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Elastic anomalies in minerals due to structural phase
transitions
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Abstract: Landau theory provides a formal basis for predicting the variations of elastic constants
associated with phase transitions in minerals. These elastic constants can show substantial anomalies
as a transition point is approached from both the high-symmetry side and the low-symmetry side. In
the limiting case of proper ferroelastic behaviour, individual elastic constants, or some symmetry-
adapted combination of them, can become very small if not actually go to zero. When the driving
order parameter for the transition is a spontaneous strain, the total excess energy for the transition is
purely elastic and is given by:

1 1 1
Gelastic = '2"2 Ciceiex + 31 z Ciueiere + a0 zciklmeiekelem + ..
ik tik,l “ik,lm

which has the same form as a Landau expansion. In this case, the second-order elastic constant Cy
softens as a linear function of temperature with a slope in the low-symmetry phase that depends on
the thermodynamic character of the transition. If the driving order parameter, Q, is some structural
feature other than strain, the excess energy is given by:

G= -;—a(T -T.)0% + %bQ"' +o XA+ %2 CSeiey
i,k

i,m,n

In this case, the effect of coupling, described by the term in Ae™Q", is to cause a great diversity of
elastic variations depending on the values of m and n (typically 1, 2 or 3), the thermodynamic
character of the transition and the magnitudes of any non-symmetry-breaking strains. The elastic
constants are obtained by taking the appropriate second derivatives of G with respect to strain in a
manner that includes the structural relaxation associated with Q.

The symmetry properties of second-order elastic constant matrices can be related to the
symmetry rules for individual phase transitions in order to predict elastic stability limits, and to derive
the correct form of Landau expansion for any symmetry change. Selected examples of "ideal"
behaviour for different types of driving order parameter, coupling behaviour and thermodynamic
character have been set out in full in this review. Anomalies in the elastic properties on a macroscopic
scale can also be understood in terms of the properties of acoustic phonons. These microscopic
processes must be considered if elastic anomalies due to dynamical effects are to be accounted for
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correctly. Such additional anomalies are characterised by softening of the form AC; =A,»k|T—TC|K
as the transition is approached from the high-symmetry side. The A coefficient is a property of the
material, and K depends on how the branches of the critical acoustic mode soften in three
dimensions.

Adopting this approach allows the quantitative description of elastic variations in “real"
systems. Albite provides a likely example of proper ferroelasticity in minerals, and values for the
required coefficients, extracted from experimental data, yield a complete picture of the expected
elastic properties. The B = o transition in quartz provides an example of co-elastic behaviour. Data
for TeO,, BiVO, and KMnF; (a perovskite) have been reviewed to illustrate the full range of elastic
anomalies that should be expected at structural phase transitions in natural minerals.

Key-words: phase transitions, elastic constants, ferroelasticity, Landau theory, albite, quartz,
perovskite.
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1. Introduction

The elastic constants of many geological materials show a smooth and approximately linear
increase with falling temperature (7) or increasing pressure (P). Minerals which undergo phase
transitions can show dramatic variations in their elastic properties, however, and the influence of a
transition can extend over a wide P, T range on either side of the transition point. Illustrations of
these two extremes are provided by the elastic constants of olivine, showing a "normal" pattern
(Fig. 1), and of quartz, showing significant anomalies associated with the § = o transition (Fig.
2). Exactly at a transition point individual elastic constants and specific combinations of elastic
constants can go to zero, or at least become very small. The effects of such anomalies must have
some influence on the seismological and rheological properties of rocks — hence the interest, for
example, in whether or not (Mg,Fe)SiO3 perovskite remains orthorhombic with increasing depth
in the mantle (e.g. Hemley & Cohen, 1992; Wentzcovitch et al., 1995; Warren & Ackland, 1996;
and references therein).

