. On the other hand, as will be seen, if the transition is driven by an 
order parameter which couples with strain as λeQ2, the nature of the primary elastic anomaly is 
rather different. 



Table 6. Elastic stability limits for proper and pseudo-proper ferroelastic phase transitions: symmetry, strain, soft-acoustic-mode orientations and velocities (modified 
after Cowley, 1976, andTerhune et al, 1985; see, also, Liakos & Saunders, 1982). 

to 

Representation Spontaneous strains1 Stability limit2 Transition Orientation of soft 
(Qk -* 0) type3 acoustic mode4 

pv2 for soft acoustic mode5 

Cubic classes 
Ai 
E 

T2 

Hexagonal classes 
2Ai 

E2 

Ei 
Trigonal classes 32 

2Ai 

2E 

Trigonal classes 3, 
2A 

2E 

e\ = e2 = *3 
ex = -e2, e3 --2ex -

e4, e5t e6 

eγ=e2\ e3 

el=-e2i e6 

e4, e5 

, 3m, 3m 
e\ ~e2'y e3 

el=-e2, e6; e4> 

3 
ex=e2\ e3 

e{ =-e2, e6; e4, 

= -2e2 

H 

*5 

Tetragonal classes 4mm, 42m, 422,4/mmm 
2Ai 

Bi 
B2 

E 

e{=e2\ e3 

«1 = - * 2 
eβ 

e49 e5 

Cn+2Cl2 

cn-cl2 
C44 

(Cn+Cl2)C33-2Cl3 

Cn - C 1 2 

C44 

(C11+C12)C33-2C13 

(C1 1-C1 2)C44-2C14 

(C n + Q2JC33-2Q3 

(C π -Q2JC44 
- 2 C 1 4 - 2 C 1 5 

(C n +C22JC33-2Q3 

Q l " Q 2 
Cββ 
C44 

0 

I 
II 

0 
II 

π 

0 

1 

0 

1 

0 
1 
1 

π 

-
?//[ii0], w//[iT0] 
£±[100], w//[100] 

-
£±[001], w±[001] & q 

§±[001], 2//[001] 

— 

§±[001], Ü±q 

— 

§±[001], W±§ 

-

q//[U0], w//[lT0] 
§//[100], w//[010] 
§±[001], w//[001] 

i(cn-c12) 
C44 

Y ( C U - C 1 2 ) 

C44 

ΛCU-C12+2CU) ] 
4 | -[(qi-Ci2-2CM)2+16£a]MJ 

4 { -[(C„ - CI2 -2C44)2 + 16(cf4 + Cfj)f 

i(cu-c12) 
C<56 
C44 



Tetragonal classes 4, 4, 
2A 

2B 

E 
Orthorhombic classes 

3Ai 
Bl 
B2 

B3 

Monoclinic classes 
4A 

2B 

Triclinic classes 
6A e± 

Notes: 

Aim 
el=e2; e3 

ex = -e2; e6 

e4, e5 

ex\ e2\ e3 

eβ 
es 
e4 

ex\ e2\ e3; e5 

eA>% 

; e2\ e3\ eA\ e5; 

{Cn + Cl2)C33-2Cl3 

(C1 1-C1 2)C6 6-2C1 6 

C44 

Ki 
C66 

C55 
C44 

K2 

c44c66 - c46 

J6 K3 

0 

I 

π 

0 
1 
1 
1 

0 

1 

0 
Ki=detlC/*l, i ,fc<3; K2 = detlClikl, i, 

-
$±[001], w±[001] & q 

§±[001], w//[001] 

-
§//[010], «//[100] 
§//[100], w//[001] 
§//[001], M//[010] 

— 
§//[010], wl[010] & q 

-
k < 3 or 5 ; K3 = detlQ*!, 1 

-

1 | ( C 1 1 - C 1 2 + 2 C 6 6 ) I 

4 [ - [ (C 1 1 -C 1 2 -2C 6 6 ) 2
+ 16C 1

2
6 f j 

C44 

-
C66 
C55 
C44 

— 
|{(C44 + C66)"[(C44 -Cββf + 4 C à f J 

-
,k<6 

1. Degenerate strains in each class are separated by a comma; non-degenerate strains which have the same symmetry as each other are separated by a semi-colon. 1 
2. Under "stability limit" is the combination of elastic constants, derived from the relevant eigenvalue of the elastic constant matrix, which tends to zero at the transition 
point. 
3. "Transition type" refers to the classification scheme of Cowley (1976): 0, no acoustic mode can give the required strain; I, q and u of the soft acoustic mode are restricted 
to specific directions; II, q of the soft acoustic mode is restricted to a specific direction but w is unrestricted within a specific plane (or vice-versa). 
4. Only one orientation of the soft mode is specified; others may be derived by interchanging q and w, and by considering all symmetry-related directions. For trigonal (2E), 
tetragonal (2B) and monoclinic (2B) classes, the angles between q or u and a prominent crystallographic direction are functions of the elastic constants and are listed by 
Terhuneé?fα/.(1985). 
5. The set of soft-mode velocities has been derived from Table III of Bulou (1992). 
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3.3 Symmetry-adapted elastic constants and elastic energies 

When writing out a Landau free-energy expansion in full, use of symmetry-adapted strains can 
simplify the task of specifying coupling terms in their invariant forms, and use of symmetry-
adapted elastic constants can lead to similar simplification of the elastic energy. In the case of a 
transition rrßm —> 4/mmm, for example, the elastic energy is: 

^ΣCikeiek=7:Cael+^Ctef 
i,k 

= i ( C 1 1 + 2 C 1 2 ) ^ ( e 1 + e 2 + e 3 ) ^^(Cn-Cl2)\ xk^" -e2) 
-|2 

(80). 

Ca represents the Aig eigenvalue, the symmetry-adapted elastic constant for the Aig strain, and Ct 

is the Eg eigenvalue corresponding to the symmetry-breaking strain et {i.e. for A = 0, B = 1 in 
Table 4). These strains are often quoted as ea = e\ + e2 + e$ and et = -)r(2^3 - ex - e2), as in 
Carpenter et al. (1998a), for example, with the corresponding elastic constants then given as 
\{Cn +2C12) a nd 2(^11 ~ ^12)- Placing of the scale factor either in expressions for the elastic 
constants or for the strains is a matter of arbitrary choice. 

Symmetry-adapted strains and elastic constants can be obtained by inspection of the 
eigenvalues and eigenvectors for the elastic-constant matrix of the high-symmetry phase. For a 
symmetry change 422 —» 222, the active representation is Bi and the symmetry-adapted elastic 

energy due to the Bi strain would be \{Cn -C 1 2 )Ng^ i -"ei)\ ^ equivalent simplification is 
not achieved for the Ai (non-symmetry breaking) elastic energy because of the algebraic 
complexity of the eigenvalues and eigenvectors. In this case there might be some advantage in 
making use of the submatrix to express the energy as: 

2I V2 '*3 
cn + c12 

V2Q3 

V2c13Ya±£2Λ 
c33 \ e3 ) 

For lower-symmetry systems it may be more convenient simply to take the sum of individual 
contributions, ^ Q ^ + ^ C ^ ^ , etc. 

4. Elastic instabilities and acoustic phonons 

In the preceding sections, only macroscopic stresses and strains have been considered. The 
velocities of acoustic waves in a crystal are also functions of the elastic constants, which means 
that anomalous variations in the elastic properties are necessarily accompanied by anomalies in the 
behaviour of the acoustic phonons. If an elastic constant, or symmetry-adapted combination of 
elastic-constants, decreases (softens) to zero as the equilibrium transition point is approached from 
above or below, the velocity of a related acoustic phonon, the soft acoustic mode, will also tend to 
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zero. The mechanism of a ferroelastic transition may be thought of, on a mesoscopic length scale 
(-10 - 1000 unit cells), as the freezing in of lattice distortions due to certain critical acoustic 
waves, therefore. An additional consideration is that elastic constants are not usually determined 
directly, but are often obtained by measuring the velocities of acoustic waves in a crystal of 
interest. 

In order to be more specific about the role played by acoustic phonons in phase transitions, 
it is necessary to start with the relationship between acoustic-wave velocities and elastic constants. 
Formal treatments of this relationship are given in a number of standard texts (see, for example, 
Landau & Lifshitz, 1986, or Dove, 1993). A summary is presented here primarily to emphasise 
that, although the criteria for predicting an elastic instability, based on the properties of the 6 x 6 
elastic-constant matrix, are quite different from those used to predict the velocity, polarisation and 
propagation direction of soft acoustic modes, based on the properties of a 3 x 3 dynamical matrix, 
the mesoscopic and macroscopic pictures of a phase transition must be mutually consistent. On the 
other hand, if some understanding of additional anomalous softening due to dynamical effects is 
also sought, it is essential to consider processes at the mesoscopic or microscopic (atomistic) 
length scale. 

4.1 Orientation, polarisation and velocity of acoustic waves 

Following Landau & Lifshitz (1986), the general equation of motion for elastic waves in a crystal 
is given by: 

Ω
dHxj) J°ij(xi) , R n 

p~^~-~d^~ (81) 

where p is density and w, is the displacement which would be observed at a distance XJ from the 
origin in the direction of propagation of the wave, and t is time. Summation over repeated indices, 
1 - 3, is implied both here and in the following equations, and four-figure suffix notation is used 
for maximum clarity. A stress Oij is related to the strain e^ by Hooke's law which, for present 
purposes, is written as: 

aAxj) = CWeÅxi) (82)* 

The strain e\a is defined by: 

duJxλ 

so that equation 81 becomes: 
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One solution is: 

ui {xj) = uoi expfi^-^ - fi»)] (85) 

where u0i is the amplitude and ω the frequency of the elastic wave, and qj is a component of its 
wavevector, q. The normal usage of qi for a component of the order parameter and q{ as the 
component of a wavevector can, unfortunately, lead to some confusion. In this review, the 
distinction is almost always clear from the context but is expressly stated wherever there might be 
some doubt. Differentiation of equation 85 gives equation 84 in the form: 

pω\[x^ = C ^ f t M ^ x y ) (86) 

which is the equation of motion of acoustic waves in a crystal for wavelengths that are large 
relative to the unit-cell dimensions. The 3 x 3 matrix, ^ C ^ ^ / , represents the dynamical matrix 

hi 
of Brillouin-zone-centre (q -> 0) acoustic phonons, and therefore governs the behaviour of soft 
acoustic modes at proper or pseudoproper ferroelastic transitions. Note in passing that the elastic 
constants, Ctjki, considered here usually refer to adiabatic conditions. When motion occurs in a 
deformed crystal, small temperature variations occur as functions of time and distance in the 
crystal and it is generally assumed that the time scale of acoustic vibrations is short in comparison 
with the time required for heat transfer and local thermal re-equilibration. 

The equation of motion may be expressed in terms of acoustic-mode velocities, v, by 
substituting v = ω/\q\ in equation 86 and normalising the wavevector, q, through the use of 
direction cosines, rij (rij = qj/\q\, etc.). This yields, in its conventional form: 

(Cijkinjnl-pv28ik)uk=0 (87) 

or, in the form due to Christoffel (see Musgrave, 1970): 

| r * -pv 2 « f t | «*=0 (88). 

Here 8 is the Kroneker symbol, 5^ = 1 for i = k and <5̂  = 0 for / * k, and Γ,-£ are quadratic 
functions of the direction cosines, rij, with coefficients as specified in Table 7 (from Musgrave, 
1970). 

Equations 87 and 88 represent a set of three equations for the displacements u\, «2 and W3. 
This is more easily visualised if the equations are written out in full as: 

αxα2 A 2 - p v 2 α2α3 

αjα3 α2α3 A3 - pv2 
= 0 (89) 



Elastic-constant variations due to phase transitions 727 

where each of the new terms is defined in Table 7. The only non-zero solutions occur if the 
determinant of the coefficients is zero, i.e.: 

Det | r / J t -pv25^ | = 0 (90) 

in the Christoffel form. The three solutions for pv2 are the three eigenvalues of the matrix Γ^ . 
Associated with these eigenvalues are three mutually perpendicular eigenvectors which determine 
the displacement vectors, u. For any given direction in the crystal, as specified by a set of 
direction cosines, n\, n2 and W3, therefore, three velocities and three polarisation vectors are 
obtained and these are the three modes of vibration for the chosen wave-propagation direction. In 
high-symmetry directions, i.e. for waves propagating parallel to rotation or inversion-rotation 
axes, the modes are purely longitudinal or purely transverse in character. For propagation 
directions within a mirror plane one mode is purely transverse, with its displacement vector 
perpendicular to the mirror plane; the other two modes are of mixed longitudinal/transverse 
character. For arbitrary directions all three modes will generally be of mixed character, though 
pure modes can occur in orientations which depend on the numerical values of the elastic constants 
(Brugger, 1965; Vacher & Boyer, 1972). 

Table 7. Coefficients for Equation 88 (from Musgrave, 1970). 

Γ n = A i 
Γ22 = A 2 

Γ33 = A3 

Γ2 3 = α2α3 

Γ13 = α i α 3 

Γ12 = α i α 2 

i 2 

Cn 
Cβ6 
C55 
C56 

C15 

C\6 

„2 
n2 

Cββ 

C22 
C44 

C24 

C46 
C26 

n3 
C55 
C44 

^33 

C34 
C35 

C45 

2n2n3 

C56 
C24 
C34 

1(^23 + Q 4 ) 

1(^36 + Q 5 ) 
2-(C25 + C46) 

2/13/1! 

Cis 
C46 
C35 

i l Qβ + Qs) 
2"(Q3 + C55) 
2-(C14 + C56) 

2n1n2 

C\β 
C26 
C45 

2-(C25 + C46) 

2-(C14 + C56) 

^(c12 + c66) 

In piezoelectric crystals, the analysis of acoustic-wave velocities derived from equation 90 
has to include electrostriction because the lattice distortions due to the acoustic waves would give 
rise to varying electric polarisation and, hence, to electric fields (David, 1983b). 

4.2 Soft acoustic modes 

The formal problem of identifying which acoustic mode might be expected to soften as an elastic 
instability point is approached has now been reduced to finding the eigenvalue of the dynamical 
matrix for a chosen direction of q which goes to zero simultaneously with the relevant eigenvalue 
of the elastic-constant matrix. Aubry & Pick (1971) and David (1983b) proved that there is always 
at least one purely transverse, zone-centre acoustic mode which should have zero velocity at any 
elastic stability limit governed by the elastic-constant matrix, with the exception of the eigenvalue 
associated with the identity representation. Three categories of behaviour can be illustrated using 
the example of a cubic parent crystal, and making use of the eigenvalues quoted in Table 4 (see, 
also, David, 1983b). 
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For a phase transition giving a symmetry change m3m -» 4/mmm the elastic stability limit 
is given by {Cn-Cn) —> 0 (Eg symmetry, Table 4). From equation 88 it can easily be shown 
that the velocity of the transverse acoustic mode with q II [110] and u II [110] is 
y(l/2p)(Cπ - C12). This mode would clearly go to zero velocity at the elastic stability limit. A 
solution with q II [110] and u II [110] is equally valid, however, which means that the soft mode 
consists of two mutually perpendicular transverse acoustic waves which possess identical 
velocities and frequencies. By symmetry in a cubic crystal, equivalent pairs of modes must also 
exist in each of the yz and xz planes. The strain at a cubic -» tetragonal transition is produced by 
two sets of these soft modes (4-fold axis retained), and the strain at a cubic —> orthorhombic 
transition is produced by all three. This is illustrated for one plane in Fig. 6. The spontaneous 
strain is, of course, given by the Eg eigenvector of the elastic-constant matrix, as discussed above. 

[001] [001] 

[010] [010] 

Fig. 6. A soft transverse acoustic mode acts as two mutually perpendicular waves to produce distortions which, 
when frozen in, result in a loss of macroscopic symmetry. In this plane a square becomes a rectangle (after David, 
1983b). The same form of distortion occurs simultaneously in two perpendicular planes at a transition w3m —» 
4/mmm or in three planes at a transition m3m —> mmm. 

For cubic —> trigonal, cubic —» monoclinic or cubic -» triclinic transitions, the elastic 
stability limit is given by C44 —> 0 (active representation T2g, Table 4). The corresponding soft 
acoustic mode, with velocity ^C^Jp, has q II [100] and u in the plane perpendicular to [100]. 
Again, each soft mode operates as a mutually perpendicular pair of modes, and there are 
symmetry-related modes in other planes. The spontaneous strains develop in an analogous manner 
to the case illustrated in Fig. 6 (see David, 1983b). 

Finally, the eigenvalue of the rrßm elastic-constant matrix corresponding to Aig symmetry 
(identity representation) is (Cπ + 2C12). There are, of course, no individual acoustic modes which 
would go to zero as (Cπ + 2C12) —> 0. The spontaneous strain at such an elastic instability would 
be a pure volume, non-symmetry-breaking strain and could not be directly responsible for any 
change of symmetry. 

The direction and polarisation of the soft acoustic mode associated with an elastic 
instability is not always so simply related to the crystallographic axes. For a transition involving a 
symmetry change Aim -» 2/m, for example, the relevant elastic-constant eigenvalue is 

21 (Cπ " Cl2 + c6β)-\{cn ~ cn ~ c6βf + SCfβ] 2 f (a c t i v e representation Bg, Table 6). This 
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goes to zero simultaneously with a transverse acoustic mode that has 

p v
2 = l | ( C π - C 1 2 + 2 C 6 6 ) - [ ( C π - C 1 2 - 2 C 6 6 ) 2 + 16C1

2
6]2| and both q and Ü in the (001) 

plane but not otherwise constrained by symmetry (Benyuan et ai, 1981; David, 1983c; Cummins, 
1983; Tokumoto & Unoki, 1983). The actual orientation of q is characterised by the angle β 
between q and the Jt-axis, [100]. Its numerical value depends explicitly on the elastic constants as 
(Benyuan etal, 1981; David, 1983c; Cummins, 1983): 

tan40 = - 4G 16 
Cii — Go — 2 C 

(91). 
Λ\ 12' -66 

Note that if the ratio between C\β and ( C n - C 1 2 - 2 C 6 6 ) changes as a function of pressure, 
temperature or chemical composition, the direction of the soft mode rotates in the (001) plane. A 
mechanism for inducing this transition can again be thought of as the freezing in of displacements 
due to two mutually perpendicular transverse acoustic waves (Fig. 7). Expressions equivalent to 
equation 91 for the angles between soft-mode directions and prominent crystallographic directions 
are listed by Terhune et ai (1985). 

[010] [010] 

[100] [100] 

Fig. 7. A mutually perpendicular pair of transverse acoustic waves produces the distortion arising at a transition Aim 
-» 21m (after David, 1983c). 

Although derived in different ways, the expressions for pv and the critical elastic-
constant eigenvalue should have the same form. That they do not in the example used here and in 
some trigonal systems, is a consequence of the convention used to reduce nine strains of the form 
etj (i, j = 1 - 3) to six of the form β{ (i = 1 - 6) and changing Cyki to C# notation (Cummins, 
1983; Terhune et ai, 1985). Bulou (1992) has shown how the apparent discrepancy can be 
resolved using an alternative convention. The value of pv2 for a soft acoustic mode (involving 
pure shear strains) should be half the value of the critical elastic-constant eigenvalue (Cummins, 
1983), though the comparison must be made using eigenvalues derived via the formal conventions 
of Bulou (1992). This highlights the need to use the Voigt notation with care. A complete set of 
expressions for pv2 of the critical soft acoustic modes, using the normal conventions, is given in 
Table 6. 

One general and important conclusion which results from this type of discussion is that 
those zone-centre acoustic modes which could (theoretically) have zero velocity at a second-order 
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phase transition inevitably occur as pairs of mutually perpendicular modes even when the two 
propagation directions are not related by crystallographic symmetry. The propagation and 
displacement directions of one wave are respectively the displacement and propagation directions 
of the other (Aubry & Pick, 1971; David, 1983c, 1984; Terhune et al.9 1985). The orientations of 
transformation twins which arise at ferroelastic transitions are controlled by the same physical 
effects, as may be understood from the following argument (from David, 1983c). Energy 
minimisation requires that there should be no mismatch in lattice dimensions across the boundary 
between two transformation twins. In the direction of propagation of a purely transverse distortion 
there is also no change in the lattice dimension. As a result, the propagation direction of the soft 
acoustic mode lies within the transformation twin plane. There are, however, two equally soft 
(orthogonal) directions in the crystal as the transition point is approached and there must therefore 
also be two mutually perpendicular twin planes. The soft-mode propagation directions He at right 
angles to the line of intersection of these twins, therefore. A useful corollary of this, pointed out 
by David (1983c) and Cummins (1983), is that the orientation of the critical soft acoustic mode for 
a ferroelastic transition in a crystal can always be found simply by locating the transformation twin 
boundaries in that crystal. 

The propagation directions and polarisation of all possible soft acoustic modes for phase 
transitions associated with the Brillouin zone centre are given in Table 6 (after Cowley, 1976; 
David, 1984; Terhune etal, 1985; Bulou, 1992). The classification scheme of Cowley (1976) has 
also been used to distinguish between transitions in which the soft acoustic mode has different 
dimensionality. Type I behaviour refers to transitions in which the wave vector, q, and the 
displacement vector, u, of the soft acoustic mode are restricted to specific directions (a one-
dimensional soft mode). Type II behaviour refers to situations where q is restricted to specific 
directions but u can be anywhere within the plane perpendicular to q (or vice versa). In this case 
the soft acoustic mode is two-dimensional. One example of the former is Aim -> 2/m, and one 
example of the latter is mhm —» 2/m with T2g as the active representation. Most natural ferroelastic 
materials appear to be of type I, but a few examples of type II behaviour are known, the best 
characterised of which occurs in Na2CO3 (Harris et al., 1993, 1995; Harris & Dove, 1995). Type 
0 behaviour refers to the cases of eigenvalues associated with the identity representation going to 
zero, when the resulting (non-symmetry-breaking) strains cannot be described in terms of any 
acoustic phonons. 

As with the analysis of elastic instabilities, this discussion is relevant only for transitions 
involving symmetry changes associated with the Γ point of the Brillouin zone (zone centre). The 
velocities of acoustic modes with wave vectors other than close to the zone centre do not depend on 
the elastic constants in the same way. Critical softening of an acoustic branch at the Brillouin zone 
boundary might be accompanied by a slight softening of the same branch at the zone centre, but 
this would be a property of specific materials and need not be a general phenomenon. The Landau 
potentials used so far do not predict this type of softening unless, for example, the effects of 
fluctuations are included. Schematic dispersion curves are shown in Fig. 8 to illustrate some 
alternative situations. 

4.3 Soft acoustic modes and the Landau free-energy expansion 

If the driving mechanism for a phase transition is the softening of an acoustic mode, the excess 
entropy is purely phononic with no further contributions from configurational effects. The 
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Fig. 8. Schematic dispersion curves illustrating possible softenings of a transverse acoustic mode for: (a) a zone-
centre transition, (b) a zone-boundary transition, (c) a zone-boundary transition with some softening at the zone 
centre. The slope of the dispersion curve as q —» 0 is JCik/p . (ω = frequency, q = wavevector). 

transition would be described in the physics literature as being "ideally" displacive. In this case, 
the function describing the energetics of the elastic deformation in terms of atomic displacements, 
the effective Hamiltonian (ifeff)> has the same form as the Landau-type Gibbs free energy (SaΓje et 
al., 1991). Additional heterogeneities which are thermal in origin can be described by the 
Ginzburg energy, γg(Ve) , so that the energy on an atomistic level becomes: 

1 1 
fftf=7V+Tfe4+- +T*(V<0' (92). 