From a thermodynamic point of view there are two sound reasons for suggesting that the
variations of elastic constants at phase transitions in minerals warrant closer investigation. Firstly,
the elastic energy change associated with a phase transition, Gejastic, can be a significant quantity
in relation to the total free-energy change, Gexcess, due to that transition. This elastic energy is
usually expressed formally as %Zc;;e,-ek where Cj, represents the "bare" elastic constants of the

ik
crystal (i.e. those which do not include the influence of the transition), and e;, e; are components
of the spontaneous strain. In the case of the C2/m = C1 transition in albite, |Gelasﬁc, is a

substantial fraction of |Ge
stability limits of albite-bearing mineral assemblages. By way of contrast, |Ge1asﬁc| for the P6/mcc

| (Salje et al., 1985a) and is sufficiently large to influence the

XCESS

= Cccm transition in cordierite is a very small fraction Of |Giyess| (Carpenter, 1988), and its

influence in determining the stability limits of cordierite-bearing assemblages is probably
negligible. Secondly, these elastic constants are by definition the second derivatives of free energy
with respect to strain, 9>G/de;de; . As such they should be particularly sensitive to the shape of
the free-energy potential which governs the overall transition behaviour. While several different
formulations of Gexcess might give minima corresponding approximately to observed equilibrium
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structural states from first derivatives, such as d G/dQ where Q is the order parameter, the correct
formulation must be close to physical reality if it is also to predict the observed elastic constants
from the second derivatives. This means that the closeness of fit between predicted and observed
elastic constants can be a stringent criterion for testing the validity of any thermodynamic
mechanism proposed for a phase transition.
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Fig. 1. Variations of the elastic constants of forsterite Fig. 2. Variations of the elastic constants of quartz as
as a function of temperature (after Suzuki et al., a function of temperature showing the marked
1983). The smooth decline with increasing 7T is anomalies associated with the B = o transition at
characteristic of materials at temperatures and pressures ~846 K (after Hochli, 1972, and Yamamoto, 1974).

far removed from any structural phase transition.

As discussed at some length in the physics literature, phase transitions which involve
significant lattice distortions should tend to conform closely to the predictions of Landau-type
theories (Cowley, 1976; Folk et al., 1976a and b, 1979; Als-Nielsen & Birgeneau, 1977;
Schwabl, 1980; Bruce & Cowley, 1981; Wadhawan, 1982; Cummins, 1983; David, 1984;
Ginzburg et al., 1987; and see also Carpenter & Salje, 1989; Salje, 1992, 1993; Schwabl &
Tduber, 1996). Indeed, it is the comparative rarity of systems which do not that now attracts
attention (Folk et al., 1979; Mayer & Cowley, 1988; Harris ef al., 1993, 1995; Harris & Dove,
1995). There is a high expectation that the elastic properties of most natural materials can be
described from the same macroscopic point of view, and a selection of phase transitions for which
the overall approach should be directly relevant is given in Table 1.

An illustration of the link between elastic behaviour and other properties is provided by a
simple example. For a transition in which a spontaneous strain, e, arises by coupling with a
driving order parameter, Q, the excess energy of the low-symmetry phase with respect to the high-
symmetry phase (at the same conditions of pressure, temperature, efc.) may be expressed as:

Gexcess = GQ + Gcoupling + Gelastic (D).
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Table 1. Phase transitions in minerals for which elastic-constant variations should conform to solutions of a Landau
free-energy expansion. The basis of the classification is set out in section 7. There is also a reversible transition at
high pressures in gillespite (BaFeSi4O1¢), but the symmetry change, P4/ncc — P212;2, does not follow the normal
group — subgroup relations, and does not fit conveniently into this scheme (Hazen & Finger, 1983; Redfern et al.,
1993).

Selected phase transitions in minerals

Proper ferroelastic behaviour Co-elastic behaviour
albite: C2/m = C1 (Qod =0) quartz: P6422 or P6,22 = P3;2 or P3,2
Sr-anorthite: 12/c = 11 leucite: I4y/acd = 14,/a
leucite: lIa3d = I4\/acd pigeonite: C2/c = P2/c
. . anorthite: /1 = P1
Pseudo-proper ferroelastic behaviour calcite: R3m = R3¢
tridymite: P6;22 = (222, tridymite: P63/mmc = P6;22
vesuvianite: P4/nnc = P2/n (?) kahophlhte P6522 = P65

kalsilite: P63mc = P63
P63mc = P63mc (superlattices)
P63 = P63 (superlattices)
cummingtonite: C2/m = P2,/m
lawsonite: Cmem = Pmcn = P2cn
titanite: A2/a = P2,/a

Improper ferroelastic behaviour
(Mg,Fe)SiO; perovskite: cubic = tetragonal (?)
tetragonal = orthorhombic (?)
neighborite: Pm3m = Pbnm
CaTiO3 perovskite: Pm3m = I4/mcm = Pbnm
cristobalite: Fd3m = P432,2 or P4,2,2
calcite: R3c = P2y/c

Here G signifies the change in energy due to the effect of Q alone and Geoupling is the energy due
to interactions between Q and ey; both are usually negative. Gejagic is invariably a positive quantity
because of the condition that the elastic-constant matrix must be positive definite for a crystal to be
in an elastically stable state (Born & Huang, 1954). These energies are shown schematically in
Fig. 3. If the crystal is subjected to an external stress, O;ex;, it will deform by an amount ey ¢y,
that should depend on the bare elastic constants, Ci‘,’c , according to Hooke's law:

_ 0
o-i,ext - z Cikek,ext (2)
ik

However, a change in the strain state of the crystal from e to (ex + egext) Will result in a change
of the equilibrium value of Q, via the Q/e; coupling term. The crystal will therefore respond to the
external stress by adjusting its structural state to the new equilibrium condition. Such a relaxation
implies a reduction in energy. In fact, the act of deforming the crystal will have been made slightly
easier so that it will appear to be softer than an identical crystal which was not susceptible to
undergoing a phase transition. The effective, or "renormalised" elastic constants, Cj, will be
smaller than Cj, with the magnitude of the effect depending on the form of Gq. The most
important conclusion here is that the effective elastic constants depend not only on the coupling
terms but also on the shape of the free-energy potential for Q. This "shape" is formally the
susceptibility, y, of Q where y~! =3%2G/dQ?; ! is generally referred to in this context as the
inverse susceptibility of the crystal with respect to Q.

If the driving order parameter is itself a symmetry-breaking spontaneous strain, Gexcess
would be entirely elastic in origin. The susceptibility of a crystal with respect to this strain is the



698 M.A. Carpenter, E.K.H. Salje

“critical" elastic constant. Quite characteristic C;; variations are observed, but such behaviour
appears to be relatively uncommon in both minerals and man-made materials. Coupling of the
symmetry-breaking strain with other strains is still possible and causes changes in some of the
non-critical elastic constants which may be revealing of more subtle details of the transition.

Gelastic Fig. 3. Schematic illustration of the contributions from
G=0 different excess energies to the total excess free energy due to a
.y g . . gy .
G Gcoupling phase transition. The relative size of each contribution varies
_L__ G greatly between transitions. (It can easily be shown. that
excess G =—1 =)
GQ elastic 2 Ycoupling /-

Since the elastic constants relate directly to the order-parameter susceptibility, their
variations are quite different from those shown by excess properties such as spontaneous strain.
Most significantly, the susceptibility varies in both the high-symmetry phase and the low-
symmetry phase of a crystal. Consequently, evidence of an impending phase transition is often
clearly displayed by an anomalous decrease in one or more elastic constants as the transition point
is approached either from above or from below the transition point. Precursor behaviour is shown
by quartz (Fig. 2), for example, although, as will be discussed later, the B = o transition in
quartz is not as straightforward in this context as some other phase transitions. The excess free
energy, enthalpy, entropy, etc., on the other hand, are by definition zero in the high-symmetry
phase (ignoring short-range ordering and fluctuations) and only vary as a direct function of Q in
the low-symmetry phase.

From these preliminary remarks it should be clear that the elastic constants associated with
phase transitions are expected to show diverse variations, and that their evolution will be quite
specifically dependent on transition mechanism. Some possible patterns of elastic behaviour are
illustrated in Fig. 4 for cubic = tetragonal (m3m = 4/mmm) transitions, for example. The key
issues and equations which underpin the prediction and interpretation of these variations form the
subject of this review. The intention is: (a) to describe, from a purely macroscopic point of view,
the physical processes that are responsible for the dramatic variations in elastic constants observed
in minerals such as quartz, (b) to present a coherent framework of theory which might allow
quantitative analysis of such variations in other minerals, and (c) to provide illustrative examples
from a range of different materials. As in the accompanying review on spontaneous strain
(Carpenter et al., 1998a), the format adopted is largely pedagogical. Section 2 is designed to
explain why strain effects lead to changes in the evolution of individual elastic constants. Section 3
gives essential background information concerning the role of symmetry in defining formal criteria
for elastic instabilities. Section 4 deals with the relationship between acoustic velocities and elastic
constants. This is included because certain acoustic phonons can determine the manner in which a