Two types of heterogeneities due to thermal effects are possible. At T < Tc, small variations of e 
locally in a structure will occur about the equilibrium value, but will not be large enough in 
amplitude to exceed the central barrier in the double potential well of /Jeff• The first two terms in 
equation 92 can therefore be replaced by the susceptibility, giving: 

Hen~\X-Xe2+\g{Vef (93). 

This is a wave equation equivalent to equation 90, with the excitation of a harmonic phonon for 
which pv = x • For the limiting case of proper ferroelastic behaviour, it was shown earlier that 
X~l = C55 at an orthorhombic ^ monoclinic transition, so that the low-amplitude excitation is, 
indeed, the soft acoustic mode with pv2 = C55. 

The second type of thermally induced heterogeneity involves the transfer of the local strain 
state from one minimum of ifeff to another. This means that the spontaneous strain does not 
oscillate around its stable equilibrium position but changes sign. On a macroscopic level, such a 
change of sign is equivalent to transferring from one side of a twin wall to the other. The thermal 
excitation is then a kink-soliton, with the solution for the simplest case (Salje, 1993) being: 

e = e0 tanhl (I) (94) 
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where e0 is the equilibrium value of e, X is distance in the crystal measured perpendicular to the 
solitary wave, and W ~ Jg/\a\T-Tc\\ is the wall thickness. W increases when Tc is approached 
from below and incorporates the whole crystal at T= Tc in a second-order phase transition. At this 
point, the notion that an acoustic wave with ω -» 0 and a soliton with W -» <×> coexist becomes 
meaningless, and theories beyond the scope of this paper are necessary to describe the situation. 
Nevertheless, if the limiting case close to Tc is excluded, it is apparent that the acoustic softening 
and the elastic instability describe the same physical mechanism in the case of a proper ferroelastic 
phase transition. 

Another aspect of the relationship between acoustic modes and macroscopic effects also 
leads to some questioning of the validity of the analysis close to Tc for a second-order transition. 
Elastic constants in the Landau expansion refer to equilibrium, i.e. isothermal, conditions. The 
macroscopic crystal should become soft with respect to a particular stress orientation at the 
transition point. In describing the acoustic modes, however, it has been assumed that, as a wave 
propagates through a crystal, the time scale of local distortions is too short for any thermal 
reequilibration to occur. At temperatures and pressures well removed from any equilibrium 
transition point the difference between the adiabatic and isothermal values of an elastic constant is 
less than 1%. For many practical purposes, such a small difference can be ignored, but a 
divergence can occur when the transition is approached. This is most easily illustrated for the 
difference between the adiabatic compliance, Sfk, and the isothermal compliance, Sik (from Nye, 
1985): 

4-$=-«.«*;?- (95). 

(The elastic compliance is obtained by writing Hooke's law as e,- = Sjjto> instead of Gi = Cue*). 
CG is the heat capacity at constant stress, and α„ α& are thermal expansion coefficients. The 
equivalent expression for elastic constants is (from Rehwald, 1973): 

where Ce is the heat capacity at constant strain (for a clamped crystal). The divergence near a phase 
transition is due to the increase in α,- and o^ as T —» Γc, and the effect can become large. As 
discussed by Coe & Patterson (1969) and Dolino & Bachheimer (1982), for example, the 
difference between the adiabatic and isothermal elastic constants of quartz in theory amounts to 
-10 - 20% at ~3 K below the ß ;= α transition. Within IK of the transition in KDP the difference 
may be 50% or more (Brody & Cummins, 1974; Cummins, 1979). Thus the data from acoustic-
mode velocities in the close vicinity of the transition point do not necessarily represent the 
equilibrium variations in elastic constants quantitatively. In the same context, measured acoustic-
wave velocities are the principal source of elastic-constant data. The equations used for pv2 art 
themselves derived on the basis of adiabatic conditions. When the acoustic-mode velocity tends to 
zero, this assumption becomes increasingly tenuous and the elastic constant governing the soft 
acoustic mode may become neither truly adiabatic nor truly isothermal. 
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4.4 Elastic softening due to dynamical effects 

In its conventional form, as used so far in this review, the Landau free-energy expansion describes 
the consequences of static phenomena. The order parameter is treated as having a fixed value 
which is uniform throughout a crystal under equilibrium conditions. In real crystals there are 
fluctuations which may be understood in terms of local variations in the value of the order 
parameter and of the effects of normal phonons. These may contribute an additional variation to 
the elastic properties in the vicinity of a phase transition when their amplitudes become large. Their 
influence will be most clearly identifiable as variations of those elastic constants of the high-
symmetry phase (above the transition temperature) which, according to the static predictions, are 
expected to be unaffected by the approaching phase transition. In ß-quartz, such softening is 
observed over a temperature interval of at least 100 K (Kammer et al., 1948), and comparable 
effects are observed in the high-symmetry forms of gadolinium molybdate (GMO) (Hochli, 1972), 
terbium molybdate (Yao et α/., 1981) and KMnF3 perovskite (Cao & Barsch, 1988). If the 
temperature interval over which the softening occurred was restricted to only a few degrees, it 
might be attributed solely to the effects of critical fluctutations. That this is not the case implies that 
normal (non-critical) fluctuations are important. 

Following the theoretical analysis of Pytte (1970, 1971) and Axe & Shirane (1970), 
fluctuation contributions to elastic softening have usually been considered in terms of the effects of 
coupling betwen different vibrational modes (Hochli, 1972; Rehwald, 1973; Cummins, 1979; 
Liithi & Rehwald, 1981; Yao et al, 1981; Fossum, 1985). The underlying physical picture is that, 
associated with a soft mode at some specific point in reciprocal space, there will be a set of 
branches which also soften to some extent. Along with the soft mode itself, when the frequencies 
of modes along the soft branches decrease so their amplitudes become larger. They can combine to 
produce stress fluctuations and, hence, also, strain fluctuations. The summation of all such 
combinations will yield a net softening of some specific acoustic modes and, therefore, of some 
specific elastic constants. The total effect should increase as the amplitudes of the modes increase, 
reaching a maximum at the transition point. The temperature dependence of the softening can be 
described conveniently by: 

Cik-C?k = ACik=Aik\T-Tc\K (97). 

Atk and K are properties of the material of interest; K is sensitive both to the degree of anisotropy 
of dispersion curves about the reciprocal lattice vector of the soft mode, and to the extent of 
softening along each branch (Axe & Shirane, 1970; Pytte, 1970, 1971; Hochli, 1972). An 
approach going back to the original atomistic approach of Born & Huang (1954), also following 
the analysis of Axe & Shirane (1970) and Pytte (1970), has been adopted here. The treatment is 
set out formally in an appendix, while the main conclusions are summarised in this section. 

If a crystal is deformed elastically by some external stress, the atoms in it can move in two 
ways: a uniform change in all interatomic distances may be induced, or atoms may move relative to 
each other in some non-uniform manner. The latter would be caused by rotations of relatively rigid 
polyhedra, for example. The non-uniform motions can be thought of as creating internal strain and 
might, by chance, mimic the atomic motions of certain phonons. If they matched the motions due 
to a soft optic mode, there would be a much reduced restoring force on the atoms in the vicinity of 
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a transition point associated with that soft mode. As a result, the crystal would appear to be 
unexpectedly soft. This softening is exactly that described by bilinear coupling in a Landau 
expansion, since motions due to the soft mode and due to the elastic deformation would have the 
same symmetry - that of the active representation for the transition. 

If, on the other hand, the internal strains due to non-uniform atomic motions do not match 
the symmetry of the soft mode, there can still be interactions which lead to the elastic deformation 
becoming easier. Anomalous softening not anticipated from the static Landau expansion is then 
expected. In this case, optic phonons with opposite wave vectors + q and -q combine to produce 
a fluctuating stress field. The average value for the amplitude of this stress field is zero but the 
average value of the square of the amplitude is not, and an energy reduction, as specified by an 
interaction term of the form elocal < Q\ >, is possible. Here e\OC2i\ is the internal strain and <Q\> 
is the mean square amplitude of the optic phonon. The total effect is given by the summation over 
all optic phonons, but the greatest contribution will clearly be due to phonons with the largest 
amplitudes, i.e. those which also reduce in frequency with the soft mode itself as the transition 
point is approached. The analytical treatment in the appendix leads to the following conclusions 
concerning this anomalous softening. 

(a) There are symmetry constraints dictating which elastic constants can soften by this 
mechanism. The effect should be observed only for those elastic constants which transform as the 
identity representation. The influence on other elastic constants is expected to be zero under the 
approximations made in the appendix. As a consequence of the constraints of symmetry on which 
phonons may interact, variations in different individual elastic constants may also be related. For 
all crystal systems (ΔC12J = ΔCπΔC22, (ΔC13] =ΔCi1ΔC33and (ΔC23) =ΔC22ΔC33 should 
apply, implying that there are only three independent variables. For elastically uniaxial systems 
these reduce to ΔC12 = ΔCn and (ΔC131 = (ΔC23J =ACnAC33 (2 independent variables). For 
cubic or elastically isotropic systems there is only one independent value since 
ΔCπ = ΔC22 = ΔC33 = ΔC12 = ΔC13 = ΔC23 is expected. These relations may not hold in systems 
with significant thermal expansion, which contributes an additional effect to the diagonal terms of 
the elastic-constant matrix, ΔQ , but not to the off-diagonal terms, ΔC12, ΔC13 and ΔC23. 

(b) The value of K in equation 97 depends on the anisotropy of soft branches around the 
critical point in the Brillouin zone. Four situations, illustrated schematically in Fig. A.l (see 
appendix), have been considered. For the limiting case of weak dispersion in three orthogonal 
directions and more or less uniform softening of each branch with the soft mode itself, K = -2 is 
obtained. For strong dispersion, different results are obtained depending on the anisotropy of the 
branch softening. If a single branch flattens significantly as the soft mode decreases in frequency, 
the result is K = -3/2. If two branches flatten while the third remains relatively steep, the result is 
K = - 1 . If the dispersion of all three branches reduces with the softening of the soft mode, then K 
= -1/2 is obtained. A constant value of K may not describe the variations of ΔQ in systems with 
significant thermal expansion. 

(c) A large value of A^ and, hence, a large softening effect might be anticipated for 
materials which display large mode Gruneisen parameters, indicative of strong acoustic mode -
optic mode coupling. If the softening is observed in the high-symmetry phase it must also occur in 
the low-symmetry phase, where it would be superimposed on static effects predicted in the normal 
manner. Its magnitude need not be the same in both phases. 
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(d) The approach outlined in the appendix is quite general for systems in which the soft 
optic mode shows a classical temperature dependence. Thermal fluctuations or critical fluctuations 
can be treated in the same manner. Similarly, the soft mode might be associated either with the 
zone centre or some zone-boundary point without loss of generality. 

A great deal more effort has been expended in attempts to understand the role of the critical 
fluctuations. These are highly correlated local regions of a crystal in which the amplitude of 
fluctuations of an order parameter becomes greater than its mean value, and occur in the so-called 
Ginzburg interval around the transition point. For type I proper and pseudo-proper ferroelastic 
transitions this interval is strictly zero (Folk et α/., 1976a and b, 1979; Cowley, 1976; Als-Nielsen 
& Birgeneau, 1977; and see: Wadhawan, 1982; Cummins, 1983; David, 1984). For type II 
ferroelastics and improper ferroelastic or co-elastic transitions, there is no general criterion for the 
size of the Ginzburg interval. Fluctuation corrections may be large in isotropic systems and may 
lead to significant corrections both for the spontaneous strain and the elastic constants (Levanyuk 
et al., 1993). Salje & Vallade (1994) have shown that these corrections are irrelevant in 
sufficiently anisotropic materials {e.g. with two rather than three elastically soft directions). Only 
the latter cases are considered in this review. 

5. Measurement of elastic properties 

In principle, it should be possible to find the elastic stability limit of a crystal with respect to some 
phase transition by applying an external stress, adjusting temperature or pressure and measuring 
the resultant strain. With the appropriate selection of stress and strain orientations a complete set of 
elastic constants might be determined. The isothermal values of C& obtained in this way could 
then be used directly in thermodynamic descriptions of equilibrium behaviour. A dynamical 
mechanical technique with a frequency range (-0.1 - 50 Hz) which approaches the static limit has 
been applied to phase transitions in a small number of systems (e.g. Schranz et al., 1993; Schranz 
& Havlik, 1994; Kityk et al., 1996), but most experimental studies have depended on high-
frequency measurements of the velocities of acoustic waves. These make use of the general 
relationship: 

Q=pvs
2 (98) 

where vs is the propagation velocity of a long-wavelength acoustic wave in a given direction and 
Cs is the related second-order elastic constant (or combination of elastic constants). Acoustic 
vibrations are fast relative to thermal diffusion, so the values of Cs obtained refer to adiabatic 
conditions. 

There have been many investigations of the elastic anomalies accompanying phase 
transitions using ultrasonic interferometry (reviewed by: Rewald, 1973; Liithi & Rehwald, 1981; 
Berger, 1989). The essence of this technique is that a piezoelectric transducer is used to generate 
sound waves in a crystal at an operating frequency of -10 - 100 MHz. Values of vs are determined 
in different directions within crystals which have dimensions, typically, of a few mm. Equally 
effective has been the use of Brillouin scattering (Cummins, 1979, 1983; Fleury & Lyons, 1981). 
Smaller crystals are used and the frequency range is higher, at -10 - 60 GHz. The basis of this 
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technique is that light scattered by thermally-activated acoustic phonons present in a crystal suffers 
a frequency shift, Aω, with respect to the frequency, ω, of the incident beam. Because energy is 
conserved, the Brillouin shift is the frequency of the acoustic mode responsible for the scattering. 
The velocity of this acoustic mode is given by: 

/ λ 
I 2 / (99) 

-ywj +ns -2πin scosβJ 

where c is the velocity of light in a vacuum, n\ and ns are the refractive indices of the crystal in the 
directions of the incident and scattered beams, respectively, and 0 is the angle between these two 
directions (typically chosen to be 90°). 

Experimental difficulties have certainly restricted the use of elastic constant observations 
for characterising the mechanisms of phase transitions in minerals. In the case of conventional 
ultrasonic measurements, crystals of natural materials are not necessarily available with the size 
and perfection required. There can also be problems in devising a coherent and stress-free 
interface, between the buffer rod (to which the transducer is usually attached) and the sample, 
which retains its integrity to high temperatures (or high pressures). For Brillouin scattering, 
comparable difficulties might arise with identification of peaks in complex spectra from low 
symmetry crystals, or the loss of intensity as acoustic modes become progressively depopulated 
with increasing temperature. Fortunately, there has been significant progress with experimental 
techniques during the last few years and the prospects for immediate advances in this field seem 
auspicious. By moving to GHz frequency, the thicknesses of crystals required for ultrasonic 
interferometry has been reduced to -100 µm (Chen et aL, 1993; Spetzler et aL, 1996; Shen et aL, 
1998). In an alternative approach, resonance ultrasound spectroscopy (RUS), the acoustic 
resonance frequencies (-0.5 - 2.0 MHz) of crystals cut to convenient shapes are used to derive 
values for individual elastic constants (Migliori^α/., 1993; Isaak & Masuda, 1995; Ohno, 1995; 
Maynard, 1996; and references therein). Crystals with dimensions down to a few hundred 
microns can be used (Maynard, 1996), and the method has a distinct advantage of only requiring 
minimal contact between sample and buffer rods for transmitting the sound waves to the crystal. 
Impulsive stimulated scattering (ISS) is a new optical technique operating at -1 GHz which makes 
use of light scattered from acoustic phonons which are excited from outside the crystal (Brown et 
aL, 1989; Zaug et aL, 1992, 1993; Chai et al, 1997). It does not yet seem to have been applied to 
phase transitions, however. 

Among mineralogical systems, elastic-constant data for MgAl204 spinel, calcite, 
corundum, olivine, wadsleyite, garnet, orthopyroxene and wiistite have been collected at 
temperatures of up to -1800 K and pressures of up to -200 kbar (Suzuki etaL, 1983; Vo Thanh & 
Lacam, 1984; Isaak etaL, 1989; Webb, 1989; Goto et aL, 1989; Jackson et aL, 1990; Rigden et 
aL, 1992; Zaug et aL, 1993; Webb & Jackson, 1993; Askarpour et aL, 1993; Zha et aL, 1996, 
1998; Chai et al., 1997; and see Sumino & Anderson, 1984, for a compilation of results published 
prior to 1980). Data for quartz at high temperatures have been available since the 1940's 
(Atanasoff & Hart, 1941; Atanasoff & Kammer, 1941; Kammer et aL, 1948; Zubov & Firsova, 
1962; Shapiro & Cummins, 1968; Hochli, 1970; Hochli & Scott, 1971; Pelous & Vacher, 1976; 
Unoki etaL, 1984; Ohno, 1995). 
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All these techniques can give results which are modified by the influence of domain walls 
within the sample. The effects may be most serious in the vicinity of a ferroelastic transition 
because of the development of transformation twins (e.g. SrTi03, Rehwald, 1973). Light 
scattering techniques are the least susceptible to this problem since the volume sampled at each 
scattering event is only on the order of the wavelength of the phonons (-2,000 - 5,000 Å). If the 
size of twin domains present in the crystal is larger than this, the influence of domain walls on the 
total signal may be small. 

Brillouin scattering and ultrasonic methods both give the propagation velocities of acoustic 
waves which have wave vectors, q, that are small with respect to the dimensions of the Brillouin 
zone, #max> for most crystals. In a typical ultrasonic interferometry experiment at ~ 10 - 100 MHz, 
the range of wavelengths of sound waves with propagation velocities of -5xl06 - 107 mm.s-1 is 
-0.05 - 1 mm. If the unit-cell dimension is -10 Å this gives a |#|/|#max| value of ~10-5 - 10"6. In 
Brillouin scattering experiments, the wavevector of the acoustic mode sampled varies with β and 
the wavevector, k, of the incident laser beam according to (Fleury & Lyons, 1981; Berger, 1989): 

4 = 2fcsin- (100). 

For a 5,000 Å light source and a 90° scattering angle, |#|/|#max| is -10"3 in a crystal with a 10 Å 
unit-cell repeat. Under normal conditions, the propagation velocities of acoustic waves are 
effectively constant over these ranges of |#|/|#max| a nd both techniques should give a good 
estimate of the static elastic constants (for q —> 0). In other words, the dispersion curves for 
acoustic modes are usually very close to being linear functions of q in this part of the Brillouin 
zone. The dispersion curves of selected acoustic modes might change radically in the vicinity of a 
second-order transition, however. One form of variation is illustrated in Fig. 8a; the slope at q -» 
0 can go to zero, in theory at least, with a recovery in frequency at q * 0. If there is a soft optic 
mode which couples with the acoustic mode when their frequencies converge, more complex 
dispersion relations can result (e.g. Fig. 2 of Cummins, 1979). The ultrasonic interferometry and 
Brillouin experiments should then give different acoustic-mode velocities because they would 
effectively be sampling different parts of a non-linear acoustic branch. For a thorough 
investigation of the temperature evolution of the full dispersion curve in the soft direction, inelastic 
neutron scattering data are required (e.g. Dorner, 1981; Dove, 1993), but this technique does not 
resolve details of the evolution close to the zone centre. 

An alternative, and more likely cause of discrepancies between ultrasound and optical 
scattering data for a given phase transition relates to the response time of the order parameter to an 
applied stress. It has been emphasised at several points earlier in this review that elastic softening 
due to coupling of a strain with a driving order parameter, Q, will only be observed if the time 
scale for changes in Q is short with respect to the time scale of the lattice distortions in the acoustic 
wave for which vs is measured. If the frequency of the acoustic wave is too high relative to the 
frequency of the response of Q, then the experimental value of C& will not represent equilibrium 
behaviour. A clear example of this is provided by the orthorhombic (Pmnb) ^ orthorhombic 
(P2\nb) transition in NHULiSO.*, for which ultrasonic and Brillouin scattering experiments yield 
quite different patterns of evolution of C55 (Schranz et al., 1987; Schranz, 1993). Such a 
discrepancy yields insights into the microscopic processes responsible for a transition, but also 
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serves to emphasise the need for caution in interpreting all elastic-constant data in the close vicinity 
of the transition point. Another possible example is the frequency dependence of C\\ in KBri^ 
KCN* observed by Feile et al. (1982) over a temperature interval of ~4 K. 

Considerable effort has also been put into measurements of the attenuation of acoustic 
waves near phase transitions since, in principle, these carry information about dynamical aspects 
of the transitions {e.g. Rehwald, 1973; Liithi & Rehwald, 1981; Fossheim & Fossum, 1984; 
Fossum & Fossheim, 1985; Fossum, 1985; Deorani et al., 1990; and references therein). The loss 
of energy by a transmitted acoustic wave due to absorption or scattering is observed in an 
ultrasonic experiment as a decrease in signal intensity and in Brillouin scattering experiments as 
spectral line broadening. Critical fluctuations in the Ginzburg interval might cause attenuation with 
some characteristic temperature dependence, but the presence of inhomogeneities, impurities and 
domain walls can also cause similar effects near the transition point (Liithi & Rehwald, 1981). 
Response time effects can also result in line broadening of Brillouin peaks (Schranz et al, 1987). 
The observation of attenuation cannot be taken as unambiguous evidence for the existence of 
critical fluctuations in a given system, therefore. 

6. Renormalisation of second-order elastic constants at phase transitions: some 
examples of ideal behaviour 

Having established the criteria which determine the evolution of individual elastic constants at a 
phase transition, it is possible to derive expressions for the variations of all the elastic constants of 
a crystal when it undergoes a given change in symmetry. This is illustrated here using four 
selected examples, which, in terms of the point groups involved, are mbm ;= 4/mmm, All ;= 
222, mmm ;= 1/m and 622 ^ 32. Between them, these examples display many of the features 
likely to be encountered in the analysis of elastic properties of materials undergoing phase 
transitions. They are also relevant for some of the real systems discussed in the following section. 

For the first three examples, the macroscopic mechanisms considered involve either strain 
as the driving order parameter (proper ferroelastic behaviour) or a different structural effect, 
associated first with the centre of the Brillouin zone (pseudo-proper) and then with a special point 
on the zone boundary (improper), acting as the driving order parameter. In the fourth example, 
622 ^ 32, there are no symmetry-breaking strains. Any spontaneous strain which does arise is 
associated only with the identity representation (co-elastic behaviour) and is due to coupling with 
the square of the driving order parameter. The possibility of temperature-dependent coupling 
coefficients providing the driving mechanism is not considered. Also, no attempt is made to 
explain the group-theory manipulations required to determine which coupling terms are allowed by 
symmetry. As pointed out in section 2.3 these can be complicated, particularly for transitions 
associated with points away from the centre of the Brillouin zone. 