Fig. 4. (Facing page) Schematic variations of elastic constants at second-order transitions involving the point-group
change m3m = 4/mmm, based on expressions given later in this review (Table 8); e, is the non-symmetry-breaking
strain. For the proper and pseudo-proper cases, it has been assumed that the third-order term is negligibly small. In
the improper case (Pm3m = [4/mcm), this term is strictly zero by symmetry. Note:
(En - 512) =3(C1+ Gy +2C;3 - 4Cy3), %(E‘u + 25’12) = 3(2€, +Cy3+2C, +4C;3). The causes of these
variations in elastic constants for different categories of phase transitions are discussed in detail in section 6.
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symmetry-breaking distortion occurs when an elastic constant tends to zero, and because
dynamical effects can cause additional elastic softening in the vicinity of the transition point. In
section 5 experimental methods for determining elastic constants are briefly described in order to
highlight differences between data obtained by dynamic, as opposed to static techniques. Sections
6 and 7 represent the main substance of the paper. Section 6 is devoted to the ideal behaviour
expected at second-order phase transitions driven by small atomic displacements. Worked
examples cover almost all the aspects of symmetry and order-parameter coupling which are likely
to arise in practice. In section 7 ideal behaviour predicted using the appropriate Landau expansions
is compared with actual behaviour observed in a variety of materials. Because existing data for
minerals are sparse, phase transitions in a number of synthetic materials are used to illustrate the
likely properties of natural systems.

Different aspects of both theory and experimental practice relating to ferroelastic properties
are dealt with in previous review articles, including: Rehwald (1973), Liithi & Rehwald (1981),
Fleury & Lyons (1981), Wadhawan (1982), Liakos & Saunders (1982), Cummins (1983),
Tolédano et al. (1983), Schwabl (1985), Bulou et al. (1992) and Schwabl & Tauber (1996). For
readers who are not at all familiar with Landau theory, basic background information will be found
in Carpenter (1988, 1992), Salje (1992, 1993) and Dove (1997). Some familiarity with irreducible
representations in crystallographic point groups is also helpful, but not essential. A gentle
introduction to this topic is given by Wooster (1973). Readers of the present review who are
already familiar with the overall approach may wish to proceed directly to sections 6 and 7, in
which predicted and observed elastic-constant variations are compared.

2. Renormalisation of elastic constants: the formal basis

Phase transitions in real materials are governed by a diversity of mechanisms. In order to
understand how each mechanism can yield a distinctive pattern of elastic-constant variations, it is
instructive to consider the form of the elastic energy, Gejastic, first.

In the limit of small elastic strains in a crystal, the relationship between an applied stress,
0;, and the resultant strain, ey, is given by the tensor relationship (in Voigt notation):

0; = Cyey 3).

The elastic energy stored in the crystal is equal to the work done on the crystal and, from Nye
(1985), is:

1
Gelastic = 5 2 Cikeiek ).
ik

In most situations of stresses applied externally to a crystal, the linear relationship between stress
and strain given by Hooke's law provides an adequate description of the energy changes. This is
not necessarily the case when the elastic constants become very small, however. If some Cj's in
equation 4 became zero, a crystal might become infinitely soft — it would continue to deform
without a change in energy even at infinite strain. Clearly, higher-order terms are needed to
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describe the effective restoring forces beyond the equilibrium state of strain, and equation 3 should
be given more fully as:

O' Ckek + C,-klekel + qk[mekelem + ... (5)

Here Cj, Ciy and Cjyy, are second-order, third-order and fourth-order elastic constants. The
elastic energy is then:

Gelastic = Z ik€i ek+ 2 kleekel'*'Z' Z ikIm€iek€lem + ... 6)
lkl i,k,lm

where the prefactors are necessary to avoid counting equivalent terms (due to Cjx; = Cii = Cyix,
etc.) more than once.