For reasons of space, the illustrations are restricted to second-order transitions, but their 
extension to tricritical or first-order character should be quite straightforward, as discussed for 
individual elastic constants in earlier sections. For a similar reason, the possible effects of 
fluctuations are not included. Use is made of the symmetry-adapted strains and symmetry-adapted 
elastic constants, as appropriate. Only coupling between the driving order parameter and the 
individual strain components is considered, and only the lowest-order coupling terms allowed by 
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symmetry are included. Some of the coefficients have a physical meaning related to high-order 
elastic constants (Tolédano et al, 1983) but these are not set out explicitly here. 

For geological problems, bulk and shear moduli may be of more practical use than 
individual elastic constants. These can be derived from the equations given here using an 
appropriate averaging procedure, as required. Different approaches to this averaging are 
summarised by Sumino & Anderson (1984). 

6.1 m3m ^ 4/mmm 

Proper. The active representation for an equitranslational (Brillouin zone centre) phase transition 
involving the symmetry change rnbm ^ 4/mmm is the two-dimensional representation Eg. The 
order parameter therefore contains two components which, in terms of strains, correspond to the 
orthorhombic strain, e0=A={el-e2), and the tetragonal strain, et = 77^(2^3 - ex - e2) (Table 4). 

The remaining strains are associated with the identity representation, eà = -j=(el+e2+e3), and 
with the three-dimensional representation T2g (^4, ^5, eβ). Treating the transition as being driven 
by the symmetry-breaking spontaneous strain, the relevant Landau free-energy expansion can be 
given (after Tolédano et al., 1983) as: 

G = ±a(T- Tc)(e2
0 + e2) + ^(e* - 3ete2

0) + h(e2
0 + e2f + λΛeΛ(e2

0 + e2) 

+λA[äe0(e2 -e2) + et(2e2 -e2 -e2)] + ^C°Λe2 + | c & ( 4 +e2 +e2
6) (101). 

The third-order term in et and e0 with the coefficient u ensures that the phase transition is first 
order in character. The term with the coefficient λa corresponds to the normal coupling of non-
symmetry-breaking strains with the square of the driving order parameter. The term with λ$ as the 
coefficient (from Liithi & Rehwald, 1981) represents the lowest-order coupling allowed by 
symmetry between strains with Eg symmetry and strains with T2g symmetry. It contains elements 
of the form ete4 because T2g ® T2g contains the active representation, Eg, and, hence, 
Eg ® T2g ® T2g must contain the identity representation (see character table for mbm in Wooster, 
1973, or Cotton, 1990). (Determination of the precise form of this term requires an analysis of the 
symmetric square of the T2g representation and its associated eigenvectors). The remaining 
contributions to the excess free energy are Hooke's law elastic energies (note: C° = Cft +2C°2, 
from Table 4). Tolédano et al. (1983) also included a term describing coupling between strains 
with Aig symmetry and strains with T2g symmetry but, because it does not involve direct coupling 
with the driving order parameter, this contribution has been omitted here. 

Variations of the elastic constants can be obtained by differentiating equation 101. Thus, 
for example, in the absence of non-symmetry-breaking strain (λa = 0), C\\ is obtained from 
d2G/dei quite simply. Ignoring the terms in e^ e$ and e§ which do not influence C\\, the first 
derivative is: 
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dG 
dei -<T-T-fà-M$-%-'a«)*t<!i+*fa--%yji<:<-
and the second derivative is: 

d2G 2 {rr _ v ( 2eΛ JSel 2eQet 2 

3ft2 3 V c ; I ° 3 J 3 V3 l +-c° 

Now, e0 = 0 in a tetragonal crystal so that equation 103 becomes: 

Qi=|α(Γ-Γj + fc£+|c? 

For T> Tc, it follows that: 

Cn=\a{T-Tc) + \(c?x+2C«n) 

(102) 

(103). 

(104). 

(105). 

Expressions for the remaining elastic constants can easily be obtained in a similar manner. For 
example, the variation of C44 is given by d2G/de^, so that, for e0 = 0: 

C44 — C44 

and 

C44 = C44 — 2A^e^ 

(atΓ>Γc ) 

( a t r<Γ c ) 

(106) 

(107). 

From the equilibrium condition, dG/det = 0, it is straightforward to derive the variation of 
et with T: 

et = 4et,o11 + 
9 

^ 
(108) 

where etfi is the value of et at the transition temperature, 7^. The latter is given by: 

2M2 

Ttr=Tc + 9ab 
(109). 

At T> Ttt, the Eg eigenvector of the m3m elastic-constant matrix varies linearly with Γas: 

{Cn-Cn) = a(T-Tc) (110). 
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At T< TtT, the equivalent combination of elastic constants is ^(Cn + C12 + 2C33 - 4C13), from the 
form of the symmetry-breaking strain tensor and the relationships between elastic constants under 
4/mmm symmetry (see Table 1 of Tolédano et al., 1983). For the case of λ% = 0 {i.e. ea = 0), this 
recovers as: 

( Q i - Q 2 ) = ^(C11 + C12+2C33-4C13) 

= a(T-Tc) + 2uet+3be? ( n 1 ) -

It is interesting to note, however, that the symmetry-adapted combination (Cii-C1 2) of the 
tetragonal phase only recovers below ΓtΓ as (for ea = 0): 

(Cn-Cl2) = a(T-Tc)-2uet+be? (112). 

Thus, as pointed out by Tolédano et al. (1983), a crystal will be close to the instability point for an 
orthorhombic distortion if equation 101 represents an adequate description of the excess energy. 

Comparison with the effects of other symmetry changes is most easily achieved by setting 
u ~ 0, to produce a second-order transition at T= Tc with (for ea = 0): 

e?=?^ (113). 
h 

A complete list of expressions for the elastic constants then obtained is given in Table 8, and their 
evolution through the transition point is illustrated schematically in Fig. 4. Note that [Cn - C12 j 
(tetragonal) and (Cu - C12) (cubic) have slopes in the ratio 2:1 below and above Tc. First-order 
behaviour (u > 0) would give a similar pattern of evolution, except that (Cn - C12) would not 
reach zero and there would be discontinuities at T- Γtr. 

The soft acoustic mode for the transition has q II [110]CUbiC and w // [110]Cubic» plus all 
symmetry-related directions, with pv2 = \{Cn -C 1 2 ) in the cubic phase (Table 6). For u « 0, 
(Cπ - C12) remains zero in the Almmm phase, which would imply that a crystal should remain at 
the stability limit with respect to an orthorhombic distortion, i.e. acoustic modes with q II [110]tet 
and u II [110]tet would not recover below Tc. 

Equation 101 yields the variations of the elastic constants for λ% Ψ 0 by the same sequence 
of steps. The resulting temperature dependences of the second-order elastic constants are also 
given in Table 8 and shown schematically in Fig. 4, again for the simplified case of w « 0. 
Significant differences can arise as a consequence of coupling between the driving strain and non-
symmetry-breaking strain, depending on the magnitude of the coupling coefficient, λa. In 
particular, the ratio of the slopes of critical elastic constants below and above Γc, 

\{C\\ + Cj2 + 2C33 - 4C13)tet and (Cπ - Q2) biC' becomes 2w/b 1:1 instead of 2:1, where b 

is the renormalised fourth-order coefficient 1= Z? - [2Λa/(cfj +2C1°2m. The individual elastic 
constants C\\, C33, Ci2, Ci3 will be expected to show some deviation from linearity. Note that no 



Pseudo-proper ferroelastic transition (assuming third order term ~ 0) 
mhm phase 

qt=0 

4/mmm phase, eΛ = 0 

«?=§(r:-4 T*C=TC+ x\ 
«(cΓi-cf2) 

4/mmm phase, ea Ψ 0 

«?=£(r;-r), r:=rc+ 
2A^ 

£ 
*(<?,-cj>2) 

[(cfi+^Cfa), 
-11 ~ ^ 2 2 - ^ 3 3 

π 3i 
A? 

^ - Γ c ) . 

Q 2 - Q 3 - * - 1 3 

A 
. ^ - Γ c ) 

Ql "~Q2 

=(Q0
I-qΓ2)- A? 

.<T-TC)\ 

CΛ 1 — CV 

= QV 6 Λ t 

Cαα — Ci 1 — 3 A t 

2 f l ( r * - r ) + fl(r*-Γc) 

Q2 ~ Q°2 ~ 
U 2 
6Λt 

2 n ( r * - r ) + fl(r*-Γc) 
• ^ • ( ^ n - ^ ) 

Q 3 - Q 3 - ^12 ~ 
i ^ 2 

2β ( r * - r ) + fl(r*-Γc) 

Ci 1 — Ci 9 — 0 

Ql "Q 2 _ r ( Q l + Cl2 + 2^33 ~ 4^13) 

- ( ^ C ^ - C ^ j - A 
2α ( r * - r ) + α ( r * -Γ c ) 

Ci 1 — C v 

4fà-<a) -CR 6Λt + 3"Λa#t ~ ^ Γ Λ t Λ a # t 

2o_(r*-r)+fl(rc*-rc) 

^33 = Q°l ~ 

fai-cb) 

2 o2 , 4 32 2 , 4Λ/2 T Λ _ 

—(Q°i - C12) 
1 a 2 , 4 i 2 2 2-\/2 2 1 n 6Λt + 3"Λa#t ~ ^ Λ t Λ a ^ t 

2α- ^ ( r c * - r ) + α(rc*-Γ c ) 

Q3 - Q3 - Q°2 ~ 
1 <i2 , 4 Q2 2 , V2 a 0 • _ 

~3Λt + TΛa#t + ^ Λ t Λa ^ t 

2α - F ( r c * - r ) + Ö (r c *-Γ c ) 
6 

Q i - Q 2 = 0 

Q l ~ Q 2 - r ( C i l + C l 2 + 2 ^ 3 3 -~4C13) 

- ( C ^ - C ^ j - A 
2α- ^ (Γ c -Γ ) + α(rc*-Γ c ) 



Cu + 2C12 - Cn + 2C12 

C44 - C55 ~ C66 ~ Q 4 

Q i + 2 C 1 2 = - ( C 3 3 + 2 C 1 1 + 2 C 1 2 + 4 C 1 3 ) 

= C1°1+2C1°2 

C44 = C55 = C44 - 2λ4a t 

C66 = Q4 + 2^4^t 

Q i + 2 C 1 2 = i ( C 3 3 + 2 C 1 1 + 2 C 1 2 + 4 C 1 3 ) 

= (cf1+2C?2)-
2^2 4λjtf 

2ΛAjΓ*_Γ )+ f l (Γ c*_Γ c) 

Q4 - C55 - C44 - 2A4«?t 

Qe = Q4 + 2A4gt 

cn-

C\2 

mhm phase 

e t=0 

= C22 = C33 = — (CJi + 2Cf2) + -< 

= Q3 = C23 = T^fl + 2Q02J ~ T< 

Q i - Q 2 = ^ - ^ c ) 

Q i + 2Q2 = Qi + 2C12 

Q4 = 5̂5 = Qβ = Q4 

,(Γ-

3(Γ-

Propei 

-Γc) 

-Γ . ) 

• ferroelastic transition (assuming third-order term ~ 0) 
4/mmm phase, ea = 0 

*t
2 = f ( r c - r ) 

Qi = C22 =i(CJ»! + 2C1°2) + |«(ΓC -Γ ) 

C33=|(Cfi+2Cf2) + |α( r c -Γ ) 

C12=|(Q°i + 2Cf2) + i Ö (T c -Γ ) 

Ci3 = C23 = j (Cf 1 + 2Cf 2 ) - |α(Γ c -Γ ) 

Q 1 - Cyi = 0 

C\\~C\1 = T ( Q I + CI2+2<'33""'*C13) 

= 2α(Γc-Γ) 

Cu +2C12 =^(C33 +2Cn +2C12 +4C13) 
= C1°1+2C1°2 

Q4 = C55 = C44 - 2A4et 

C66 = C^ + 2λ4et 

4/mmm phase, £a * 0 
2λ\ 

_(cf>,+2Cf>2) 

C33 = !(<?, +2Cj2) + | β^ r (Γ c -Γ ) + ^ V , 

C12 =i(cf1+2Cf2) + iβ^r(Γc -T)-ZJlλA 

Ca = c23 = i(cj>, + 2c?2) - | β A(Γc _ Γ ) + ^ V t 

Q i ~ Q 2 = o 

Q i - C 1 2 = i (C u +C 1 2 + 2C33-4C13) 1 

= 2αA(Γ c_Γ ) 

Q1 + 2C12 = i(C33 + 2C,, + 2C12 + 4C13) 

= Cf,+2Ci2 
Q4 = C55 = Cw - 2λ4et 

Qβ = Q4 + 2A4gt 
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Table 8. (Previous two pages and below) Predicted variations for elastic constants of a material subject to a phase 
transition involving the symmetry change m3m ^ Almmm. The expressions for individual Cik's have been derived 
for second-order transitions. 

Improper ferroelastic transition 
Prrßm phase 

<l\ = <li = #3 = ° 

lAlmcm phase, eà = 0 

b 

= b + b'- 8Ä2 

CO f~*0 
11~ C 12 

Qi -C22 -C33 ~ c π 

Q2 - Q3 - c23 - Q2 

Q1 ~ Q2 - Q i ~ Q°2 

Q i = £22 = c π ~ 

^ 3 3 = Q1 

Q 2 = ^12 

Aλ\ 
3(b + b') 

\6λ\ ~ 
3(b + b')m 

4λ2
2 

cn - ^23 - Q2 + 

3(b + b')_ 
8Λ2 

Q l _ C 12 = Q l ~^12 

Qi~Q2 - T ( Q I + £I2 + 2 C 3 3 - 4 C 1 3 ) 

3(fc + fc') 
C11+2C12=C1°1+2C1°2 C11+2C12=i(C33+2C11+2C12+4C13) 

= (Cf!-Cf2)-

= i (C 3 3 + 2C 
= Cfi + 2Cj0

2 

24A| 

C44 - C5 5 - C 6 6 - C44 C 4 4 - C 5 5 - C 4 4 • [^/(cfi-c%)]-^ 

anomaly is expected for C°, in spite of there being coupling of ea with the square of the driving 
order parameter. 

Pseudo-proper. Should the strains arise by coupling with a different driving order parameter with 
Eg symmetry, the relevant free-energy expansion becomes: 

G = \a{?~ T^ql° +<£) + \u(<$ - 3 f t9o) + ̂ ( t fo + *?)2 +*t(*cA> + * * ) 
+Va(?o +^t2) + λ4[V3^o(4 -el) + q{(2el -el -e5

2)] 

The two components of the driving order parameter Q have been specified as qt and #0 here to 
correspond with the tetragonal and orthorhombic distortions, and the equation is derived from 
equation 101 by replacing et with qt and e0 with q0. If terms in [ql +<grt2) and (e% +e?) are 



Elastic-constant variations due to phase transitions 745 

allowed by symmetry, then so is the bilinear coupling term (q0e0 +qtet). Because the strains et 

and e0 are now being treated as "driven" rather than "driving", the series expansion representing 
their contributions to the free energy is truncated after this second-order term. The remaining terms 
represent Eg ® T2g ® T2g type coupling energies, as in equation 101, and elastic energies. 

Variations of the individual elastic constants may be predicted from equation 114 by 
making use of the general solution given earlier (equation 79). As an example, the variation of C\ \ 
for a material with u « 0, λa « 0, is given by: 

Qi - C f i " 
d2G d2G 

deλdqt {dqf 

d2G 

-i d2G d2G / -Λ -Y"1 

' d2G 

deidqt deidq0 

Λ"1 

d2G 
dexdq0 

defa \dqtdq0 

dzG 
deλdq0 

(115). 

Under equilibriiun conditions q0 = 0 at all temperatures and q2 = (a/b)l Tc - T J at T < Tc for a 

second-order transition. The renormalised transition temperature, Tc , is given by: 

T* = T + ^ 
c c ^ - c f j ) 

Thus equation 115 becomes: 

11 3{a{T-Tc) 

(116). 

(117) 

and: 

Qi - Q i ~ T 
2α( r * - r ) + fl(r*-Γcj 

- | ( C n - C f 2 ) ( a tΓ<Γ*) (118). 

Solutions for all the elastic constants are given in Table 8, and their predicted elastic-constant 
temperature-dependences are illustrated schematically in Fig. 4. As discussed for the simple case 

section 2.2, the critical combinations of elastic constants, (C n
 _Q2)CUbiC ^ in 

-j(Cn + C12 + 2C33 -4C1 3) , now show a marked curvature, though the ratio of the slopes 

below and above Γc still tends toward 2:1 as Γ-» Γc ; (Cπ - C12)tet remains zero below Γc as a 
consequence of choosing w « 0. The bulk modulus is not affected by the transition. 

Elastic-constant variations for the same driving order parameter with u « 0, but λa ^ 0, are 
also given in Table 8 and Fig. 4. The general form of their variations is rather similar to the case of 
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Λa = 0, but, significantly, there is now expected to be an anomaly in the bulk modulus, and the 
ratio of the slopes for the critical elastic-constant variations is expected to tend to llb/b 1:1 

instead of 2:1 as T-^ Γ*. 

Improper. Finally, if the active representation for the transition is not Eg, the lowest-order 
coupling allowed by symmetry is between strain and the square of the order parameter. This might 
occur for a cubic ;= tetragonal transition in which a unit-cell dimension is doubled, for example. 
The order parameter becomes triply degenerate and, as discussed in section 2.3, the group-
theoretical derivation of terms allowed in the Landau expansion depends on the precise change in 
space group. A well known example is Pm3m ^ I4/mcm, associated with the R point i\>\,\) of 
the Brillouin zone, for which the excess free energy can be expressed to fourth-order terms in qi 
(after Slonczewski & Thomas, 1970; Ridou etal., 1980) as: 

G Ψ ( Γ - Γ c ) ( « i ^ 

+Va(<7l2 + ê + è) + h[^e0(qt -q%) + e^q\ - q\ - q%)] 

+\ctel+±C^(el+el + el) (119). 

The third-order term in equation 114 (with coefficient u), which makes a Pm3m ^ PAImmm 
transition first order, is constrained by symmetry to be strictly zero in this case. The form of 
allowed terms arises from group-theoretical considerations discussed by Rehwald (1973): the 
order parameter is an axial vector belonging to Tig, the symmetric square of which contains all the 
strain representations (Tl g ® Tl g = Al g 0 Eg 0 T2g). 

Variations of the individual elastic constants may now be derived in the usual way. The 
algebra becomes complicated for the general case, so the expressions given in Table 8 and 
illustrated in Fig. 4 are for λ\ = 0, i.e. for no non-symmetry-breaking strain. The equilibrium 
evolution of the order parameter at T < Tc for a second-order transition is given by q\ = qi = 0, 
and ql = la/b*)(Tc - T), with b* =b + b'-\sλl/(Cu -Ci°2)]. Taking Cn as an example, 

equation 79 gives: 

C = C° Y ^ [ ^ G I d2G 1̂20̂  
^™ *4*y^ *4si I sisw W V T J *is> r*si £ndeld4m \àqmdqn) deidqn 

which yields, from equation 119: 

C»'1<-10F) <121)' 
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There is expected to be a step in C\\ at T = Γc, but it should not show any strong temperature 
dependence in either of the cubic or tetragonal phases. Ci2, C33 and C13 are also expected to show 
steplike features at Γc (Fig. 4). The bulk modulus is expected to remain constant if λ\ = 0, but will 
display a step similar to the other elastic constants if there is any non-symmetry-breaking strain 
accompanying the transition. C44 (=055) will show a step at Tc, derived from the term in 
λ3(é?6#i<72 + —.)»t>ut Qô should be unaffected. The next higher-order coupling term for e^ would 
be λ6e6q^, which would give the variation C$6 = C44 + 2λ6q%. 

6.2 422 ±̂ 222 

Proper. For a transition giving the symmetry change 422 ^ 222, but with no change in 
translational symmetry, the active representation is Bi. From Table 5 the symmetry-breaking strain 
is [ (^1-^2)/^] ' f°Γ which the associated elastic constant is (Cn-C1 2); the non-symmetry-
breaking strains are (eλ +e2) and £3. The remaining strain components are £4 and e$, associated 
with the E representation, and e& which belongs to the B2 representation. When the driving order 
parameter for the transition is the symmetry-breaking strain, the relevant free-energy expansion 
may be written as: 

+5C?3«3+!α, (4 + «?) + ic&e6
2 (122)-

From group theory (Stokes & Hatch, 1988; Hatch, pers. comm.), (ex +e2) and e$ each couple 
with [(ei-e2)/V2J m tite normal way, e\ and -e\ couple with [(^ -e2)/'V/2l 

(E(8)E = A10B1©B2, which contains Bi), and e\ couples with [(ei-e2)/V2J • Tte 
symmetry-adapted elastic constant for Ai strains is analytically complex, but a convenient 
simplification is achieved by taking \[C\X + C°2) and C33 as separate elastic constants for (e\ + 
e2) and e$, respectively. In this case the scaling factor has been transferred to give (Cft + Cf2) and 
[(*i+«2)/V2]-

Variations in the elastic constants may be predicted from the second derivatives of equation 
122, as for the proper ferroelastic examples already discussed. Expressions for these variations are 
given in Table 9 and they are shown schematically in Fig. 9. The transition occurs when C\\ = 
C\2, and the related soft acoustic mode has q II [110] and U II [110] (or vice versa) in the 
tetragonal phase, with pv2 = j(Cn - C12) (Table 6). The values of j(Cu + C22 - 2C12)ortho and 
(Cn - C12)tet give slopes in the ratio 2:1 if there is no non-symmetry-breaking strain (e\ + e2 = e^ 
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= 0), or 21 b/b 1:1 otherwise (e\ + ei * 0, e?> Ψ 0). The negative sign of -ef in the coupling term 

λAe2 -e\)Uβi -e2)/^] arises in the group-theoretical analysis and ensures that C44 and C55 
diverge in the stability field of the orthorhombic phase. 

Pseudo-proper. If the driving order parameter is not the symmetry-breaking strain, the excess free 
energy may be written as: 

G = ^a{T-Tc)Q2+hQUλl{el+e2)Q2 + λ2{el-e2)Q + λ3e3Q2 

+λ4(4 "*5 )ß + V 6 0 2 + \(C?X + C&Jfo + e2f 

+^(cfi - C?2)(ei ~e2f + Cfcfa + *2>3 

+|^3+|α(e4
2

+^2)+|c6v6
2

 (123)β 

Here the factor of 4= in the strains has been incorporated into the coupling coefficients. The 
elastic-constant variations may again be predicted using the general solution for the case of order-
parameter/strain coupling (equation 79). Analytical expressions are given in Table 9 for the cases 
of zero and non-zero values of the non-symmetry-breaking strain parameters (ex +e2) and e3, 
while schematic variations are illustrated in Fig. 9. 

Improper. Finally, an example of improper ferroelastic behaviour is provided by the symmetry 
change P422 ^ C222, where the driving order parameter is associated with the Ri representation 
and the special point (7,0,-j) of the Brillouin zone. The order parameter is doubly degenerate in 
this case. Making use of the tables of Stokes & Hatch (1988) and group-theoretical analysis of 
allowed coupling terms (Hatch, pers. comm.), the excess free energy due to the transition can be 
written as: 

G = ±a(T-Tc)(qf+q2
2) + U(q?+q2

l)\h\ql + q2
i) + λ1{el+e2)(q?+q^ 

+λ2(e{ - e2)qxq2 + λ3e3(qf + ql) + A4(e| - el)qλq2 + λ5(ej + ej)[ql + q\) 

+λ6e2
6(qf + ql) + \(C°n + C°n){ei +e2f +i(c1°1 -C°n\ex -e2f 

+Ci°3(e1 +e2)e3 + | c 3 V f +\c^(e2
4 + e5

2) + ±C6V6
2
 ( 1 2 4 ) . 