Equation 6 has the form of a Landau expansion in which Gexcess = Gelastic- 1t should
describe transitions in systems for which strain is the driving order parameter and the only excess
energy is elastic. On the basis that such systems are expected to behave in a Landau-like manner,
the coefficient for the second-order term (in e;e;) might be expected to show a linear temperature
dependence, while the coefficients for higher-order terms are expected to be weakly temperature
dependent or constant. This contrasts with systems in which Gg and Gcoupling contribute
significantly to Gexcess- A classical Landau expansion forms the starting point for the
thermodynamic description of the latter case, and might be given as (see Carpenter et al., 1998a,
for example):

G= ;(T T)Q2+ bQ4+ N A€ Q" +— ZC,keek .

tmn

In writing out the expansion in Q but truncating the elastic energy after a second-order term, it is
implied not only that the structural feature represented by Q drives the transition, but also that
restoring forces which prevent the crystal from becoming infinitely soft are due to the higher-order
terms in Q and not to those in e. Different coupling mechanisms require different values for the
exponents m and n. (Note that the subscripts for A are only labels and do not signify tensor
properties for the coupling constants).

The manner in which alternative patterns of elastic-constant variations emerge from the
different transition mechanisms represented by equations 6 and 7 may be illustrated using a simple
example. In the following sections, an orthorhombic = monoclinic (mmm = 2/m) transition with
es as the symmetry-breaking strain is used. Only a single elastic constant, Css, need be considered
at first and odd-order terms are excluded by symmetry from the Landau expansions, which greatly
simplifies the algebra. The weak temperature dependence of the bare elastic constants has been
ignored.
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2.1 Strain as order parameter

Taking es as the order parameter for an orthorhombic = monoclinic transition with second-order
character, the elastic energy may be written in the form of a Landau expansion (Gexcess = Gelastic)
as:

G= %a(T— T,)e? + ibeg 8)

where T is the equilibrium transition temperature. The equilibrium variation of es is obtained in
the usual way from:

a—G=0=a(T—TC)e5 +be3 )
odes

giving es = 0, or:

&= 2(r.~1) o)

The elastic constant Css is the inverse susceptibility of the crystal with respect to es, i.e.:

0’G
C55=@=a(T—TC)+3be52 (11).

AtT> T, es = 0 and Css=a(T-T,), while at T < T, es is given by equation 10 and
Css =2a(T, — T). On this basis, Css is expected to go linearly to zero at T = T, with slopes
below and above T in the ratio 2:1 (Fig. 5a). By comparing equations 6 and 8 the fourth-order
coefficient, b, is seen to be equivalent to %C5555, where Cssss is a fourth-order elastic constant of

the crystal (Tolédano et al., 1983).

The variation of Css with temperature for tricritical and first-order transitions can also be
derived quite simply from the relevant form of the Landau expansion in es, and is shown
schematically in Fig. 5b and 5c. In the case of tricritical behaviour, Cssss is zero and the ratio of
the slopes of Css below and above T should be 4:1. A first-order transition (Csss5 negative and a
positive sixth-order term) would be marked by a discontinuity in Css at an equilibrium transition
temperature, i, higher than 7.

Fig. 5. (Facing page) Schematic variations of selected elastic constants at phase transitions involving the change in
point-group symmetry mmm = 2/m, with es as the symmetry-breaking strain. The three columns are for second-
order (left), tricritical (centre) and first-order (right) character. (a—c) Proper ferroelastic, no non-symmetry-breaking
strain. (d—f) Pseudo-proper ferroelastic, no non-symmetry-breaking strain. (g—i) Improper ferroelastic transition
(Pmma = P2/c). (j-1) es as the driving order parameter with coupling to the non-symmetry-breaking strain
component ey, as ,llelesz. (m-o0) Pseudo-proper ferroelastic with coupling terms AsesQ and A,e;Q%. (p-r) Variations
due to coupling of the form A,e2Q0% (or A 4e2e?). (s—u) Variations due to coupling of the form AsesesQ (or

Areqeces).
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The underlying thermodynamic mechanism represented by equation 8 might be described
formally as softening of the elastic constant Css at a proper ferroelastic transition (Wadhawan,
1982; Salje, 1993). Wadhawan actually uses the term "true" proper, but this terminology can be
controversial. The essential points are that the driving order parameter is a strain, the excess
energy is purely elastic, and that this represents one limiting type of behaviour.

2.2 Linear coupling between strain and a different driving order parameter

If the driving mechanism for the transition comes from some structural feature other than a purely
elastic effect, the strain arises from coupling with the driving order parameter, Q. For the case of O
and es being associated with the same irreducible representation of the space group of the high-
symmetry phase, the coupling between es and Q is bilinear, and, again considering second-order
behaviour for Q, the excess free energy is given by:

G=2a(T=T.)02 +bQ* + AsesQ+ Cise} (12).

Css refers to the bare elastic constant. As in equation 7 it is assumed that the elastic energy may be
truncated after the second-order term and, for the time being, it is also assumed that As is constant.
Under equilibrium conditions, the crystal relaxes to a stress-free state such that:

G

_—= 0 = 15Q+ C§5e5 (13)
aes
As
Ses=-250 (14).
e

Substituting equation 14 into equation 12 gives the usual renormalisation of T to a higher

.. * .
transition temperature, 7 , in:

G=la(T—TC*)Q2+le“ (15)
2 4
where:
* A2
T, =T, +— (16).
alss

One way of deriving the temperature dependence of Css to take into account the coupling
between es and Q, as discussed qualitatively in the introduction, is to first express the free energy
in terms of es alone. A simplifying step in this is to make use of the order-parameter susceptibility.
Taking that part of the free energy due to the terms in Q alone as:
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L=%a(T—TC)Q2+i-bQ4 (17)

the inverse susceptibility of Q alone (unmodified by coupling with the strain) is given by:

9L

—W=Q(T"TC)+3I)Q2 (18)'

To a good approximation for small deviations of Q from its equilibrium value, equation 17 can be
simplified to:

L= —;- x110? (19).

Equation 12 may then be rewritten as:
G=2 2707 + AsesQ+ el 20).

The condition of Q being at equilibrium is expressed as:

oG _

350X 2+ Ases @b

:Q:-i{% (22).
X

Substituting equation 22 into equation 20 gives G as a function of es alone, as required:

1 22
G =_2_(cg5 _x—fl]eg (23).

The variation of Css for a crystal which is free to undergo the transition is then given simply by:

3G

Css =‘a‘e:2‘

= C%s— A%y (24)

and it is only necessary to explore the behaviour of y. At T > T: , the equilibrium value of Q is
zero so that equation 18 becomes:

2 '=a(T-T,) (25)

and, hence:
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A3
Cys = Cos — ———2— 26).
55 55 a(T _ Tc) ( )
AtT=T : , the renormalised elastic constant falls to:

A2
Css = Cs5 — 2 =0 7.

12
T S _T
a( c+aC§5 c]

Below T: , the equilibrium value of Q is obtained by applying the equilibrium condition,
0G/dQ =0, to equation 15, giving:

0’ =%(Tf —T) (28).

Equation 18 can then be written in the form:
-1 *
X =a(T-T.)+3d(1; -7)

= za(T;“ - T) + a(T;“ - TC) 29)

and the renormalised elastic constant becomes:

A3
* *
2a(TC - T) + a(TC - TC)

Css = Css - (30).

' 2
The slopes, dCss/dT, below and above T: at small T: —T} are respectively —2a(C§5) / 2% and

2
a(Cg’S) / l% . As for the case of the driving order parameter being es, the measured value of Css

should go smoothly to zero as the equilibrium transition temperature is approached, with the ratio

of the slopes tending to 2:1. In this case the transition occurs at T: rather than at T, however, and
the form of the variation of Css given by equations 26 and 30 (illustrated in Fig. 5d) is quite
different from that given by equation 11 (illustrated in Fig. 5a). As an aside, it is worth pointing
out that, while Css is no longer identical to ;("1, it can still be thought of instructively as a probe
for the susceptibility of Q since it is linearly dependent on y (equation 24). The variations of Css
for tricritical (zero fourth-order term) and first-order transitions (negative fourth-order term) may
be derived by following the same lines of argument; they are shown schematically in Fig. Se and
Sf.

Bearing in mind that 7, represents the transition temperature for a transition driven by Q

with no strain coupling, a useful relationship between Cy, Css, T and T: is obtained by



Elastic-constant variations due to phase transitions 707

combining equations 16 and 26 to eliminate /l% /a (Feile et al., 1982; Knorr et al., 1986). In the
present example this yields (for 7> T¢):

*

T-T,

C55=C§5(T_T°] 3.
[

From one set of measurements of Css over a range of temperatures above 7 and an experimental

value of T, it is therefore possible (in principle) to extract values of Css and T¢. This expression

also provides a test of whether strain is the driving order parameter or a driven order parameter, in
*

T, - Tc

the sense that has been used here, since is a measure of the strength of the coupling

coefficient (equation 16).