Fig. 9. (Facing page) Schematic variation of elastic constants at second-order transitions involving the point-group 
change 422 ^ 222, based on expressions given in Table 9. Note: (C„ -Cλ7^-\{Cn + C2i-2Cn), 
(C„ +C12) = %(CU + C22 +2C12). The improper example is P422 = C222. 
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422 phase 

Cu=^2=}(cfl+Cf>2) + ^ - 7 ' c ) 

^33 = ^33 

C12=i(cf1+Cf2)-|α(r-Tc) 

Q3 = ^23 = 1̂°3 

q i - Q 2 = * ( r - Γ c ) 

Q 1 + Q 2 = Q°i+ Q°2 

C44 = C55 = C44 

Proper ferroelastic transition 
222 phase, ens\> = 0 

Cn=C12=±{ql+q2) + a{Tc-T) 

C33 = C53 
Cn=\{c?l+C?2)~a(T-Tc) 

Q3 = P23 = C13 

C u - C 1 2 = 2 α(Γ c -Γ ) 

Cπ - -̂12 = r (Ci 1 + C22 _ 2C12) 

= 2α(Γc-Γ) 

CH + CI2 = — (Cu + C22 + 2C,2) 
= Q" + Cf2 

C44 = C2,+V2λ4(e1-e2) 

C 6 6 =C 6 + λ 6 ( e i - e 2 ) 2 

b* 

Cu 

C22 

= b-2 

222 phase, ensb * 0 

^3\Q 1 + Q2) + ^1C33 ~ 2V2Å1A3C13 

= \{c^+Cr2) + a-^(Tc-T) + ^2λ1(e1 -e2) z b 
=^(cΓi + Q02)+«4(7-c-r)-V2λ1(ei-e2) 

^ b 
C33 = C33 

Ci2=|(c?1+cj2)-«iΓ(rc-r) 

C13 = C1
03 + A3(e1-^2) 

C23 = C , 13- λ3( ß l -^2) 

C 1 1 -C 1 2 =2 f lA( Γ c _ Γ ) + V2A1(e1-β2) 
b 

C\ 1 - Q2 = — (Q1 + Q2 ~~ 2C12) 

= 2ΛA(Γc_Γ) 

Q l + Q 2 = T ( Q l + C 2 2 + 2 ^ 1 2 ) 
= Ql+Cl2 

Q4 = C^ + ΛJlλ4(el -e2) 
C55 = C^-^2λ4(ei-e2) 

C66=C66 + ̂ 6 ^ 1 - ^ ) 1 
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E = -C°e2 (A. 19) 
2 

and the energy for the coupling between the optic and acoustic mode is: 

Coupling = Ψ< Q2 >e = λe (A.20) 

where λ plays the role of a stress produced by the phonons. The change of the elastic constant in 
Equation A. 18 can now be rewritten as: 

ΔC = — , 9 (A.21). 

The denominator is twice the optical phonon energy. Expressing λ2 via the elastic strain-stress 
relation λ = C°e yields: 

— = 2 C e _ ^e las t i c / A 2 2 ) 
C° ω2<Q2> £optic 

Thus, the relative change of the elastic constant is equal to the ratio of the elastic energy (with the 
bare elastic constants C° and the thermal strain e at T > Tc) to the total energy of the Einstein 
oscillator. In crystals without phase transitions the thermal expansion is typically on the order of e 
« 10"4 per AT « I K . The phonon energy is much larger than the resulting elastic energy and, 
consequently, the ratio (ΔC/C°J is small enough to be ignored for all practical purposes. In the 
case of displacive phase transitions, on the other hand, the energy of the soft mode is of the same 
order of magnitude as the elastic energy. A typical example is quartz where the soft optical phonon 
at T> Tc approaches the acoustic branch near q ~ (1/I0a) where a is the lattice parameter. Then, 
taking C° = (ω^coust ic/^coust ic) equation A.22 can be rewritten as: 

2 
ez (A.23) ΔC _ 1 6)acoustic 1 1 Λ2 

C 2 ^optic ^acoustic < Q > 

and, if ωaCoustic Ä ^optio <Q2 > ~ I0'4a2, which leads to (ΔC/C0}«106e2. This rough estimate 
gives a value of (ÁC/C°)« 1 for e « 10"3. Thus the elastic constants soften completely due to the 
interaction between the optic and acoustic phonons. In three dimensions the summation is for all 
q, and the coupling can occur between the strain and any phonon. There is, however, the 
symmetry constraint that terms of the form eaß <Q\> must transform as the identity 
representation, so that any strain, e^, which transforms as the identity representation can be 
involved. As a consequence, those elastic constants which themselves transform as the identity 
representation should always soften in the high-symmetry form of a crystal as the transition point 
is approached. In addition, those strains which transform as the active representation may couple 
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derivative 0 in the direction of λ). It is important to recognise that in this approach it is not 
necessary to identify the actual physical mechanism by which large values of <Q\> are 
generated. Typical causes might be fluctuations of the order parameter (< Qx > ~ < Q2 >), or 
phononic vibrations with large amplitudes (i.e. phonons with low frequencies) which are not the 
driving soft modes, for example. 

The second term represents bi-quadratic coupling between the strain and the phonon 
coordinate: 

I V o V 
Λ fv fv ft I Ik Vk' kµ I'k'v 

. , 1 e*eZq exp(-2πifct) < ß 2 | 

F 

(A. 17). 

In this equation, the fourth derivative, (paγµv* is only relevant if the crystal is anharmonic with 
respect to both the elastic deformation and the phonon movement. It is generally assumed that this 
is rarely the case although there is little experimental evidence in favour of such an assumption. 
The normal situation is that the phonons are not those of the active representation and have < Q2 > 
oc T at high temperatures. The renormalisation due to this term leads to a linear temperature 
evolution of the elastic constants at T> Tc without any anomaly at Tc. Such an effect appears as a 
general background in the Γ-dependence of elastic constants and is not significant in relation to the 
analysis of elastic softening associated with a phase transition. 

The third term in Equation A. 10 is dominant in determining those elastic anomalies which 
are not generated by direct bilinear coupling between the strain and the order parameter. The 

coupling is now described by (f>aß[ • • ]> t n e coefficient of a third-order anharmonic interaction 

between phonons and strain. Here j is the phonon branch, and coupling involves optic phonons 
with wave vectors + q and - q along the same branch. 

Before describing this interaction in more detail, it is instructive to illustrate its relevance 
using, again, the simple example of a one-dimensional crystal. Consider a system that has an 
acoustic mode and an optic branch of an Einstein oscillator with frequency CUE- The 
renormalisation of the elastic constant C° is due to the interaction between the acoustic and optic 
phonon via: 

*-*M1 ?K) 
N-^-<l>2<Q2> (A.18) 

where the omission of (k, I) indicates that the summation over N atoms has been carried out. The 
unrenormalised elastic energy is: 
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atoms inside the unit cell, and can be understood as an "internal" strain which compensates the 
uniform strain. Such a compensation leads to a reduction of the elastic constants - an effective 
softening of the crystal. 

The essence of the physical effect is easily illustrated by a one-dimensional example. In 
this case the indices can be dropped and only the momentum, P, and phonon amplitude, Q, need 
be considered. The harmonic phonon then has the simple Hamiltonian: 

H = -Σ(P2 + ω2Q2)-hQ (A.12) 

where h is the field that is generated by the macroscopic strain: 

h = ge (A.13) 

with g as a proportionality constant. The phonon energy follows from the transformation 
ß' = [ô + (/*7ω2)]with: 

ff' = I W p 2 + ω 2 ß ' 2 ) — - ^ (A. 14). 

The oscillator is again harmonic with the same frequency. The energy: 

En=Σ * « H K £ (A-15) 
is that of the phonon without a field, minus the self energy. This self energy depends on e2 as: 

AE = --^Te1=--ACe1 (A.16). < - - I V = - IΛ- 2 

2ω2 2 

The elastic constant of the system is reduced by (g/ω) , therefore. 
Now consider the dimension of the first term in equation A. 10. The elastic softening in the 

stability field of the high-symmetry phase here is due to the existence of the soft phonon, but is 
independent of its amplitude, Q. This result is identical with the earlier prediction in equation 
A. 11, as becomes clear when ω2 is identified with %~x in a displacive phase transition, with 

ΔC oc %~l oc fl/ω2 j . The symmetry constraints are that Q\°Aeaß has to transform as the identity 

representation. This is always the case if Q\°:I and βaß belong to the same representation, e.g. the 

active representation of the transition. Only the elastic constants transforming as the representation 
of eaß will show this anomaly, and the result is the same as derived from a standard Landau 
expansion with bilinear coupling between the macroscopic order parameter and strain. 

All other terms in equation A. 10 are proportional to <Q>\> and can hence be called 
"dynamic" renormalisations. (The index λ is added to indicate that this amplitude stems from a 
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Ca™!ßΓ ~ Caγ,ßλ + ̂ Σ Σ0(αp)(yλ) 
q jj' I7KJK7 (A.8) 

leaving out terms linear in the phonon amplitude for symmetry reasons. The thermodynamic 
expectation value of < Q >, which is the average value of the square of the amplitude (averaged 
over the whole crystal) for a given phonon, depends simply on the number of excited phonons via: 

<Q2>= 
2ω[Λ 

L uλ 

coth 
Ü6) MI 
2kΓ 

(A.9). 

For 2kΓ » Hω, < ß > increases linearly with temperature. Adding all contributions to the 
elastic constants gives, for temperatures above the equilibrium transition point, a renormalisation 
per phonon branch (j = f) of: 

Caßγλ Caßγλ 
1Σ 

ω' 
Waß\ j \Ψ7λ [°>ΣKw(« 7J<ß 

-ΣK 
2ωA * 7 M 7K^- ' -H 7H 4 " 4 

(A.10). 

The four terms in this expression represent four separate contributions which are now discussed in 
turn. 

The first term is due to a static response and does not depend on the amplitude of the 
phonon movement. Rewriting 0^1^) in real space leads to: 

Ψaß Σ Σ^ L *'ft8 
Ik k'µ k k' \k) mb 

÷eµ(k') (A. 11) 

where Ψaßifc £') is the derivative of the force constant for the movement of atom (k, I) against 

atom (k', o), and Xß[Δ is the projection of the position vector of atom (k, I) along the ß-axis. The 

normal coordinate of the phonon movement is eµ(k') (atom k' along the µ-axis). The physical 
meaning of this is that a phononic movement leads to shifts of atoms that do not correspond to a 
simple uniform compression or dilation of the sample. These movements involve relative shifts of 
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where Ho describes the phonon: 

Δ q j λ 

q. 
KJJ 

+ *>2ßll! (A.2). 

local Strain is measured with respect to the actual time and space averaged structure as eaß , with 

aß 

where Mαß) is the field conjugated to Ä a l ; A(°0) is allowed to depend on the normal coordinate of 
the phonon, i.e. it depends on the pattern generated by the phononic lattice distortion. Finally, the 
elastic energy is: 

N - 1 V Yru -.uniform local local 
9 W ^ s^-aγßλ eaß eγλ 
z i y v aß γλ 

(A.4) 

-.uniform where Nis the number of atoms, Vis the volume per unit cell and C^γßλ is the elastic constant 
that describes a uniform deformation. By uniform, what is meant is a deformation which only 
causes distances between all atoms in a structure to change by the same fraction. 

Interactions between phonons and strain are due to the (^-dependence of M°$). These are 
expressed formally as: 

h^ß\Q) = K _ u(°ß) 
'extend ÷ Σ ^ Ö • + Σ >W 0 7KJX7 (A.5) 

where external = 0 w n e n tnerc is no external stress. Writing the other field coefficients as force ''external 
constants, one finds: 

w = = Λ[N<j)i ccß KJJ 
(A.6) 

and 

(q -q\ 
Paß 

(q -q 
\j y 

(A.7). 

The two field parameters correspond directly to the first and second derivatives of the force 
constant <f>aß. For convenience they can be written in reciprocal space rather than real space, where 
the connection is made by standard Fourier transformation. Direct coupling between the elastic 
constants and optical phonons is also introduced: 
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Landau theory then highlight more subtle details of a transition, such as the role of fluctuations or 
coupling between other phonons, which are specific to a material. The symmetry constraints on 
the elastic behaviour also define general categories of behaviour such that the general form of 
elastic-constant variations may be predicted successfully with very little prior information 
concerning either the detailed crystal structure or the transition mechanism. 

Many mineral systems could be examined in the context of the overall philosophy set out 
here, and a summary list of some of these was given in Table 1. The theoretical background is 
well established and the weak link is now a paucity of experimental data. With improved 
techniques for determining the elastic constants of small and low-symmetry crystals at ranges of P 
and T it should become possible to advance our understanding of the behaviour of geological 
materials under stress to a far higher level of sophistication than has so far been achieved. 
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Appendix: Anomalous softening due to dynamical effects 

A conventional Landau expansion can be used quite effectively to predict variations of elastic 
constants at phase transitions. It only gives the variations due to static effects, however, and does 
not account for changes due to thermal fluctuations. One way of accounting for the dynamical 
effects is to adopt a more atomistic approach and consider a simple "ball and spoke" model of a 
crystal. Atoms may be treated as balls on lattice points (k, /; fc-th atom in /-th unit cell) with mass 
mk. These atoms are connected by springs with a spring constant, 0α«(/ / ' I , describing the 

movement of (k, I) along the α-axis and (k\ V) along the ß-axis. Details of this approach go back 
to the illuminating book of Born & Huang (1954) and many subsequent studies. In order to allow 
anharmonicity to enter into this model, an optical phonon is introduced. It has kinetic 

energy ] Γ P | I ? and potential energy Σ ω U r& \ir w ^ e r e Pλ *s ^ e m o m e n t u m ' Qλ is the 
normal coordinate, A is a Cartesian coordinate, q is the wavevector and j is the number of the 
phonon branch. The basic idea is to allow the phonon to be the soft mode f ω2 = %~λ <* A\T - Tc\) 
which drives a displacive phase transition. It is the anharmonic interactions between Q% and strain 
coordinates which then give rise to the elastic anomalies. 

The atomistic picture is described by a model Hamiltonian: 

H = HQ + H\ + Hi (A.1) 
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Fig. 27. Variations of the eigenvalues of the 
elastic-constant matrix for crystals with point 
group 622 (Γ> TÜ) and point group 32 (T < Tu) 
(from Carpenter et al, 1998b). Expressions for 
the eigenvalues of 622 crystals are given in Table 
12. Ei is plotted as C44 and E2 as C66. Aj 
eigenvalues of crystals with 32 symmetry have 
the same form as those of crystals with 622 
symmetry. The smooth curves were determined 
from the calculated variations shown in Fig. 25 
(solutions derived from assuming ΔC π = ΔC12 
and ΔC13

2 = ΔCπΔC33 in ß-quartz). Solid lines 
represent the A2 eigenvalues; broken and dotted 
lines represent the other eigenvalues. Each of the 
Ex and E2 eigenvalues of ß-quartz splits into two 
in α-quartz. Experimental data points for A{ 
eigenvalues are shown below TÜ (data from 
Ohno, 1995). There is reasonable agreement 
between calculated and experimental data over the 
complete temperature range for one of the Aγ 
eigenvalues and close agreement between TtT and 
-700 K for the other. Neither of the A! 
eigenvalues reaches zero at the transition point. 

Other minerals. Co-elastic transitions are particularly common amongst minerals and yet appear 
not to have been examined from this overall point of view. Some examples of transitions which 
may display co-elastic features are: I4\/acd ;= lA\la leucite (Boysen, 1990; Palmer, 1990a; Palmer 
et al, 1990, 1997; Palmer & Salje, 1990; Hatch et al., 1990a; Heaney & Veblen, 1990; Ito et al, 
1991), Cllc ;= P2\lc pigeonite (Cameron & Papike, 1980; Shimobayashi & Kitamura, 1991; 
Shimobayashi, 1992), II ÷± PI anorthite (Salje, 1987; Redfern & Salje, 1987, 1992; Redfern et 
al, 1988; Angel etal., 1989; Hatch & Ghose, 1989; Angel, 1992; Redfern, 1992), R3m ^ R3c 
calcite (Redfern etal, 1989; Dove & Powell, 1989), P63/mmc ;= P6322 tridymite (de Dombal & 
Carpenter, 1993; Cellai et al, 1994), Cllm ^ P2\lm cummingtonite (Prewitt et al, 1970), P6322 
^ P63 kaliophilite (Cellai et al, 1992), Pβ^mc ÷± P63, Pβ^mc -^ Pbync with multiple 
superlattices, and P63 ^ P63 with Λ[3A superlattice in kalsilite (Carpenter & Cellai, 1996; Xu & 
Veblen, 1996), A2/α ^ Plγ/a titanite (Taylor & Brown, 1976; Ghose et al, 1991; Van Heurck et 
al, 1991; Bismayer et al, 1992; Salje et al, 1993; Zhang et al, 1995; Meyer et al, 1996; Kunz et 
al, 1996; Chrosch et al, 1997) and Cmcm ^ Pmcn ^ P2\cn lawsonite (Libowitzky & 
Armbruster, 1995). 

8. Conclusion 

Landau theory provides a straightforward framework for generating quantitative descriptions of 
the elastic-constant variations that accompany phase transitions in many materials. The elastic-
constant variations themselves also provide unique insights into the mechanisms of these phase 
transitions. Matching observed and predicted variations provides a test of any proposed 
mechanism that is far more stringent than simply matching the variation of the order parameter 
alone. In particular, it is necessary to account correctly for contributions due to both symmetry-
breaking and non-symmetry-breaking strains. Anomalies in the elastic properties not anticipated by 

I I I I I I I I I I I > H I I I I I I I I I I I I I I I I I I I I II I I I I 11-1 

400 600 800 

T (K) 
1000 
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(Scott, 1974; Yamamoto, 1974; Dolino, 1988, 1990, and references therein). It can now clearly be 
seen that most of the energy reduction associated with the transition is actually due to the coupling 
of Q with strain. For example, at T = jTtT = 424 K, separate contributions to the total excess 
energy due to the transition (-1085 J.mole-1) are GQ = 358 J.mole-1, GC0Upiing = -2885 J.mole-1, 
Geiastic = 1442 J.mole-1 (Carpenter et al., 1998b). Substantial renormalisation of the fourth-order 
coefficient from b~ +4900 J.mole"1 to b = -1931 J.mole"1 (equation 163) due to this coupling 
also drives the transition from second order to first order in character. In addition, the 
renormalisation causes the value of %~x (equation 162) to increase much more steeply than would 
be anticipated for a classical soft-mode transition and accounts, at least semi-quantitatively, for the 
steep recovery of the soft-mode frequency in α-quartz (Fig. 26; ω2 data for the soft mode from 
Tezuka etaL, 1991, and Hochli & Scott, 1971). 

8000 

700 800 900 
T (K) 

1000 

Fig. 26. Comparison between experimental 
data for the frequency of the soft mode of 
quartz and the calculated susceptibility from 
a Landau free-energy expansion (from 

6000 Carpenter et al.t 1998b). A relationship of 
%jthe form a? <× %X *s expected. The axes for 

/ - s ω2 (right) and xx (left) n a v e Deen adjusted 
1 4QQQ Q so that, above ΓtΓ, the experimental data for 

' ω2 (open circles, from Tezuka et ai, 1991) 
are superimposed on the calculated variation 
of xΛ = a(T-Tc) (solid line). Below Γtr, 
experimental data for aP- are shown as filled 
circles (from Hochli & Scott, 1971), and 
the solid line is X"1 calculated using 
equation 162. (Note that the mismatch 
below Γtr could be reduced by choosing an 
alternative scaling between ω2 and x~l at T 
> Γtr). 

H 2000 

While the Bi soft mode provides the symmetry-breaking mechanism, the spontaneous 
strains and the largest elastic anomalies are associated with the Ai (identity) representation of point 
group 622. McLellan (1973) suggested that one of the Ai eigenvalues might extrapolate to zero at 
the transition point in much the same way that the eigenvalues associated with the active 
representation can evolve at a proper ferroelastic transition. The individual elastic constants have 
therefore been used to calculate variations of the relevant eigenvalues, as shown in Fig. 27. The 
Ai eigenvalues show large variations but do not go to zero. In this regard, the elastic behaviour is 
consistent with the classical behaviour of a co-elastic material. An unexplained curiosity remains, 
however, in that C13 extrapolates to zero at 847 ± 1 K (Fig. 25). By itself, this cannot lead to an 
elastic instability, but it corresponds to a limiting point beyond which the elastic energy \Cγiexe^ 
for e\ and e$ with the same sign becomes negative, i.e. starting to favour simultaneous contraction 
parallel and perpendicular to the z-axis. Thus, while the overall elastic variations may not be 
regarded as being primarily responsible for the ß ^ α transition, they are certainly associated with 
most of the energy change and could also be involved in some aspect of the triggering mechanism. 
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(1948) andZubov & Firsova (1962) under this cubic constraint yields K = -0.65. Including the 
hexagonal symmetry constraints in the fitting gives values oiK\\- -0.63, K\i = -0.60 and ÄΓ33 
= -0.60. A value of K = -0.5 would be expected if the branches of the soft mode all soften 
uniformly in three dimensions, while softening in two directions would be described by K = -1 
(section 4.4). The implication of the fit values of—0.6 is again that ß-quartz softens more or less 
isotropically. These fits reproduce the observed softening quite well, as shown in Fig. 25, and 
also yield values for the bare elastic constants, Cj\, C^, Cf3, C33. 

Expressions derived from equation 161 for the variations of the elastic constants of α-
quartz are listed in Table 15. They were used to extract values for the coupling coefficients A4, λ$, 
λß and A9, using values of Q given by equation 157 and experimental data for C14, C44 and C^. 
A reasonable description of the observed variations results (Fig. 25) but is, of course, not a real 
test of the model. On the other hand, the predicted variations of Cn, C12, C13 and C33 depend on 
values of the coefficients extracted from independent measurements of strain or heat capacity, and 
on values of the bare elastic constants extracted from the data for ß-quartz. Close agreement 
between the observed and calculated values of C\\ and C\2 therefore implies that equation 161 
provides a good description of the strain and elastic behaviour of quartz in the (001) plane. The 
agreement for C33 within -100 K of TtT and for C13 is not as close, but the correct form is 
reproduced. Below -700 K, C33 increases more steeply than predicted, and it seems likely that the 
description of strain parallel to [001] is incomplete. Finally, there is no evidence for a divergence 
between the calculated elastic constants, which represent isothermal conditions, and the 
experimental values, which are adiabatic, immediately below the transition point. This is perhaps 
because the transition is just first order and occurs at a temperature which is sufficiently far from 
Tc that the thermal expansion coefficients do not become large enough to cause a measurable 
difference between isothermal and adiabatic values (equations 95 and 96). 

Table 15. Equations for calculating the elastic constants of α-quartz, as derived from equation 161 which includes 
higher-order strain/order parameter coupling terms. 

α-quartz 

Cu =C22= C^l+2λ6Q2-[2λ1Q + 4λ7Q3fX 

C33 = C%3-[2λ3Q + 4λsQ3]2
X 

C12 = C,°2 - 2λ6Q2 -[2A,ß + U-jQtfx 

C13 = C23 = Cf3 - [2λ,ß + 4λ7ß3] .[2λ3Q + 4λ8ß3] X 

(32) 

cn 

Cπ-C12=(C1°1-C1°2) + 4λ6ß2 

+ C12 = (eft + Cf2) - 2\2λγQ + AλnQ^X 

C14 = -C2 4 = C56 = λ5Q + λ9Q 

C44 = C55 = C44 + 2Λ4ß 

C66 = C6°6 + 2λ6ß2=i(C11-C12) 

Having demonstrated that an appropriate Landau expansion can account quantitatively for 
most of the elastic variations of α-quartz and that the softening in ß-quartz is consistent with a 
dynamical origin (though not involving critical fluctuations), what can be concluded about the 
nature of the ß ^ α transition? The soft zone-centre (Bi) optic mode observed by Axe & Shirane 
(1970), Tezuka et al. (1991) and Dolino et al (1992) follows the ω2 °c |Γ - Tc\ behaviour of a 
classical soft mode and is generally accepted as providing the driving mechanism for the transition 
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A general expression for the order-parameter susceptibility derived from equation 161 is: 

^ - 1 =α(Γ -Γ c ) + (2^ + è * ) ô ^ - ( 8 c + 7c*)ô4+(4J + 3 / ) ß 6 (162) 

where b, c and d are unrenormalised coefficients for the fourth-, sixth- and eighth-order terms in 
the standard Landau expansion; d is the renormalised eighth-order coefficient and is assumed to 
be zero in equation 158. The renormalised and unrenormalised coefficients are related by: 

(163) b =b-2\ 

c = c - 6 

d =d-4\ 

^3 (Q°l + C?2 ) + 2^1 C33 - 4λiλ3Ci3 

(C?l + Cl°2JC33 ~ 2Q°3 

3 81 11 "̂  ̂ 12 ) ~^~ ^ ^ 1 ^ 7 ^ 3 3 — ^ ^ 1 ^ 8 13 — ^^Z 1 \3 

\p\\ + Q°2J^33 ~ 2Q°3 

2λ7C33 - 4λ7Å8C13 + λ8^Cn + C12) 

(Q°i + CJ2JC33 - 2Cf3 

(164) 

(165). 

Numerical values for all the coefficients in these equations have been extracted from strain and 
heat-capacity data. For calculating variations of the individual elastic constants, the only additional 
information required is a set of values of the bare elastic constants, which may be extracted from 
the Qk data for ß-quartz. 

Pronounced softening shown by Cn, C12, C13 and C33 in ß-quartz as T -> TtT has been 
accounted for successfully by dynamical effects of the type described in section 4.4 (Axe & 
Shirane, 1970; Pytte, 1971; Hochli, 1972; Yamamoto, 1974). Hochli (1972) used the 
experimental data to fit the coefficients in equation 97 and obtained values of K= -0.60 ± 0.06 for 
Cn and K = -0.64 ± 0.06 for C33, with Tc = 838 ± 5 K. Axe & Shirane (1970) fit the same data 
with K = - 1 and a lower value of Tc. The observed variations of the four elastic constants are 
almost parallel, and the simplest explanation for this is that the bare elastic constants, C°i, Ci2, 
Ufa and C33, are effectively constant, with a dynamical softening, ACik, which is the same for 
each. Cββ is almost constant in ß-quartz, which, since C66 = j(Cn - C12), is consistent with CJ\ 
and C12 being effectively constant as well. C44 hardly varies with temperature either. The very 
small thermal expansion of ß-quartz (Kihara, 1990; Carpenter et al, 1998b; and references 
therein) is a further indication that the bare elastic constants might not vary strongly with 
temperature. 

The symmetry constraints for a hexagonal system require ACn=ACi2 and 
(ΔC13) =ΔCnAC33 (section 4.4), but quartz appears to conform to the constraints 
ΔCn =ΔC12 = ΔC13 = ΔC33 that apply in a cubic system. In other words, as far as local 
fluctuations in the order parameter are concerned, the material behaves as if it is an isotropic 
medium. Obtaining the coefficients in equation 97 by fitting them to the data of Kammer et al 
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tf-fα2 1+ i - 2 T-Tc 
%\ 

(157). 

This is derived from the standard Landau expansion to sixth order: 

2 4 O 
(158) 

where b is the fourth-order coefficient, as renormalised by strain coupling, and is negative in this 
case; c is the sixth-order coefficient as renormalised by higher-order strain-coupling terms. The 
jump in ß at the transition temperature, Tix, from ß = 0 to ß = ß 0 is given by: 

i2 4<z i 
Qo — * V̂ tr *c] 

b 

The difference (Γtr - Γc) may be expressed as: 

\2 

(159). 

loac 
(160) 

which provides a measure of how close the transition is to being tricritical (b =0). 
At this level, the most important parameters are Γtr and Γc. Carpenter et al. (1998b) 

adopted ΓtΓ = 847 K and Tc - 840 K for internal consistency, on the basis of TtT falling between 
hysteresis limits of α —> ß on heating, ß -» IC on cooling, Tc = 841 from spectroscopic 
investigation of the soft mode in ß-quartz (Tezuka et al., 1991), a best fit value of 
(Γtr - Tc) = 7.2 K from second-harmonic generation of light data (Bachheimer & Dolino, 1975), 
and an analysis of heat capacity through the transition. 

A new set of lattice-parameter measurements suggests that there is higher-order 
strain/order-parameter coupling in α-quartz, which means that terms in λeQ4 must be added to 
equation 129 if the elastic behaviour is to be described correctly. A higher-order coupling term can 
also be included to describe the non-linear behaviour of C14. The full Landau expansion is then 
(from Carpenter et al., 1998b): 

G = ±a(T- TC)Q2 + \bQ* +±cQ6 + \dQ* + λλ(eλ + e2)Q2 + λ3e3Q2 

Z 4 O O 
+λ4(el+el)Q2 + λs(e1e4-e2e4 + e5e6)Q+λ6[eZ+(e1-e2)2'\Q2 

+λ7(el+e2)Q4 + λseiQ4 + λ9(ele4-e2e4+e5e6)Q3 

+ ^ i + C? 2 )(*i+«i) 2 +i(Cfi -Cp 2 )(e 1 -β2 ) 2 + C{>3(e1+e2)e3 

+\c%iel+±C°4A(e2
4+el) + ±Cè6el (161). 



Elastic-constant variations due to phase transitions 783 

7.4 Co-elastic behaviour 

Quartz. The zone-centre ß ^ α (622 ^ 32) transition in quartz has been investigated intensively 
over many years. Its most characteristic features are reviewed by Dolino (1988, 1990), Heaney 
(1994) and Dolino & Vallade (1994). Early studies of lattice dynamics and elastic properties are 
summarised by Scott (1974) and Hochli (1972), respectively. Data from the literature for the 
variations of the elastic constants are shown in Fig. 25. The incommensurate phase (IC) is stable 
only over a temperature interval of < 2 K above the transition point (Dolino et aL, 1992; Vallade et 
al., 1992; and references therein) and probably does not have a direct bearing on the elastic-
constant variations over the much wider interval considered here. As pointed out by Salje et al. 
(1992), the transition is co-elastic, with a large non-symmetry-breaking spontaneous strain. 
Critical fluctuations are unlikely to occur over any easily measurable interval on either side of the 
equilibrium transition point and, contrary to views expressed in the 1970's {e.g. discussion in 
Scott, 1974), classical critical exponents are expected to provide a good description of the 
thermodynamic evolution. A full analysis of the elastic behaviour has recently been completed 
(Carpenter et α/., 1998b) and the main results are summarised here. 

•i i I i i i i I i i i i I i i i i I i i i i I i i i i I i r i i I i i i i I i i i i π  
400 600 800 1000 

T (K) 
Fig. 25. Comparison between observed and calculated elastic-constant variations of quartz (from Carpenter et α/., 
1998b). Data from: Atanasoff & Hart (1941), Atanasoff & Kammer (1948); Karnmer et al (1941), Zubov & 
Firsova (1962), Shapiro & Cummins (1968), Hochli (1970), Pelous & Vacher (1976), Unoki et aL (1984), Ohno 
(1995). For Cπ, C33 and C44 a distinction has been made between data from ultrasonic experiments (open symbols) 
and data from Brillouin scattering (open symbols containing a dot). Two sets of calculated variations are shown for 
C11, C12, ^13 md 3̂3» depending on how the bare elastic constants, C°k, were determined. For one set 
ΔCn = ΔC12 and (ΔC13) = ΔCπΔC33 were assumed (solid lines); for the second set ΔCπ = ΔC12 = ΔC13 = ΔC33 
was assumed (broken lines). In the case of C13 the two curves are almost superimposed. Fits to the data for C14, 
C44 and C66 in α-quartz, using equations listed in Table 15, are shown as solid lines; C44 and C£6 were assumed to 
be constant. 

Among others, Grimm & Dorner (1975), Bachheimer & Dolino (1975), Banda et al. 
(1975) and Dolino & Bachheimer (1982) have shown that the ß ^ α transition is first order in 
character and that the evolution of the order parameter in α-quartz follows, to a good 
approximation: 
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attributed the discrepancy to heterogeneous stresses in the polycrystalline sample. Wide variations 
in published values of the equilibrium transition pressure and temperature reflect a high degree of 
sensitivity of the transition to non-hydrostatic stresses (Decker & Zhao, 1989). 

(Mg,Fe)SiÖ3 perovskite. Without the appropriate experimental data, what predictions can be made 
in relation to the possible elastic behaviour at a phase transition in natural (Mg,Fe)Si03? Firstly, 
the proximity of a tricritical point to the cubic ^ tetragonal transition in perovskite may be typical, 
allowing a first approximation of the likely evolution of the order parameter. The Prrßm ^ Pbnm 
(cubic ^ orthorhombic) transition in the natural perovskite neighborite (NaMgFa) is also close to 
being tricritical, for example, based on the strain data given by Zhao et al. (1993a and b) (and see 
Carpenter etal., 1998a). Secondly, both the fluoride and oxides perovskites can show anomalous 
softening due to fluctuations in the cubic phase as the transition point is approached. In a 
polycrystalline sample, the bulk modulus would be expected to show a more or less sharp 
discontinuity at the transition point, depending on the strength of coupling between the driving 
order parameter and the volume strain. The shear modulus of such a sample would also show a 
discontinuity if coupling described by the terms with A2 and λ^ as the coupling constants in 
equations 119 and 154 was significant. Natural (Mg,Fe)Si03 perovskite appears to be 
orthorhombic (Pbnm) under most of the relevant range of mantle conditions (Mao et al., 1991; 
Hemley & Cohen, 1992; Stixrude & Cohen, 1993; Funamori & Yagi, 1993; and references 
therein) but a tetragonal ^ orthorhombic transition has been suggested (Wolf & Bukowinski, 
1987; Bukowinski & Wolf, 1988; Wang et al., 1990, 1991; Kapusta & Guillopé, 1993; Warren & 
Ackland, 1996). The equivalent transition, as a function of temperature alone, in CaTiÜ3 certainly 
appears to give rise to a stability field for the tetragonal phase between those of the cubic and 
orthorhombic phases (Redfern, 1996, and references therein). APm3m ^ IA/mcm transition in 
CaSiÜ3 could occur at P, T conditions appropriate for the lower mantle (Stixrude et al., 1996). 
Suitable Landau free-energy expansions could be derived quite simply for any proposed symmetry 
change, allowing at least the form of likely variations in elastic properties associated with the 
transition to be predicted. 

Other systems. Other systems that show improper ferroelastic behaviour and provide useful 
illustrative examples of the ways in which the influence of a phase transition on elastic properties 
can be understood include Pb3(P04)2 and Gd2(Mo04)3. The former is reviewed in Bulou et al. 
(1992) and Salje (1993), and the latter in Fleury & Lyons (1981), Liithi & Rehwald (1981), 
Cummins (1983) and Bulou et al. (1992). One example of improper ferroelastic behaviour among 
minerals is the cubic ^ tetragonal transition in cristobalite, though this is strongly first order in 
character (Hatch & Ghose, 1991; Hatch et al, 1994; Schmahl et al, 1992; Finnie et al, 1994; 
Dove et al., 1997; and references therein). An example of improper ferroelastic behaviour with 
pressure as the external driving force is the R3c ^ Pl\lc transition in calcite, CaC03, (Merrill & 
Bassett, 1975; Hatch & Merrill, 1981; Vo Thanh & Lacam, 1984; Vo Thanh & Diep-The-Hung, 
1985; Biellmann et al., 1993). The elastic constants appear to vary through the transition in a 
manner that conforms closely to the predictions from a standard Landau free-energy expansion 
(Vo Thanh & Diep-The-Hung, 1985). 



Elastic-constant variations due to phase transitions 781 

o 

125 

310 h 

300 

o 
K> 

o ^d 
3 

•** 
< 

lnl
 

3 

2 

1 

0 

-1 

-2 

ΓJTTTT 

— 
- ''^v 

-
-• 

r l i i i i J 

T 1 

ΔC12 

11 11 11 11 

m - p T - m -

• ΔCU 
X ^ β 

x^* 
^ s * 

1 1 1 1 1 1 1 1 1 

T Γ T 

LULi 

1 | 1 1 L 

( c ) | 

J 
] 
J 
] 
-] 

^v 3 
r\ H 

1 1 1 l"Γl 

95 
300 

13 

o 
^ 1 0 
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Fig. 24. Elastic properties of SrTi03 at the cubic ^ 
tetragonal transition in SrTi03 (second order, TC = 105 
K). (a) Data from Migliori et al. (1993) showing the 
pronounced softening of C n and C12 in the cubic 
phase. C44 softens only within -15 K of the transition 
point. Straight lines show the extrapolations used to 
estimate C^ and C°2. (b) Attenuation of a 
longitudinal ultrasonic wave propagating in the [100] 
direction (after Deorani et al., 1990). Note that strong 
attenuation occurs only in a narrow temperature 
interval around Tc. (c) The data of Migliori et al. 
replotted to show a linear variation of ln|ΔC12| and a 
less obviously linear variation of ln|ΔCn| with 
ln|Γ -105|. The linear least squares fits shown yield K 
= -1.41, A = 57.3 GPa for C12 and K = -1.47, A = 
211.1 GPa for Cn . Within -15 K of Γc, the effects of 
defects and, perhaps, critical fluctuations contribute to 
the softening. 

al, 1986; Ramirez et al., 1990). The most recent location of the tricritical point is -35 kbar, -233 
K (Decker & Zhao, 1989). The Aig and T2g elastic constants, (Cπ +2C12) and C44, show little 
softening in single crystals of the cubic phase in anticipation of the equilibrium transition pressure 
at room temperature (Ishidate & Sasaki, 1989). On the other hand, the Eg elastic constant, 
( C n - C 1 2 ) , does soften (Fischer & Polian, 1987; Ishidate & Sasaki, 1989), implying 
ACn&ACi2 m the thermal fluctuation regime. The transition pressure is marked by 
discontinuities in some of the C& variations, but a full set of elastic constants for the tetragonal 
phase is not yet available. A polycrystalline sample, in the form of a hot-pressed pellet, gives a 
discontinuity in the bulk modulus ( \(Cn + 2C12) for the cubic phase), with no softening ahead of 
the transition pressure (Fischer et al., 1993). The shear modulus (-^[(Cn -C 1 2 ) + 3C44] in the 
Voigt approximation for an aggregate of cubic crystals, Hill, 1952) shows a break in slope. These 
anomalies are not entirely consistent with the single-crystal data, however, and Fischer et al 
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Rousseau et al., 1975; Berger et al., 1978). The same transition in RbCaF3 occurs close to a 
tricritical point (Buzaré et al., 1979), for example. 

Fig. 23. Variation of ACik with AT (= T - 185 K) for 
KMnF3, as extracted from data of Cao & Barsch (1988). 
The logarithm of ΔC π is clearly a non-linear function 
of lnΔΓ. Over a range of lnΔΓ, lnΔC12 is 
approximately linear, with a slope of K = -1.37 for the 
line shown here; the intercept yields Λ12 = 12.0 GPa. 
At small AT and small ACih the log values are subject 
to large uncertainties because Tc and Cfk are not known 
precisely. Tc = 185 K has been chosen somewhat 
arbitrarily; TÜ - Tc is at least known to be small. The 

2 3 4 5 expected value of K is —3/2 for a system with 
lnlΔTl softening along one branch of the soft mode. 

SrTiOsperovskite. The same transition in SrTiO3 is second order in character, though with a small 
deviation from ß = 1/2 over a few degrees below Tc (Mtiller & Berlinger, 1971; Franke & 
Hegenbarth, 1974; Sato et al., 1985; Cowley, 1996). The region of C\\ and C\2 softening is 
within -70 K of Γc (Fig. 24a, after Migliori et al., 1993), and again extends well beyond the 
interval of strong acoustic attenuation (Fig. 24b, after Deorani et al., 1990), (see also: Bell & 
Ruprecht, 1963; Rehwald, 1970a and b; LÜthi & Moran, 1970; Fossheim & Berre, 1972; Okai & 
Yoshimoto, 1975; Rehwald, 1977; Fossum & Fossheim, 1985). Both ΔC12 and ΔCn, extracted 
from the data of Migliori et al. (1993), vary in a manner consistent with K = —3/2 , though 
lnΔCπ is less obviously a linear function of lnΔΓ than lnΔC12 (Fig. 24c). C44 softening 
coincides more nearly (though not exactly) with the range of observed attenuation (Fig. 24). 
Measurements of the elastic properties of the tetragonal phase are complicated by the presence of 
transformation twins, but, under a non-hydrostatic stress applied to suppress these twins, C\ \ 
tends towards the variation expected for a second-order improper ferroelastic transition - a simple 
step at T = Tc (Fossheim & Berre, 1972; Rehwald, 1977). Details of the transition behaviour again 
appear to be highly sensitive to the influence of defects (Andrews, 1986; Nelmes et al., 1988; 
McMorrow etal, 1990; Cowley, 1996). 

BaTiOs perovskite. One example of a zone-centre improper ferroelastic transition is the cubic ^ 
tetragonal transition in BaTi03, which occurs by the displacement of the Ti atoms rather than 
rotations of the TiOô octahedra. The symmetry change is Prrßm ^± P4mm, and the active 
representation is Tiu. There are no strains associated with this representation and the lowest-order 
coupling allowed between the symmetry-breaking strain and the driving order parameter is linear 
in strain and quadratic in Q. The Landau free-energy expansion has the same form as for the cubic 
^ tetragonal transition in KMnF3 and SrTiÜ3 because the point symmetry at the R point of the 
Brillouin zone is identical to the point symmetry at the zone centre (Rehwald, 1973). The transition 
is first order as a function of temperature at one atmosphere pressure (Clarke, 1976; Irie et al., 
1987; Kovalevaef α/., 1988; Tomonaga et al, 1990; Darlington etal., 1994), and also first order, 
but close to tricritical, as a function of pressure at room temperature (Samara, 1971; Malinowski et 
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Fig. 22. Attenuation, α, and velocity, v, for a 
longitudinal wave travelling parallel to [100] in 
KMnF3 (after Fossheim et al., 1974, and Fossheim 
& Fossum, 1984). Note that the large anomaly in 
the attenuation at the 186 K transition occurs over a 
very limited temperature interval relative to the 
anomaly in the velocity. 

80 120 160 200 
Γ ( K ) 

As discussed in section 4.4, the influence of dynamical effects on the elastic constants 
above Tc is not included in a simple Landau expansion, but can be described using a power law of 
the form given as equation 97 (for elastic constants associated with the identity representation). In 
KM11F3 there is marked softening along the whole branch between the R (γ'-j>^) and M (^»γ>0) 
points of the Brillouin zone (Minkiewicz et ai, 1970; Shirane et al.9 1970; Shapiro et al., 1972; 
Gesi et al., 1972;-Hidaka et al., 1986; Nicholls & Cowley, 1987). According to the arguments 
presented in the appendix, this might correspond to the situation illustrated as (b) in Fig. A.l, for 
which K = -3/2 is predicted. The results of Cao & Barsch (1988) have been used to estimate Cft 
and Cf2 as linear functions of ÜΓ, extrapolated from the highest-temperature data points. ΔC12 

varies in a manner consistent with K = -1.4 for a value of Tc assumed to be 185 K, but a single 
value of K does not describe the variation of ΔCn (Fig. 23). A large deviation from the expected 
symmetry relation ΔCn =ΔC12 is due to the effects of thermal expansion contributing to Cn 

(Appendix A.l). Off-diagonal terms in the elastic-constant matrix are not expected to be modified 
in the same way and the observed ΔC12 variation represents good agreement between experiment 
and theory. 

The overall picture that emerges for the cubic ^± tetragonal transition in KM11F3 is of 
improper ferroelastic properties and tricritical thermodynamic character. The transition is 
accompanied by elastic softening over a wide temperature interval as T -> TtT from above, in a 
manner not predicted by the Landau free-energy expansion. The influence of defects and any 
critical fluctuations appears to be restricted to a small temperature range near Γtr, and the rest of the 
softening in the cubic phase can be accounted for by thermal fluctuations. This pattern of elastic-
constant variations and ultrasonic attenuation is repeated in other fluoride perovskites (e.g. 
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tetragonal phase are sparse and of uncertain quality due to the problem of accounting for the 
influence of domain boundaries (Holt & Fossheim, 1981), but they are broadly consistent with the 
predicted variations. C\\ shows a marked curvature as TtT is approached from below, comparable 
with the predicted form for an average of the C\\, C22 and C33 variations shown in Fig. 20. C44 

shows a step at Ttr but little obvious curvature in the stability field of the tetragonal phase, again 
with the expected general form. Cγi shows a curvature in the tetragonal field which is similar in 
form to the average of predicted variations for C12, Cu and Cx$. In the cubic stability field, all 
three elastic constants show a marked curvature as TtT is approached over a temperature interval of 
-50 - 100 K for Cn and C12, and over an interval of -10 - 20 K for C44. This anomaly is not 
predicted by the normal static Landau expansions and has been attributed to the influence of 
fluctuations of the order parameter (Pytte, 1971; Rehwald, 1971; Cao & Barsch, 1988). Strong 
attenuation of ultrasonic waves has been observed within -5 - 10 K of ΓtΓ (Fig. 22, from 
Fossheim et al., 1974; Reshchikova et al, 1970; Fossheim & Holt, 1980; Holt & Fossheim, 
1981; Fossheim & Fossum, 1984), suggesting an outer limit on the temperature interval of any 
critical fluctuations. Details of the structural evolution in this narrow temperature range also appear 
to be sensitive to the influence of defects (e.g. Stokka & Fossheim, 1982; Nicholls & Cowley, 
1987; Cox et al., 1988; Cox & Cussen, 1989; Scott, 1989a and b; Gibaud et al., 1989, 1991). 
Such defects and any critical fluctuations could account for the weakly first-order character of the 
transition, a small difference between Γtr and Tc, and the steep variation in C44 close to Γtr, but do 
not account for the much broader elastic anomalies in C\\ and C\i. 

Fig. 21. Summary of elastic-constant data for 
KMnF3 in the vicinity of the cubic ^ 
tetragonal transition (from Aleksandrov et al, 
1966; Reshchikova et al, 1970; Melcher & 
Plovnik, 1971; Cao & Barsch, 1988). 
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Table 14. Predicted variations for elastic constants of a material subject to a phase transition involving the 
symmetry change Pm3m ^ lAlmcm when the transition is tricritical in character. 

Improper ferroelastic transition 
Pm3m phase 

41 = <?2 = 43 = ° 

Qi -C22 -C33 - Q i 

Q 2 - C13 - C23 - Q 2 

Q l ~ C l 2 - £ l l _ C 1 2 

Cl 1 "̂" ^^12 — 11 ~̂~ 12 

: Q 5 - Q< : C44. 

lAlmcm phase, ea = 0 
Λ 4 ΓΛ(ΓC-ΓV 

Λ = 3[(fc + fe') + 2(c + c")?3] 

: Q2 - Cfl - 4λ? 

C33 ~ Cl°l ~ 

-12 - *-12 " 

I A J 
44 

Q 3 ~ Q 3 - Q 2 + 
0Λ0 

CU~C12 ~CU~C12 

Cn-Cl2=\{Cn + Cl2+2C33-4Cn) 

= ±(C33+2< 
= Cfi+2Cf2 

Cu + 2C12 = ±(C33 +2CU +2C12+4C13) 

C44 — C^s ~" ^ΛΛ ~ -55 • 3(3b + b')-4c"ql 
C6β = C44 

c. ik 

^11"~^22 '11 

Fig. 20. Schematic variation of the elastic constants 
at a tricritical transition involving the symmetry 
change Pm3m ^ Wmcmy based on the expressions 
given in Table 14. (The normal weak temperature 
dependence of the bare elastic constants has been 
ignored). 

Experimental data for the elastic constants of KMnF3 are shown in Fig. 21 (Aleksandrov et 
aU 1966; Reshchikova etaU 1970; Melcher & Plovnik, 1971; Cao & Barsch, 1988). Data for the 
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carried out with externally applied non-hydrostatic pressure confirm the proximity to a tricritical 
point (Stokka et aL, 1981; Stokka & Fossheim, 1982). The same transition can be induced by the 
application of hydrostatic pressure at room temperature, when it displays second-order character 
(ksbnnketal, 1993). 

The order parameter for the transition is three-dimensional and the relevant Landau free-
energy expansion has the form given in equation 119. In order to describe a transition which is 
close to being tricritical it is necessary to extend the expansion to sixth-order terms (as given in 
Appendix Table lb of Salje, 1993). The full equation then becomes (after Slonczewski & Thomas, 
1970; Rehwald, 1973; Ridou et aU 1980; Liithi & Rehwald, 1981; Fleury & Lyons, 1981; Cao & 
Barsch, 1990; Bulou etal, 1992): 

+-c(qf +ql+ qVf + ~c'{<ll<l2<l3 f + g c\q\ +q%+ q%)(qf + q$ + q$) 

+Va(ft2 + ê + 43 ) + λ2[V3*0(ft2 -ql) + ex{^q\ - q\ - ^ ) ] 

+ IC^(4+4+e6
2) (154). 

Variations of the elastic constants can be predicted from this free-energy expansion in the usual 
way. The simplification that the volume strain is treated as being negligible (λ\ = 0) has been 
incorporated because the algebra becomes overly cumbersome otherwise. 

Under equilibrium conditions, q\ = q2 = e0 = 0 and et Ψ 0, qy* 0 at T < Tc. It can easily be 
shown that the coupling between et and qf terms leads to a renormaiisation of the fourth-order 
coefficient such that: 

b* = b + b'- o
U \ (155) 

\Cn -CnJ 

which is zero for tricritical behaviour. The susceptibility with respect to q$ is given by: 

( 0 1 =[2(b + b') + 4(c + c")q$γl (156) 

and expressions for the individual elastic constants are listed in Table 14. A schematic 
representation of the temperature dependence of these parameters is shown in Fig. 20. Note that 
the lowest-order coupling term which can influence the evolution of Cββ is not given in Equation 
154 but would be λAe\(fc. This gives C66 = C44 + 2λ4q% as a possible dependence on q. 



Elastic-constant variations due to phase transitions 775 

The data of Gibaud et al. (1991) have been used here to calculate symmetry-breaking 

t = -j= (2e3 - eλ - e2) and non-symmetry-breaking \ea = -j= (eλ + e2 + e$) strains, using 

reference values of a0 extrapolated from the cubic phase at high temperatures. As already 
mentioned, ea for the transition is small, but the variation of e\ with T shows little scatter and is 
remarkably close to being linear (Fig. 19a). e\ extrapolates to zero at 187.7 K, which is barely 
distinguishable from the transition temperature of 186.5 K given by Gibaud et ah This suggests 
transition behaviour which is very close to tricritical (ß = 0.25, e\ <× Q4 <× Γ). A non-linearity 
between the symmetry-breaking and non-symmetry-breaking strains (Fig. 19b) could be 
accounted for by a higher-order coupling term, £ tß4 , becoming influential at large values of et. 
This would in turn account for the deviation from a linear variation of e\ with temperature (Fig. 
19c). Γn any case, the transition at one atmosphere is evidently close to being tricritical in character 
(Sakashita eta/., 1981, 1990; Nicholls & Cowley, 1987). 

600x10 LV 

500 

400 

300 

200 

100 

0 

^1 1 1 1 ! 1 r 1 ] 

— • > ^ 

>v 

^ 

1 1 1 1 1 1 1 1 

" ^ | 1 1 1 |'T -H 

(a)J 
-J 

k 4 
>v 4 

>L 4 

 J 
100 120 140 160 

Γ(K) 
180 

-800x10° H 

-600 f-i 

-400 

-200 h! 

30x10 

140 160 
Γ(K) 

Fig. 19. Spontaneous strain variations at the Pm3m ^ 
Wmcm transition in KMnF3, as calculated from lattice-
parameter data of Gibaud et al. (1991) for a sample with 
Γtr = 186.5 K. (a) The square of the non-symmetry-
breaking strain (ea

2 <× g4) varies linearly with temperature 
and extrapolates to zero at 187.7 K. This is consistent 
with the transition being close to tricritical in character, 
(b) If both ea and et coupled only with ß 2 they should 
vary linearly with each other. That they do not might 
imply the existence of a significant higher-order coupling 
term, such as etQ4. (c) The square of the symmetry-
breaking strain (et

2 <× g*) is linear in T for {Txt-T)< 40 
K, as also found by Nicholls & Cowley (1987), but 
deviates at lower T. The deviation can be accounted for by 
a higher-order strain/order parameter coupling term and 
need not necessarily imply a value of ß significantly 
different from -0.25. The straight line shown gives et

2 —> 
0 at 188.9 K. 

Data of Aleksandrov & Flerov (1978), Stokka et al (1981) and Stokka & Fossheim 
(1982) for the excess specific heat of KMnF3 over an interval of (TtT-T) up to ~7 K are 

consistent with ΔCp «= (Γc - Γ)~ , with a = 1/2, as expected for a tricritical transition. Only in 
the range (Γtr - T) < -0.3 K do the data appear to deviate from this relationship. Measurements 
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7.3 Improper ferroelastic behaviour 

In a geological context, perhaps the material for which elastic properties have provoked the most 
interest is perovskite. The lower mantle is believed to consist predominantly of perovskite with 
composition ~(Mg,Fe)Si03, and there has been a debate as to whether it undergoes a phase 
transition from an orthorhombic form to some higher-symmetry form with increasing depth 
(Navrotsky & Weidner, 1989; Mao et al, 1991; Wang et al, 1990, 1991,1992; Hernley & Cohen, 
1992; Stixrude & Cohen, 1993; Funamori & Yagi, 1993; Kapusta & Guillopé, 1993; Warren & 
Ackland, 1996; and references therein). If such a transition occurs, it could give rise to an anomaly 
in the bulk elastic constants of the lower mantle (Bukowinski & Wolf, 1988; Yeganeh-Haeri et al, 
1989a and b), perhaps over a rather narrow depth interval. This issue is discussed also by 
Stixrude et al. (1996) for CaSi03. Data for the natural material are sparse but the likely form of 
elastic-constant variations can be anticipated with some confidence from studies of synthetic 
analogues. 

KMnFs perovskite. Structural phase transitions in perovskites are frequently improper ferroelastic 
in character. The order parameter is associated with a special point on the Brillouin zone boundary 
and couples with symmetry-breaking strains as eQ2. A useful illustrative example for which 
extensive experimental data are available is the Pm3m ^=± IAImcm (cubic ^ tetragonal) transition in 
KMnFß. The transition mechanism involves a soft mode at the R point (y '^ '^ ) of the Brillouin 
zone (Minkiewicz et al, 1970; Shirane et al, 1970; Shapiro et al, 1972; Gesi et al, 1972). A 
small discontinuity has been observed in properties such as birefringence, spontaneous strain and 
superlattice reflection intensities at the equilibrium transition temperature (ΓtΓ) of -186 K (one 
atmosphere pressure), and the transition has therefore been referred to as being weakly first order 
(e.g. see Furukawa et al, 1970; Shirane et al, 1970; Gesi et al, 1972; Hirotsu & Sawada, 1973; 
Benard & Walker, 1976; Kleeman et al, 1979). 

Values of the critical exponents for the transition are controversial, largely because of 
problems associated with making measurements on finely twinned crystals in the tetragonal 
stability field. The proportions of different twin components vary with temperature (Tietze et al, 
1983), and, as a consequence, measurements of superlattice reflection intensities are an unreliable 
quantitative measure of the order-parameter behaviour (Nicholls & Cowley, 1987; Cox, 1989). 
Birefringence measurements have also produced inconsistent results (Aleksandrov & 
Reshchikova, 1970; Hirotsu & Sawada, 1973; Benard & Walker, 1976; Kleeman et al, 1979). 
The spontaneous strain and excess heat capacity should be influenced by the twinning to a much 
lesser extent and indeed reveal a more self-consistent pattern. The volume strain is sufficiently 
small that the symmetry-breaking strain can be expressed as [(c - a)/a], rather than as its correct 
form [(c - α0)/αo]> without introducing significant error. Values of ß = 0.26 ± 0.02 (Nicholls & 
Cowley, 1987; Cox, 1989) and ß = 0.316 ± 0.005 (Gibaud et al, 1991) have been obtained from 
data collected over temperature intervals, (Γ tΓ-Γ) , of -40 and 90 K respectively, using the 

relationship [(c - a)/a] °C(TC-T) . The temperature at which [(c - a)/a] extrapolates to zero is 
greater than ΓtΓ, the actual transition temperature, by only a few degrees at most. (For observations 
in the vicinity of ΓtΓ, see also Ratuszna et al, 1979; Sakashita et al, 1981, 1990; Sakashita & 
Ohama, 1982). 
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Minerals. Comparable studies of ferroelastic transitions in minerals have not yet been undertaken, 
but there are some possible candidates for pseudo-proper behaviour. The cubic ^ tetragonal 
transition in leucite discussed in the previous section might belong to this category. Similarly, the 
hexagonal ;= orthorhombic (P6222 ^ C222\) transition in tridymite, SiÜ2, is in principle a 
proper ferroelastic transition, but several other structural changes occur over a temperature interval 
of -200 - 300 K (references to recent work include Wennemer & Thompson, 1984a and b; Kihara 
etal, 1986a and b; Smelik & Reeber, 1990; Graetsch & Florke, 1991; de Dombal & Carpenter, 
1993; Xiao etal, 1993, 1994, 1995; Cellai etal, 1994; Xiao & Kirkpatrick, 1995; Kitchin et al, 
1996). Coupling between several lattice modes almost certainly occurs. Variations in the elastic 
constants would probably be diagnostic of the underlying driving mechanisms in these phases. 
The tetragonal ^ monoclinic (PAInnc ^ Flln ?) transition in vesuvianite described by Groat et al 
(1995) has tentatively been placed in this category on the basis of its change in space group and its 
very small spontaneous strain, but rather little is known about the underlying mechanism. 

In addition to the standard determination of the temperature dependence of the symmetry-
breaking strain and the corresponding symmetry-adapted elastic constant, key features to be 
examined in detail are the exact relationships between the strain and the proposed order parameter, 
and the behaviour of all the other elastic constants. For real materials with an order parameter 
different from the strain but bilinearly coupled to it, we should expect conformity to a Landau free-
energy expansion of the form: 

G = -C'e2+-C"e4+ ... + λxQe + λ2Q3e + ... + - A ß 2 + - 5 ß 4 + ... (153) 

where C and C" are second- and fourth-order elastic constants; e is the symmetry-breaking strain 
and the non-symmetry-breaking strain has been ignored. For LaPsO^ and BiV04, it is believed 
that the soft optic mode drives the transition, implying that the A coefficient is temperature 
dependent. The elastic-constant softening then occurs purely as a consequence of the coupling 
between ß and e such that C" is the bare elastic constant and is not by itself strongly temperature 
dependent. The fourth-order term in e and the high-order coupling terms can be neglected. If, on 
the other hand, the driving order parameter was e, it would be the temperature dependence of C 
(and the higher-order terms in é) which would account for the transition. The A coefficient would 
not be expected to be temperature dependent and the ß 4 term could be neglected. In this case the 
optic-mode softening would be a consequence only of the bilinear coupling with e. The third 
possibility is that the coupling coefficient, λ\, is the temperature-dependent property giving rise to 
the transition, though this at present appears to be only a theoretical possibility and has not been 
considered in the case of real materials. Between these three extremes are cases where both C\ and 
A (and λ\) might have an explicit temperature dependence, implying that both soft acoustic and 
soft optic modes contribute to the driving mechanism for the transition. In each case, the 
relationship between e and ß and the variations of elastic constants can be predicted using the 
manipulations discussed in detail in the body of this review. Comparison of the real behaviour of a 
pseudo-proper ferroelastic material with the predicted variations should then indicate whether 
details of an initial model are in fact physically correct. Such details might be of less importance 
relative to, say, predicting the grosser characteristics of the elastic-constant behaviour at some 
phase transition in a geological material for which little or no data were available, however. 
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K2Cd2(S04)3. Another instructive transition is the first-order P2\3 ^ P2\2\2\ transition in 
langbeinite, K2Cd2(S04)3 (Abrahams etal, 1978; Lissalde etai, 1979; Devarajan & Salje, 1984, 
1986; Percival et al., 1989; Percival & Salje, 1989; Percival, 1990; Hatch et al, 1990b; 
Kaminsky, 1996; Guelylah et al., 1996). The evolution of the symmetry-breaking strains is at 
least consistent with linear coupling of e0 and et with a two-component order parameter (Carpenter 
et al, 1998a), and the symmetry-adapted elastic constant (Cn - C12) of the cubic phase shows the 
characteristic curvature of a pseudo-proper ferroelastic transition (Fig. 18, after Antonenko et al, 
1983). Antonenko et al. (1983) extracted a value of (Γc - T c ] = 16 K from their data, using an 

equation of the form of equation 31 (replacing C55 by (Cn -C 1 2 ) and C55 by (eft -Cj^)), 
suggesting relatively weak strain/order-parameter coupling. A soft optic mode has not yet been 
found (Moiseenko et al, 1983; Devarajan & Salje, 1986). Speer & Salje (1986) and Devarajan & 
Salje (1986) suggested that the transition is triggered by a local distortion of the CdOô octahedra. 
This is supported by optical spectroscopy data, though in detail the nature of the distortion may be 
slightly different from that originally envisaged (Percival & Salje, 1989; Hatch et al, 1990b). 
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A straightforward measure of the strength of coupling between soft optic and soft acoustic 
modes, the magnitude of the coefficient λ$ in equation 127, is given by the difference between Tc 

and the renormalised transition temperature Tc . Tc is the temperature at which the transition 
would occur in the absence of coupling of Q to the strain, and is given by the linear extrapolation 
of ω2 to zero in Fig. 15 (where ω is the frequency of the soft optic mode in the orthorhombic 
phase). Tc is the observed transition temperature and the difference, \TC -Tc\, is proportional to 

λ\ (equation 16). For LaPsO^ the observed value of (Γc -ΓCJ is 161 ± 11 K (Errandonea, 

1980; Errandonea & Savary, 1981) and the value calculated by Errandonea is 170 K, implying 
strong bilinear coupling. Errandonea was also able to derive the observed pressure dependence of 
the transition temperature from the Landau expansion and the numerical values of the coefficients. 

Other examples of pseudo-proper ferroelastic behaviour are reviewed by Rehwald (1973), 
LÜthi & Rehwald (1981), Cummins (1983), Tolédanp et al. (1983) and Bulou et al. (1992). An 
interesting comparison can be made between B1VO4 and LaNb04, for example. Both materials 
have the same structure and undergo a transition which involves the symmetry change I4\/a ^ 
121a. However, there is a soft optic mode in BiVÜ4 which is believed to drive the transition and to 

which the strain is linearly coupled. The value of IΓC -Γ c l is -163 K (Pinczuk et al., 1979) 

indicating that the coupling is quite strong (Pinczuk et al., 1971, 1979; David, 1983a; Tokumoto 
& Unoki, 1983). In LaNb04 no equivalent soft mode is observed and the transition appears to 
have strain as the driving order parameter (Wada et al., 1979; Hara et al., 1989). The soft acoustic 
modes in each case clearly display this difference in mechanism. In LaNbÜ4, the square of the 
frequency of the soft acoustic mode goes linearly to zero as T —> Tc, while in B1VO4 the same 
acoustic mode shows a marked curvature (Fig. 17, after Ishibashi et al, 1988; and see Benyuan et 
al, 1981; Tokumoto & Unoki, 1983). 

Fig. 17. Variation of the square of the Brillouin 
frequency shift of the soft acoustic mode 
[°c(Cn-C12)] in B1VO4 and LaNb04 (after 
Ishibashi et al., 1988), with respect to the 
transition temperature T0 (= Tc for LaNb04; = Tc 
for BiV04). The linear variations for LaNb04 ate 
characteristic of proper ferroelastic behaviour. The 
distinctly non-linear variations for BiV04 are 
characteristic of pseudo-proper ferroelastic 
behaviour. 
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constant (C55) shows the distinctly non-linear approach to zero characteristic of a pseudo-proper 
transition. The ratio of slopes in the vicinity of the transition point is 2.9:1 instead of 2:1 due to the 
renormalisation of the fourth-order coefficient by non-symmetry-breaking strains. Errandonea 
(1980) determined values for all the Landau coefficients and then calculated values of C# from the 
free-energy expansion. These calculated values match the observed values closely, suggesting that 
the mechanism proposed for the transition is broadly correct. Not every detail is reproduced by the 
chosen Landau expansion, however. For example, C44 shows an anomaly which is not predicted. 
As suggested by Errandonea, this deviation could arise by coupling of e$ with the B3g optic mode 
which softens in a manner that could be unrelated to the mmm ^ 21m transition. Similarly, 
deviations from e\ <× T observed at low temperatures can be explained by the contribution of 
higher-order terms in Q (Fousek et aL, 1979; Errandonea, 1980) or by the contribution of a 
higher-order strain/order parameter coupling term. The detailed variations of strains and elastic 
constants again expose subtelties of the transition mechanism specific to the material. 

Fig. 16. Variations with temperature of the complete set 
of elastic constants for LaP5014 at the mmm ^ 2lm 
transition (after Errandonea, 1980). Solid curves are 
solutions of the form listed in Table 11, from equation 
127, for a pseudo-proper ferroelastic transition with 
values determined for all the coefficients. Only C44 
deviates substantially from its calculated trend. C46 
remains zero in the monoclinic phase for structural 
rather than symmetry reasons (λη ~ 0 in equation 127). 
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phase. The square of the symmetry-breaking strain (e5) varies approximately linearly with 
temperature as T—> Γc, indicating a classical second-order transition (Errandonea & Bastie, 1978; 
Errandonea, 1980). Small deviations from linearity can be accounted for by the addition of a sixth-
order term in the Landau expansion (Errandonea, 1980). 

Fig. 14. Two orthogonal acoustic modes, qλ, uλ and 
q2, w2, parallel to the crystallographic x- and z-axes 
generate a monoclinic distortion (solid lines) from an 
orthorhombic unit cell (dotted lines), as shown 
schematically here. 

>*,<Ti 

Raman spectroscopic studies have shown that two zone-centre optic modes also soften as 
the orthorhombic ^ monoclinic transition is approached (Fig. 15, after Errandonea & Sapriel, 
1979; Errandonea & Savary, 1981; Chen & Scott, 1989). The softer of the two has B2 g symmetry 
and is regarded as providing the driving mechanism for the transition (Errandonea, 1980). 
Significant non-symmetry-breaking strains have also been observed (Errandonea, 1980), and the 
appropriate form of Landau expansion to describe the transition is thus the same as equation 127. 
The expected form of elastic-constant variations is that illustrated in Fig. 10 for a pseudo-proper 
transition with ens\> ^ 0. 
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All the elastic constants and their variation with temperature through the transition have 
been measured by Brillouin spectroscopy (Fig. 16, after Errandonea, 1980). The soft elastic 
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There is an analogous transition in the (Ca,Sr,Ba)Al2Si208 system where crystals develop 
high degrees of Al/Si order under equilibrium conditions and the symmetry change is 121 c ^ / I 
(Nager et al, 1970; Bambauer & Nager, 1981; Tribaudino et al, 1993; McGuinn & Redfern, 
1994a and b, 1997; Redfern et al, 1997). These materials have not been investigated in as much 
detail, but the transition mechanism would be expected to be rather similar, and should be 
amenable to the same analysis. 

The mineral leucite (KAlSi206) undergoes a cubic ^ tetragonal transition at -938 K 
followed by a tetragonal ;=± tetragonal transition at -918 K (Peacor, 1968; Sadanaga & Ozawa, 
1968; Grogel et al, 1984; Lange et al, 1986; RÜscher et al, 1987; Palmer et al, 1988, 1989, 
1990, 1997; Palmer, 1990a; Palmer & Salje, 1990; Heaney & Veblen, 1990; Hatch et al, 1990a; 
Boysen, 1990; Ito etal, 1991). Both transitions are associated with the Brillouin zone centre and 
the sequence of changes in point group is m3m -» 4/mmm —» Aim. The high-temperature 
transition is ferroelastic, but the transition mechanism is not yet understood. Although no zone-
centre soft optic mode with the symmetry of the active representation (Eg) has yet been observed 
(Palmer et al, 1990), there appear to be changes in structure involving the K+ ions which 
influence the transition (Palmer & Salje, 1990; Boysen, 1990), and which might imply a pseudo-
proper mechanism. On the other hand, analysis of possible rigid unit modes (those involving only 
relative motions of rigid SiÜ4 and AIO4 tetrahedra) suggests that an appropriate soft acoustic mode 
does exist to provide the driving mechanism (M.T.Dove, pers. comm.). Observations of the 
temperature dependence of (Qj -C 1 2 ) would resolve this question. Interestingly, the transition 
appears to be not far from second order in character (Palmer et al, 1989, 1990; Palmer, 1990b), 
implying that energy contributions from odd-order terms in the driving order parameter are small. 
The elastic behaviour might therefore have the general form illustrated in Fig. 4, though with 
additional superimposed anomalies from the second transition at -918 K. 

7.2 Pseudo-proper ferroelastic behaviour 

A more common circumstance among ferroelastic materials is that the symmetry-breaking strain is 
not the driving order parameter for the phase transition. Changes in some other physical property 
may be responsible for the transition and the symmetry-breaking strain arises only as a 
consequence of linear coupling to it. Softening of a zone-centre optic mode might be implicated, 
for example, as in BiV04 (Pinczuk et al, 1979) and LaPsO^ (Errandonea & Sapriel, 1979). 

L0P5O14. The most thoroughly characterised transition showing the effects of pseudo-proper 
behaviour on a complete set of elastic constants is the Pncm ^ P2\lc (mmm ^ 2/m) transition in 
LaP50i4 at -398 K (Tolédano et al, 1976; Errandonea & Bastie, 1978; Errandonea & Sapriel, 
1979; Fouseketal, 1979; Errandonea, 1980; Errandonea & Savary, 1981; Chen & Scott, 1989; 
Cai et al, 1990; Scott & Chen, 1991; and see reviews by: Tolédano et al, 1983; Bulou et al, 
1992). It serves as a perfect model for minerals. The soft acoustic mode has B2g symmetry and its 
velocity in the orthorhombic phase is given by pv2 = C55, which should tend to zero at the elastic 
stability limit (Errandonea, 1980). The transition can be described in terms of the softening of two 
mutually perpendicular transverse acoustic waves with direction and amplitude vectors along the 
crystallographic x- and z-axes of the orthorhombic phase (Fig. 14). Transformation twins in the 
monoclinic phase will lie perpendicular to the [001] and [100] directions of the orthorhombic 
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using substitutions from equations 142 and 143, and by incorporating the equilibrium variation of 
e\ given below in equation 151. This shows that C44 does not go to zero at T = Tc but reaches a 

minimum value, (C%61 /C^6, and then recovers in the triclinic stability field. 
There are sufficient experimental data available to estimate values for all the coefficients in 

equation 138, and hence predict numerical values for C44 and C^. The data for e^ (« -cosα ) and 
eβ (« cos>) give (from Carpenter et aL, 1998a): 

e6 = 0.0251e4 + 7.78e| (150). 

Best estimates for C%6 and C$6 in monoclinic albite are provided by the ultrasonic data of 
Hausstihl (1993) for sanidine, -0.8 and 39.3 GPa respectively. These give the first coefficient in 
equation 140 as - C ^ / C ^ =0.020, which is in reasonable agreement with the equivalent 
coefficient in equation 150. Treating the other coefficients of equations 140 and 150 as also being 
equivalent gives λ = -39.3 x 7.78 = -306 GPa (= -306 x 105 J.mole"1, using a molar volume of 
100.1 cm3 for NaAlSi30g). The sixth-order term in equation 141 turns out to be small and the 
renormalised equilibrium temperature dependence of e$ becomes: 

e4
2=4(rc*-r) (151). 

b v ' 

Taking the estimate of a = 5.48 J.mole^.K1 from Salje et aL (1985b) gives b = 6801 J.mole"1 

for Tc = 1241 K (using the transition temperature from Fig. 9a of Carpenter et aL, 1998a). 
Rescaling the coefficients so as to replace Q by e$ gives a = 835 J.mole^.K-1 and b = 1.58 x 108 

J.mole-1 (using -e$ ~ cosα* = 0.081ß from Carpenter et aL, 1998a). Equations 142 and 143 then 
give 2.0 K and (fc* -fcj = -2 x 106 J.mole-1. Thus, also to a good approximation, 

equation 149 reduces to: 

= ^—^ + 2α( r c -Γ ) ( a tΓ<Γ c ) -44 = w) ~r^u\1c"1) v * n ^ i c ; (152). 

Finally, variations of C44, C46 and Cββ due to the Cl/m ^ C\ transition may be calculated 
using the estimated coefficients and the data of Hausstihl (1993) for C^ and C£6. These are 
shown in Fig. 13b, ignoring the normal weak temperature dependence of the bare elastic 
constants. According to this model, the transition occurs because C44 softens almost to zero. The 
softening is a linear function of temperature in the stability fields of both polymorphs, but the 
transition point is at Tc , when C44 = 0.016 GPa, rather than 2 K lower, when it would 

extrapolate (from T > Tc ) to zero. The ratio of slopes for C44 below and above Tc should be 
close to 2:1. The strain component eβ remains small and is a distinctly non-linear function of e\ 
because, in both monoclinic and triclinic feldspars, C46 is already close to zero (Ryzhova, 1964; 
Ryzhova & Alexandrov, 1965; HaussÜhl, 1993). 
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Substituting for eβ in equation 138 then gives: 

2 V " / - 4 " 2C& G.UT-i!)t+p4*4 (141) 

where: 

* (Qô) 

a cl 
(142) 

66 
(143). 

The elastic constants C44, C46 and CÔÔ may be derived from equation 138 in the usual way: 

Qβ ~ 

C44-

32G 
8e6

2 

d2G 

= CS 66 

= α(Γ-Γc) + 36-

(144) 

6ΛC4°612 6λ2 4 

Q Ô -
d2G 

de4de6 

66 a 
eA 

= C^+3λel (145) 

(146). 
-66 

Thus Cββ is not expected to be influenced by the transition, C^ should show a linear deviation 
from çjg for e | oe IΓC - T\, and C44 behaves almost as the critical elastic constant for a classical 

proper ferroelastic transition, with C44 = a(T-Tc) at T> Tc . At the transition point T = Tc and 
e4 = 0, giving: 

. =β( r * - r c ) 

_W2 

^66 
(147) 

or: 

Q4^66 -\^46J (148) 

in accordance with the predicted elastic stability limit (equation 135). (Note that the elastic 
constants must in reality behave as \CUC^ - Cl6) -» 0 with T -» Tc, but in this model Cββ is 

* taken to be effectively constant and equal to C^). For T < Tc , equation 146 can be reformulated 
as: 

-44 -M\: 
66 

b- λCλt 46 
c66 J 

2 6Å 4 
e 4 - - β 4 (149) 

-66 
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Fig. 13. Proper ferroelastic behaviour at the Cllm ^ Cl transition in albite with no long-range Al/Si order, (a) 
Schematic illustration of the relationship between soft acoustic mode propagation directions (qA, qT) and 
displacement directions (wA, MP), twin-plane orientations (A = albite, P = pericline), and crystallographic axes (JC, y, 
z\ c is a reciprocal lattice direction) for the triclinic phase. X, Y and Z are the Cartesian reference axes, (b) 
Calculated variation of the elastic constants C44, C66, C46 (ignoring their normal background temperature 
dependence) through the transition point. The calculated value of C44 at T = Γc is 0.016 GPa, assuming that C£6 

and C46 are constant. 

the most significant for e^ « e4. For a second-order transition, a suitable expansion therefore has 
the form,: 

G = i f l (Γ - 7 c ) 4 + ^ 4 + A^6+^-C6V6+^4e6 (138). 

The non-symmetry-breaking strains, e\9 ^2, ^3, £5, which would couple as e;e4, are a factor of at 
least ~5 smaller than e4 (Harrison & Salje, 1994). For the present, and in the absence of any 
suitable experimental data, the associated elastic constants, Cft, C%i* C\2> etc> ^ a v e n o t ^ ) e e n 

considered further. 
Under equilibrium conditions, a crystal must be stress free, giving: 

3G = o = ^ + c6v6 + c4V4 (139) 

and, hence: 

=-7^re4- λ 3 
u66 

(140). 



764 M.A. Carpenter, E.K.H. Salje 

in a monoclinic crystal, but is less constrained in a triclinic crystal. A straightforward method for 
determining the orientation relationships is to first identify the composition planes of the 
transformation twins that arise as a consequence of the transition, since the amplitude and direction 
vectors of the soft mode must lie within them (see section 4.2). With respect to a right-handed 
Cartesian coordinate system having X parallel to the crystallographic x-axis, Z parallel to c , and 
Y perpendicular to X and Z, the spontaneous strain for one twin is given by (0 0 0 2^23 0 2en) 
and for the second by (0 0 0 -2^23 0 -2^12). The twin composition plane is a plane within which 
the two twins have identical strain. From the description of the strain representation surfaces, this 
implies (Sapriel, 1975; Wadhawan, 1982): 

Σ[(°>°> 0,2e23,0,2e12) -(0,0,0, -2é?23, 09-2el2)\cixk=0 (136) 

where JC,- and Xk (i, k = 1 - 3) are coordinates of the reference system (Salje, 1985, 1993). This 
yields: 

£23*2*3 + e 12*1*2 = 0 (137) 

and, hence, x2 = 0 for the albite twin composition plane or xx = -(^23/en)x3 - ~{e4le(>)x?> f°r the 
pericline twin plane (assuming only small volume changes accompanying the transition), (Salje, 
1993). The soft-mode propagation directions lie within these planes and are perpendicular to their 
intersection. In terms of the Cartesian reference system, the line of intersection of the two planes is 
parallel to [1 0 — - ] ; the orientation relationships are illustrated in Fig. 13a. The pericline twin 

e4 

plane is also the rhombic section and the angle between the crystallographic x-axis and its 
intersection with (010) is usually specified as a (Smith & Brown, 1988). It is found 
experimentally that e4 and e$ do not vary linearly with each other (Carpenter et aL, 1998a), 
implying that the pericline twin plane orientation in albite changes with temperature. Close to the 
monoclinic ^ triclinic transition <7« 2°, and at room temperature a « 4°, from tan a = eβ/e4 and 
using the cosα*, cosy data of Kroll et al. (1980) and A. Graeme-Barber (unpublished) to 
calculate e4 and e^. In monoclinic crystals the soft acoustic mode has direction and amplitude 
vectors oriented along the crystallographic y and c* directions (a= 0). 

There is no experimental evidence for the softening of an optic mode with Bg symmetry 
(Raman active) at the centre of the Brillouin zone and the frequencies of the hard modes show litde 
temperature dependence (Salje, 1986). Thus the driving mechanism for the transition could indeed 
be due to the acoustic-mode softening alone, with the symmetry-breaking strain as the driving 
order parameter. The excess free energy for the transition should be an expansion in both e4 and e§ 
since both these strains have the symmetry of the active representation. However, eβ is found to be 
small relative to e4, and, as a simplification, the latter can be treated as the driving order parameter. 
Variations in eβ are then accounted for by coupling with e4 (in a manner that is analogous to the 
treatment by Wada et al., 1979, of the proper ferroelastic transition in LaNbO.*). The bilinear 
coupling term in e4e^ has C^ as the coupling coeficient, but this, on its own, would give a linear 
relationship between e4 and e$. The observed non-linear relationship requires higher-order 
coupling and the next terms with correct symmetry are e4e6, e4e%, e4e\. Of these the first may be 
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order coupling term, λ'Ae\ + e\ jUei - e2)/V21 , in equation 122 (see also Tolédano et al., 1983) 
gives: 

0 4 = 0 , + 2 A 4 [ ^ . j + 2 λ j ( ^ - J (132) 

C55 = C°H - 2 A 4 ( ^ ) + 2 Λ i ( ^ " ) 2 ( 1 3 3 ) 

as the approximate form of the expected variations. Assuming equal volume proportions of the 
two twin components, an average value would be: 

-44 ± ^ . ^ + 2Xi{^fl <134) 

again giving a linear deviation due to the transition. 
This type of formalism provides a description of the observed elastic anomalies, but does 

not necessarily account for their physical origin. In the case of paratellurite, the soft-acoustic-mode 
model of the transition explains the (Cu - C12) variation. An anomaly in the dielectric constant 
measured parallel to the ;t-axis has also been observed and may be responsible for, or at least be 
associated with, the C44 anomaly (Peercy & Fritz, 1974; Peercy et al., 1975). Bilinear coupling 
between e$ and a polar property parallel to the crystallographic jc-axis is possible in this system 
because yz and x are both basis functions of the same irreducible representation (E) of point group 
422. Thus, while the critical elastic constants provide evidence of the gross mechanism of a 
transition, the non-critical elastic constants are revealing of finer detail which may be specific to the 
material under investigation. 

Albite. Of the many phase transitions known in minerals, the most likely to display limiting proper 
ferroelastic behaviour is the second-order monoclinic —> triclinic transition in crystals of Na-rich 
feldspar with no long-range Al/Si order (Salje, 1985; Salje et al., 1985a and b; Redfern et al., 
1997; and see Smith & Brown, 1988, for original references). The change in point group is 21m 
^± I, for which the active representation is Bg. The condition for stability with respect to this 
transition is given by the Bg eigenvalue of the symmetry-adapted elastic-constant matrix (Boccara, 
1968) as: 

|{C44 + Q 6 - [ ( C 4 4 - Q 6 ) 2 + 4 C 4
2

6 P | > 0 (135) 

which reduces to (cuC66 - C%6) > 0 (Cowley, 1976; Table 6). 
An appropriate description of the expected mechanism for the transition would be in terms 

of the softening of the Bg transverse acoustic mode. The orientation of this soft mode is 
constrained by symmetry to have direction and amplitude vectors parallel to crystallographic axes 
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Fig. 12. Spontaneous strains and elastic properties at 
the 422 ^ 222 transition in Te02. (a) Spontaneous 
strain data extracted from the lattice-parameter data of 
Worlton & Beyerlein (1975) obtained at high pressures 
using a hydrostatic pressure medium. The linear 
pressure dependence of {e\ - e2)2 (filled circles) is 
consistent with second-order character for the 
transition. Data for (eλ + e2) (open circles) show 
greater scatter but vary approximately linearly; data for 
e$ (crosses) are only approximate because of the 
markedly non-linear variation of c0. (b) Variation of 
the symmetry-adapted elastic constant (Cu - C12) at 
room temperature (after Peercy et al, 1975). The ratio 
of slopes above and below Pc is -3:1. (c) Data for 
selected non-symmetry-breaking elastic constants (after 
Peercy et ai, 1975). At high pressures the elastic 
constants represent some average from a multidomain 
sample. 

shown in Fig. 12c suggests that a Landau expansion such as Equation 122 does not completely 
describe the energetics of the transition mechanism. C44 softens unexpectedly in a linear manner 
from both sides of Pc, and C33 shows a small break in slope at P = Pc. In the case of C33, 
transformation twinning should not cause major problems because both twins share the same z-
axis. Similarly, coupling of the form λ3^3[(e1 - e2 )/V2 ] , the lowest order allowed by symmetry, 
is not expected to lead to any renormalisation of C33. However, the next higher-order coupling 
term, λf^e\[(^ - e2)/V2] , would give a variation of the form: 

C33 - C33 + 2^3l J7y J (131). 

For a second-order transition this would be a linear deviation, consistent with the observations. 
Measurements along the x- or y-axes of the tetragonal phase to give C44 (= C55) would yield an 
approximate average of C44 and C55 along the same directions of the twinned orthorhombic 
derivative. (C44 and C55 are no longer equivalent and the x- and y-axes of the orthorhombic twins 
will be slightly misaligned because of the non-equivalence of a and b). Including the next higher-
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centre optic mode with the same symmetry (Bi) shows no softening and the driving order 
parameter for the transition appears to be the symmetry-breaking strain alone (Peercy & Fritz, 
1974; Peercy et al., 1975). Inelastic neutron scattering measurements show that the active acoustic 
mode softens most markedly at long wavelengths and that the effect of pressure is to shift the 
dispersion curve for this mode more or less uniformly (McWhan et al., 1975), though to a much 
lesser extent than shown schematically in Fig. 8a for the case of zone-centre softening. 

Lattice parameters for crystals subjected to hydrostatic pressures (from Worlton & 
Beyerlein, 1975) have been used to calculate values for the strain components, eλ = [(α - α0)/α0], 
e2 = [(& - α0)/α0] and e3 = [(c - c0)/c0]. There is a slight difficulty in extrapolating values of the 
tetragonal parameters a0 and c0 into the stability field of the orthorhombic structure to calculate the 
strains because, as in general for structures subjected to pressure rather than temperature as the 
external variable, the extrapolation is expected to be non-linear. A linear extrapolation of a0 is 
consistent with the (limited) data collected at P < 9 kbar, however, and should yield more precise 
values for the strain components than were given by Worlton & Beyerlein (1975) who used the 
one-atmosphere lattice parameters for a0 and c0. A graphical non-linear extrapolation of c was used 
to approximate c0 at high pressures. The symmetry-breaking (Bi) strain varies as (eλ - e2) «= P, 
indicating that the transition may be classically second order in character (Worlton & Beyerlein, 
1975; McWhan et al, 1975; Skelton et al, 1976; Fig. 12a). The non-symmetry-breaking strains 
are smaller than the Bi strain but (e1 + e2), which is expected to vary with (ex - e2) , also varies 
approximately linearly with pressure (Fig. 12a). The non-linear pressure dependence shown by c0 

is insufficiently constrained to allow accurate determinations of £3, but the magnitudes of [ex + e2) 
and £3 are comparable, giving a volume strain of - 1 % at 20 kbar. This may be compared with 
-5% for the value of (^ - e2) at the same pressure. A linear least squares fit of the square of the 
symmetry-breaking strain gives Pc = 9.17 kbar, with an uncertainty of ± -0.2 kbar arising 
primarily from the experimental calibration of pressure. 

Ultrasonic measurements of the velocity of the soft acoustic mode have shown that the Bi 
symmetry-adapted elastic constant (Cn - C12) goes linearly to zero both from above and below a 
transition pressure of -8.86 kbar (Fig. 12b, after Peercy et al., 1975). This is the classical result 
for a second-order proper ferroelastic transition, though a non-classical ratio of the slopes, -3:1 
instead of 2:1, was found. An appropriate Landau free-energy expansion has been given earlier 
(Equation 122). Because the symmetry-breaking strain is itself the driving order parameter, the 
Landau coefficients can be given explicitly as combinations of second-, third- and fourth-order 
elastic constants (see, for example, Tolédano et al, 1983, or Bulou et al., 1992). The effect of the 
(ei+e2) and e$ strains is to renormalise the fourth-order Landau coefficient to yield a predicted 
slope ratio of 2(b/b*):l (with b > b*). Tolédano et al. used experimental data for the third-order 
elastic constants (Antonenko et al., 1979; Uwe & Tokumoto, 1979) to show that the calculated 
value of bib * is in close agreement with the observed ratio of slopes. 

Peercy et al. (1975) also measured values of C\\, C33, C44 and Cββ for the tetragonal 
phase. They extended their measurements of C\\, C44 and Cββ into the stability field of the 
orthorhombic structure (Fig. 12c, after Peercy et al., 1975) but, probably because of twin domain 
formation due to the tetragonal —> orthorhombic transition, the data for C\\ and Cfá were of poor 
quality. Comparison of the expected variation of C33 and C44 for a 422 ;= 222 proper ferroelastic 
transition that has significant non-symmetry-breaking strain (Fig. 9) with the observed variations 



760 M.A. Carpenter, E.K.H. Salje 

An example of a zone-boundary transition with the same change in point group involves 
the space-group change P622 ^ P321. This is associated with the K point at (-J,-J,O) (for 

y* =60°) on the surface of the Brillouin zone (or ( | , f ,0] according to the vector notation of 
Bradley & Cracknell, 1972); the active representation is K2 (Stokes & Hatch, 1988). The excess 
free energy can be written as (Stokes & Hatch, 1988; Hatch, pers. comm.): 

G = |α(Γ -Γ c ) ( f t
2 + * ! ) + ^ 

+λ4(el + el)(ql + q%) + λ5{exeA - e2eA + e5e6){3qfq2 + q\) 

+ λ 6 [ 4 +fo -e2)2](qf + ql) + \(c°n + C&Jfe + e2f 

+IC^(4+e5
2) + ic6V62 (130). 

In the trigonal phase under equiUbrium conditions, q\ = 0 and q2 * 0. Variations of the elastic 
constants will be essentially the same as for the zone-centre case, with the exception of Cu, C2\ 
and C56 which would be expected to vary linearly with q\. 

In summary, the form of the elastic-constant evolution with temperature (or pressure) 
should provide significant insights into the driving mechanism for a phase transition. The 
variations may be predicted by making use of the symmetry properties of the elastic constants and 
spontaneous strain components, writing out the appropriate form of the Landau excess free 
energy, and then differentiating directly (proper ferroelastic transitions), or using the general 
solution for order-parameter/strain coupling (pseudo-proper or improper ferroelastic transitions 
and co-elastic transitions). In each case the values of the coupling coefficients must be determined 
from experimental data. 

7. Renormalisation of second-order elastic constants at phase transitions: some 
examples of real behaviour 

7.1 Strain as driving order parameter: proper ferroelastic behaviour 

TeÖ2. Possibly the best example yet studied of elastic-constant variations due to proper ferroelastic 
behaviour is the pressure-induced tetragonal ^ orthorhombic transition in paratellurite, TeÜ2 
(Peercy & Fritz, 1974; Peercy et α/., 1975; Worlton & Beyerlein, 1975; McWhan et al., 1975; 
Skelton et α/., 1976; and see reviews by Tolédano et al., 1983, Cummins, 1983, and Bulou et al., 
1992). At room pressure paratellurite crystals have P4\2\2 symmetry, while above ~9 kbar the 
space group becomes P2\2\2\, without a change in translational symmetry. The transition 
mechanism can be described as the softening to zero frequency (or at least to very low frequencies) 
of an acoustic mode propagating in the [110] direction and polarised parallel to [110]. The zone-
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& Dolino (1975): Cu, C24 and C56 vary with ß , C44 and (Cπ - C12) (= 2C66) are expected to 
vary with g2 , and (Cπ + C12), C33, C13 and C23 are expected to show a simple step at T = Tc if 
the transition is second order in character. 

Table 13. Predicted variations for elastic constants of a material subject to a zone-centre phase transition involving 
the symmetry change 622 ^ 32. The expressions for individual Cik's have been derived for a second-order 
transition. 

Co-elastic transition 
622 phase 

0 = 0 
32 phase 

ô
2 =4(Γc -Γ) , Z~1=2<*Ar{Tc-T) = 2bQ2 

b b 

>-2 
(Cπ +Cn)C33-2C13 

C33 = ^33 

Q2 = C12 

Q3 = C23 = Q3 

Q l ~^12 =Q°1 _Q°2 

Ql + C.2 = Q°1 + Q02 
C14 = -C24 = C56 = 0 

C44 = C55 = C44 

Cs6 = cββ = T ( C Π - cn) 

Cu = C22 = C?l + 2λ6Q2-4λ2
1Q2x 

C33 = C^-Aλ2Q2
X 

Cl2 = C?2-2λ6Q2-4λ2Q2
X 

Cl3=C23 = C?3-4λ1λ3Q2
X 

Qi-Q2=(Q°i-Q°2) + 4λ6Ö2 

Cn+Cl2 = (cri+Cf2)-Sλ2Q2x 
Cu = -C24 = C56 = Å5ß 

C44 = C55 = C\\ + 2λ4Q 

C66=C6°6 + 2λ 6 ß 2 = | ( C u - C 1 2 ) 

Co ^,0 
11=C22 

eg. 
Ql+^12 

• j ( c i r c i 2 ) = H 

M1+Q2 

1 /r,0 oO \ /^O 
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1 

^13=^23 

Q 3 - Q 3 
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^ 4 4 - ^ 5 5 
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Fig. 11. Schematic variations of elastic constants at a second-order transition involving the point-group change 622 
^ 32, based on expressions given in Table 13. The form of C33 is the same as for C13. 
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Table 12. Symmetry-adapted elastic constants (eigenvalues) and strains (from the eigenvectors) of the elastic-
constant matrix for point group 622 (Laue class 6/mmm). The E2 eigenvalues are required to be identical but, as a 
consequence of the convention used to reduce Cp/ to Cih come out as {Cn-Cn) and C66. Since 
C66 = \{CU - Cn) m hexagonal systems, a factor of two must be applied to C66 and a corresponding factor of -j= 

to e6 (shown in brackets) to give the correct degeneracies. Note: 2 a2 + ß2 = 2 a'2 + ß'2 = 1, 2 aa' + ßß'= 0, A2 

+ 5 2 = Z)2 + £ 2 =L 

Irreducible 
representation 

A l 

Ai 

E, 

E2 

2' 

2' 

Eigenvalue 

[(Cu+C12 + C33) 1 

[ -[(Ci,+C12-C33)2
+8C1

2
3])/2} 

\(cu+cn + c33) ^ 1 

[ +[(Cπ+Ci2-C33)2+8C1
2

3]}/2| 

JQ4 
1̂ 44 

|(cn-c12) 
1 (2)0; 

Eigenvector 

(α,α,0,0,0,0) 

(a\a\ß\ 0,0,0) 

Λ(0,0,0,1,0,0) 
5(0,0,0,0,1,0) 

Mi-W'0'0'0'0) 
£(0,0,0,0,0,1) 

Symmetry-adapted 
spontaneous strain 

e\+e2'>e3 

ex+e2\e3 

65 

W^1"*2) 
(àh l 

For an equitranslational phase transition giving a symmetry change 622 ^ 32, the active 
representation is B1. There are no basis functions with the form of a strain associated with this 
representation; a strain cannot be the driving order parameter and there is no single soft acoustic 
mode which can be responsible for the transition. The non-symmetry-breaking strains, (ex + e2) 
and £3, are associated with the identity representation and couple with Q2. Lowest-order coupling 
terms for the remaining strain components, (ex -e2), £4, e$ and e& have the form e2Q2; e4 and e$ 
are degenerate strains associated with Ei, giving a coupling term λ[e\ + £5 )ß 2 , while - t e6 and 
T T j ^ i - ^ ) a r e t r i e degenerate strains belonging to E2 (Table 12), giving a coupling term 
λ\el+(el-e2) \Q2. Additional coupling of the form (e\e4 - eye^ + e^e^Q is allowed because Ei 
® E2 is equal to Bi ® B2 © Ei and contains the active representation (Rehwald, 1973). The 
degeneracy of e\e4, -e2e4 and e$eβ ensures that C14 = -C24 = Csβ in class 32. 

The excess free energy due to the transition may be written as: 

G = ±a(T - TC)Q2 +\bQA + λx{ex + e2)Q2 + λ3e3Q2 + λA(e2
A + e2)Q2 

+λ5(ele4-e2e4+e5e6)Q + λ6^el+(el-e2f^Q2 

+^(Cfi + C f 2 ) ( « 1 + ^ 

+ i c 3 v 3
2 + ^ c ^ ( 4 - H ^ ) + ~ Q V 6 2 (129). 

Predicted variations of the individual elastic constants are given in Table 13 and are illustrated in 
Fig. 11. Their behaviour may conveniently be separated into three groups, following Bachheimer 
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Table 11. (Facing page and below) Predicted variations for elastic constants of a material subject to a phase 
transition involving the symmetry change mmm ^ 21m. The expressions for individual Cijk's have been derived for 
second-order transitions. 

Improper ferroelastic transition 
Pmma phase Flic phase 
*i = 0 2 = 0 4i 2=—(Γc -Γ) , q2=0 

b 
b* = (b + b')-f(λhi = 1,2,3,5; 

Cg, i = 1,2,3,5; 

C£,i,* = l,2,3,i**) 

C22 

C33 

Cl2 

- ^ 2 2 

~ c 3 3 

= ^12 

- r° 

C23 - C23 

C44 - C44 

C55 ~ C55 

C66 ~ ^66 

Q6 = o 

-22 • - 2 2 ' 
2AΛ 

C33 — C ^ 3 3 ' 

C19. — Cio 

b + b' 
2λ\ 

b + b' 

C 2 3 _ C 2 3 _ l"fcTF 
C44 = C44 + 2λAqx 

^55 ~ C55 "" 
2λ\ 

b + b' 

C-66 = Qβ + 2A6^j 

^25 

2λ^λ^ 

_ f 2λ2λ5 
5 U+*' 

Cic —-
fc + fc' 

C46 = λ 7 ^ 

6.4 622 ^ 32 

Co-elastic. Details of the symmetry properties of the elastic-constant matrix for a crystal with point 
group 622 (Laue class 6/mmm) are given in Table 12. If the standard elastic constants, C^, are 
used, the E2 eigenvalues are (Cn-Cl2) and CÔ6- These must be identical, and, since 
C66 =j(Cn- C12) in hexagonal systems, it is necessary to apply a factor of 2 to Cββ- In order to 
maintain a constant form of the elastic energy, \C^e\, it is necessary also to apply a 
corresponding factor of -4- to é?6 (Table 12). This anomaly arises from the conventional reduction 
of Qjki to Qk notation, and again highlights the need to use the reduced (Voigt) terms with care. 
An alternative scheme can be used which yields the correct degeneracies directly (Bulou, 1992). 
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mmm phase 
é ? 5 = 0 

cu = cn 
C22 = Q 2 

<<33 = ^33 

Q 2 = Q 2 

Q 3 = M3 
C23 = ^23 

C44 = C44 

C 5 5 =a(Γ-7 c ) 

C66 = ^66 

Q 5 = ^25 = ^35 = 0 

Q 6 = o 

Proper ferroelastic transition 
2/m phase, ensb = 0 

-52=f(Γc-Γ) 
b* 

cn = cn 
Cγi = C22 

*<33 = ^33 

C.2 = Q 2 

Q 3 = ^?3 

<<23 = Q 3 
C44 = C^ + 2λ4e5 

C55 = 2α(Γc-Γ) 

Q β = Qβ + 2 ^ 6 e 5 

Q 5 = Q 5 = ^35 = 0 

C 4 6 = λ7é?5 

2/m phase, ensb * 0 
, 5

2 = A ( Γ c _ Γ ) 
0 

= b-f{λi,c^uk = \-i) 

Q l = M l 
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C33 = C33 
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Q 3 = Q 3 
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G = ^a(T - TC)Q2 +^bQ4+ ( V i + h*i + V s )ß 2 + V s ß + ( V l + V 6
2 ) ß 2 

+λ7e4e6ß + 1(C?Λ2 + C2V2
2 + C3V| + C ^ i + C?5*f + QV6

2) 
+ q p 2 ^ 2 + Cf3V3 + C&2e3 (127). 

Predicted variations of the individual elastic constants, making use of the general solution for 
strain/order-parameter coupling (equation 79), are also given in Table 11 and Fig. 10. 

As with the previous examples of m3m ^ 4/mmm and 422 ^ 222 transitions, it is clear 
that the nature of the driving mechanism has a considerable effect on the behaviour of the elastic 
constants. Note, in particular, the difference in C55 between the cases of e$ and Q acting as the 
driving order parameter. The influence of non-symmetry-breaking strains is to change the ratio of 
the slopes at T -> Tc for the critical elastic constant, and to cause some variations in the non-critical 
elastic constants. 

Improper. Finally, if the transition is driven by an order parameter with symmetry other than B2 g , 
e.g. involving a doubling of the unit-cell size, the order parameter becomes degenerate and 
coupling with the symmetry-breaking strain takes the form λe5q( . The active representation for 
the specific case already discussed in section 2.3, Pmma ^ Pile, is X2, which is associated with 
the special point (^,0,0) on the Brillouin zone boundary (or (0,^,0) using the vector notation of 
Bradley & Cracknell, 1972). The excess free energy may be written in full as (Stokes & Hatch, 
1988; Hatch, pers. comm.): 

G = ±α(Γ- Tc)(qf + q%) + h(q? + 9f )2 + ±b'(q? + q%) + (λ^ + λ2e2 + λ3e3)(q? + q%) 

+(λ4ej + λβel){ql +ql) + (λ5e5 + λ7e4e6)(qf - q\) 

+|(CfΛ2 + QV22 + Cyl + C^el + Cy2
5 + Q V l ) + C?2exe2 + C?3e{e3 + C2V2*3 

(128). 
Under equilibrium conditions, q\ Ψ 0 and q2 - 0 in the monoclinic structure. 

Variations of the elastic constants may be predicted in the usual way using equation 79. 
These are given in Table 11 and illustrated in Fig. 10. Each individual elastic constant would be 
expected to show a step at T = Tc, except for C46, C44 and Cβ6, which would be expected to show 
deviations from C%6 (= 0), C44 and C^ proportional to q±. 

Fig. 10. (Facing page) Schematic variations of elastic constants at second-order transitions involving the point-
group change mmm ^ 2/m, based on expressions given in Table 11. In each case the form of variation of C22> 
£33> Ci2> Q3 aßd C23 is the same as for Cπ, the form of C66 is the same as for C44, and the form of C25 and C35 
is the same as for C15; details vary according to the sign and magnitude of each coupling coefficient. The improper 
example is Pmma ^ Pile. 
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Gelastic,Ag
 =^(*1»*2»*3)| 

<<Λ 11 
Q2 

C12 M3 

C22 C23 *2 

-23 -337 1*3 J 

(125). 

The remaining two strain components, e± and eβ, are associated with the representations B3g and 
Big respectively. As has been discussed before, Big ® B3g = B2g which means that coupling 
between eqe^ and e$, or between e^βß and some other driving order parameter with B2g symmetry, 
can occur. 

Table 10. Symmetry-adapted elastic constants (eigenvalues) and strains (from the eigenvectors) of the elastic 
constant matrix for point group mmm. Note: a2+ß2 + γ2 = α'2 +ß'2 + γ'1 = a"2 + ß"2 + γ"2 =1, 
aa' + ßß'+yγ' = 0,etc. 

Irreducible 
| representation 

Ag 

Ag 

Ag 

B i g 
B 2 g 
B 3 g 

* 

Eigenvalue 

* 
* 
* 

Cβ6 

C55 
C44 

Eigenvector Symmetry-adapted 
spontaneous 

(α, 0,7,0,0,0) 
(α',/J',y', 0,0,0) 
(a",ß",f\ 0,0,0) 

(0,0,0,0,0,1) 
(0,0,0,0,1,0) 
(0,0,0,1,0,0) 

eigenvalues of the submatrix 
Qi Q2 
Q2 Q2 

\p\z Q3 

^i; ^ 

*i; ^2» 

*i; ^2^ 

^6 
*5 
e4 

Q3] 
Q3 
C33y 

strain 
e 3 

«3 

«3 

This example has been used extensively in section 2 and the excess free energy for e$ as 
the driving order parameter may now be written out in full to include all the possible lowest-order 
couplings: 

G = -a(T- Tc)el + -bej + {λxex + λ2e2 + λ3e3)e% + (λ4e$ + h4)4 + λ7e4e6e5 

+ ^ Γ ( Q W + QV22 + C&ef + Cfcl + C&ég) + C&e^ + Cf3V3 + C2V2*3 (126). 

Predicted variations of the individual elastic constants are given in Table 11 and shown 
schematically in Fig. 10. The corresponding soft acoustic mode would have q II [100] and u II 
[001] (or vice versa), with pv2 = C55. 

Pseudo-proper. If the transition is driven by a different order parameter with B2g symmetry, the 
excess free energy due to the transition may be written as: 
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Table 9. (Previous two pages and below) Predicted variations for elastic constants of a material subject to a phase 
transition involving the symmetry change 422 ^ 222. The expressions for individual Cik's have been derived for 
second-order transitions. 

Improper ferroelastic transition 
P422 phase 

qi=q2=0 

C222 phase 
2 2 a(Tc-T) 

#1 - #2 • "(2**+* '*) ' 
b =b~ 4λj+2λ2

2 
CO /~rO 

l l ~ c 1 2 

b>*=v+ *&. 

Ql -^22 ~ Q l 

3̂3 = C33 
C12 = ^12 

^13 = Q3 = Q°3 

Ql ~^12 = Ql~Q°2 

"11"»"M2 - M l T M 2 

C44 ~ C55 - Q4 

Qβ - ctβ 

(cfi-c&) 
, A = 1 

(2*+ *' + &'*) fcfc+ &'-*'*) 

Q1=C?1-2(2λ1+λ2)2Λ 

C22 = ^11 — 2( 2Λj — A 2 ) A 

C33 = C33 
C12 = C?2 -2(2AX + λ2)(2A1 -λ2 ) A 

^13= ^23 = Q°3 

C i " Q2 = (C° -C°2) -4(A2
2 + 2λxλ2)A 

Qi ~~ Q 2 = TV^II + ^22 ~ 2Q2J = (Qi ~ Q2) ~ 4λ2A 
c n + Q2 = (Q°i + ̂ 12) - 8A1(2λ1 + λ2)A 

Qi+C1 2=^(C1 1+C2 2 +2C1 2) = (c1°1 + C1°2)-16^Λ 

C44 = C^+2(2A5+Λ4)^2 

C55 = C^ + 2(2A5-λ4)^2 

C66 = C6°6+4Λ6^ 

Under equilibrium conditions the degenerate components of Q are equal, i.e. q\ = #2 

(Stokes & Hatch, 1988). Variations of the elastic constants can then be predicted from equation 79 
in the usual way. The algebra becomes excessively complex if both the non-symmetry-breaking 
strains are included, and a set of variations has therefore been derived for the case of a second-
order transition with e3 = 0 (/I3 = 0) but (e\ + e2) * 0 (λ\ * 0). These are given in Table 9 and are 
illustrated in Fig. 9. Both (Cn - C12) and (Cπ + C12) show a step at Γ = Tc, but only C44, C55 

and C66 are expected to show any marked temperature dependence at T< Tc. 

6.3 mmm ^ 21m 

Proper. Details of the symmetry properties of the elastic-constant matrix for a crystal with point 
group mmm are given in Table 10. For an equitranslational transition involving a symmetry 
change mmm ^ 2/ra, the active representation is B2 g, the symmetry-breaking strain is e$ and the 
corresponding elastic constant is C55. The non-symmetry-breaking (Ag) strains are e\, e2 and ^3. 
Ag eigenvalues and eigenvectors of the mmm elastic-constant matrix are analytically complex and 
the elastic energy is most easily handled in terms of the submatrix: 
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with phonons for which < Q\ > also contains the active representation, but these are necessarily 
greatly restricted in number and any influence on the corresponding elastic constants must be 
relatively small. Such softening is usually not described in classical Landau theory and should not 
be mistaken for a sign of bilinear coupling between the order parameter and the spontaneous 

strain. Its magnitude depends on the force constants 0 α J f A and (j)γλl f A f° r a g i γe n 

material. Evidence that these are large would be provided by large mode Gruneisen parameters 
indicative of strong acoustic mode - optic mode coupling. If this type of softening is observed in 
the high-symmetry phase (above the transition point), it should also be expected in the low-
symmetry phase below the transition point. 

Having identified the significance of the interactions, it is now only necessary to give a 

formal description of the renormalisation involved. The coupling term Ψaß\j j) *s written in real 

space as: 

Λ-. 
<l>aß 

q q 8πJ 

= Σ 
J J' Ikl'klk'µv ™*a 

^4 I iHi 
i 

\H>% >Zß 
f t *1 - 4 

J J 
exp[-2πi#?(/')] 

(A.24). 

ya is the volume per atomic unit, and Ψaµv is the third-order anharmonic potential constant for the 
coupling between two phonon coordinates | and the displacement coordinate (R.e). The vector 

R\ T describes the equilibrium position of the atom k in unit cell Z with mass m^ The symmetry 

properties of Ψaß\j j) s t e m ^ r o m t n e multiplication of [(j>R]aµvß and Cµ%v for each set of 
atoms. The matrix [(pR]aµvß has the full symmetry of the high-symmetry phase so that all 
symmetry constraints originate only from the product of phonon coordinates £µ£v. As the tensor 
Ψaß also describes the thermal expansion in the high-symmetry form, the symmetry of (j)aß must 
be totally symmetric. These symmetry constraints limit the number of phonons which can interact 
and, hence, renormalise the elastic constants in this term: they must have opposite wavevectors 
and their amplitudes α kπ j and è\ k'Γj j must form a totally symmetric tensor Cµ I kn K J fc'π J. 

The tensor can be transformed into a diagonal form with the same principal axes as the tensor 
describing thermal expansion. It is then appropriate to rewrite the elastic constants in the same 
coordinate system spanned by the new principle axes. In highly symmetric systems, the standard 
setting of Caßγô is already in this coordinate system, while rotations are potentially necessary in 
monoclinic and triclinic crystals. Within the diagonal system, the relevant effective force constants 
are 0 n , 022 and $33, with the usual identities for uniaxial systems (0n = 022) or elastically 
isotropic and cubic systems (0n = 022 = 033)- The renormalised elastic constants are then ΔCn, 
ΔC22» ΔC33, ΔC12, ΔC13 and ΔC23 with possible relationships ΔCn= ΔC22, ΔCπ= ΔC23 or 
ΔCn= ΔC22= ΔC33, ΔCi2= ΔCi3= ΔC23. A typical example of a uniaxial system is quartz, in 
which Cn, C33, C12 and C13 soften as T -> Tc but C44 and Cββ do not. Further symmetry 
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constraints then follow trivially from matrix multiplication for quadratic corrections: (ΔC12)2 = 
ΔC11ΔC22, (ΔC13)2 = ΔC11ΔC33, (ΔC23)2 = ΔC22ΔC33. Note that these latter relationships 
apply to the high-symmetry phase above a transition point irrespective of which crystal system it 
belongs to. They refer equally to triclinic, monoclinic and orthorhombic systems, for example. For 
elastically uniaxial or isotropic/cubic materials they lead to: ΔCπ= ΔCn, (ΔC23)2 = (ΔC13)2 = 
ΔC11ΔC33 or ΔCπ= ΔCi3= ΔC23 = ΔCn = ΔC22= ΔC33, respectively. 

Turning now to the dependence of ΔC on the frequency of the optical phonon, it becomes 
apparent that the form and anisotropy of its branches are important. At high temperatures (2kΓ » 
tio)), the phonon amplitude may be approximated by <Q2 ><×(kT/ω), giving, for the y-th 
phonon branch: 

Δ<ÜA ~ K - J SΓK ß i ^ yΛl ) (A.25). 

For coupling terms which are independent of q an important relationship is obtained, namely: 

1 ΔCocJd^3 

ω{q) 4 (A.26). 

How does the temperature dependence of ΔC at T > Tc now depend on the dispersion relation 
60(q)l Two extreme cases can be analysed rather easily using a parabolic ^-dependence of ω, with 
the form: 

ω2 = el 1+ Σ«?«? 
V i=x,y,z J 

(A.27) 

where €Q and c are proportionality constants. The dimensionality D of the dispersion is: D= 1 for 
cx « cy, cz;D = 2 for cx, cy « cz;D = 3 for cx~cy~ cz. Evaluating the relevant integral, the two 
most extreme assumptions for c<?max, namely cçmax « 1 and cqmax » 1, are used. In the first 
case, for weak dispersion: 

tfmax 1 ff a
D 

0 ω eo 

In the second case, for strong dispersion: 

?max 1 1 
D = l J - T d ^ c c ~ T (A.29) 

?max 1 1 
D = 2 / — d ^ o c - — (A.30) 

0 ω c eo 
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tfmax 1 1 
D = 3 \ -Táq<X-TT (A.31). 

If a temperature dependence of e0 similar to a soft mode, e% o e ( |7 ' -Γc | + e^1iI1J, 1S 

assumed, the variation of AC at T » Tc in the limit of weak dispersion is given by: 

ΔCoc 1 (A.32). 
\T-TC\2 

In the case of strong dispersion, an additional temperature dependence may originate from the 
dispersion parameter, c. Taking c °c (l/£0) yields: 

ΔC(D = 1) oc | r - r c | ~ 3 / 2 (A.33) 

ΔC(D = 2)oc|Γ-Γc |"1 (A.34) 

AC(D = 3) oc |Γ - Γc|"1/2 (A.35). 

The geometry of the dispersion relations giving rise to these four results for ΔC is illustrated in 
Fig. A.l. 

This brief discussion demonstrates that the actual temperature dependence of this 
contribution to the elastic constant may vary considerably, depending on the dispersion of the 
coupled optical phonon. The strongest temperature dependence is expected for weak dispersion 
(independently of the dimensionality), and the weakest dependence occurs for three-dimensional 
systems with strong dispersion. 

The fourth term in equation A. 10 has the form: 

-<VΣj^y(j ~f]<Ql> (A36) 

and relates to internal strain generated by a field conjugate to the macroscopic strain. The origin of 
this form can be understood by noting that the macroscopic strain relates to local strain via: 

macroscopic l \( × 
eaß+eßa+Σeγaeßß (A.37). 

r ) 

The strain has to be invariant with respect to small rotations of the sample: 

e m a c r o s c o p i c ^ ^ + ω ^ + Σ o ) ^ ^ ( A 3 g ) 
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where ωaß = -C0ßa is the rotatory part of the strain. Applying this transformation to elastic energies 
which are proportional to eaß and e#ß gives, in linear order of eaß\ 

Sh = Σh{aß)eaß+Σh{aP)ωaß+Σh{aß)ωaγ̂ ß+ΣCaßγλ^ßO>γλ+--- (A-39) 

where AW) = Ä0«> and Caßγλ = Cγλaß. 

ω 

• l r - » r - •IT->TC— -IT-÷TC— 

Fig. A.l. The geometry of dispersion relations giving rise to four different results for the exponent K in equation 
97. This example is for a phase transition with a soft optic mode at the Brillouin zone centre, but the results apply 
equally well to zone-boundary soft modes. In (a) dispersion in all three orthogonal directions about the critical point 
is flat and softening occurs uniformly along the branches as T -> Tc. K = -2 is obtained. In (b), (c) and (d) the 
dispersion is steeper but occurs uniformly in one, two or three dimensions as T -» Γc, giving K = -3/2, -1 or -1/2, 
respectively. 



Elastic-constant variations due to phase transitions 799 

The system is stable if \ddh/dωaß) = 0, i.e. 

Σ(h(µßKß - h{vß)eµß) + Σ(Caßµv ~ Caßvµ}aß = 0 
ß «ß 

(A.40). 

This condition is satisfied if: 

h^Sπ - fc< v % + Cµvγλ - Cvµγλ = 0 (A.41). 

Rewriting the internal strain as macroscopic strain generates a quadratic term of the form 
Σeγaeγß m t n e macroscopic expression. The contribution to the elastic constants is: 
r 

Caßγλ " Caßγλ ~ ~SaγAh 

= -st ay ΣWfyλ 
(q -q 

\ i \J J 
. \<QZ> 

(A.42). 

An order of magnitude can be estimated for ΔMW from the strain coordinate, 
Δe = (M/C°) «10 3 , which is of the same magnitude as the renormalisation of the elastic 

constants. Thus this effect is justifiably ignored in most applications of elastic theory. 
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