Implicit in this treatment is the assumption that the response time of Q to some external
stimulus is small relative to the response time of the strain, es. There are actually two important
time scales involved, the first depending on the rate of structural relaxation with respect to Q and e,
and the second on the rate of thermal equilibration. When local regions of a crystal are deformed
during the passage of an acoustic wave in an ultrasonic experiment, for example, it is assumed that
there is time for internal atomic adjustments to occur according to relationships predicted from the
equilibrium dependence of Q on es. If Q involves only small atomic displacements in a soft optic
mode, this assumption is not unreasonable. Under these conditions there might not be time for
thermal equilibration on a local scale, however, so that, while the theory describes isothermal
behaviour, the experiment would give adiabatic behaviour. Under most circumstances the
difference between isothermal and adiabatic limits is small (see section 5 below), and this is not a
serious issue. On the other hand, if the relaxation with respect to Q involves a relatively slow’
process with some significant activation energy, the assumption of structural equilibration will be
invalid, and equations 26, 30 and 31 will not provide an adequate description of the elastic
properties. Strictly speaking, the predicted (isothermal) elastic-constant variations will only be
matched by data from static or very-low-frequency experiments (e.g. Schranz & Havlik, 1994).

Behaviour of this overall type, involving bilinear strain/order-parameter coupling, falls into
the category of pseudo-proper ferroelastic phase transitions according to Wadhawan (1982).
Clearly it represents a wide range of possibilities controlled by the strength of the coupling.

2.3 Quadratic coupling between strain and the driving order parameter

If a strain component and the driving order parameter have different symmetries, i.e. they are
associated with different irreducible representations of the space group of the high-symmetry
phase, the coupling between them will usually be linear in the strain and quadratic in the order
parameter. For the illustrative orthorhombic = monoclinic transition being considered here, two
situations can be envisaged. Since all macroscopic strains are associated with the Brillouin zone
centre, any driving order parameter associated with some other point in the Brillouin zone, to give
a doubling of the unit cell, for example, must have different symmetry. Coupling with the
symmetry-breaking strain, es, would then be of the form AeSQz, and, in relation to the categories

of Wadhawan (1982), this would be described as improper ferroelastic behaviour. Alternatively,
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when the driving order parameter is es, coupling to a non-symmetry-breaking strain, e,sp, will be
of the form Aepg e? since the two strains are associated with different representations.

For the case of a zone-boundary transition, an additional consideration is that the
degeneracy of the order parameter may increase relative to that of a related zone-centre transition.
If such a degeneracy arises, the specific terms allowed by symmetry depend on the exact change in
space group. The usual symmetry rule still applies, namely that each term in the expansion must be

" invariant with respect to all symmetry operations of the space group of the high-symmetry phase.
However, the formal group-theoretical manipulations are not straightforward. Illustrations of the
necessary steps are provided by Dvorak (1971), Torres (1975) and Hatch (1981). A useful
starting point for any system of interest is provided by the tables of Stokes & Hatch (1988),
though a compilation of all allowed coupling terms is not yet available.

As an example of a zone-boundary transition, the symmetry change Pmma = P2/c has
been chosen, somewhat arbitrarily. From the tables of Stokes & Hatch (1988), this symmetry
change is seen to be associated with the X point of the Brillouin zone, giving a doubling of the
unit-cell dimension in the direction of the x-axis of the orthorhombic lattice. The order parameter is
two-dimensional and the free-energy expansion must be written in terms of components ¢; and g5
in place of Q. Considering only one strain, es, the excess free energy may be written as (from
Stokes & Hatch, 1988, and Hatch, pers. comm.):

G= %a(T—’ T.)a +q%)+ib’(q12 +g3) +%”"(‘114 +a3)

1
+ses(at - a3)+ C5se3 32).

In this case, the problem is simplified by the fact that one component of the order
parameter remains zero in the monoclinic phase. The final form of the predicted elastic constants is
not compromised if g = 0 is assumed from the start. Equation 32 can then be reduced to:

G= %a(T—- T.)0* +%va4 + AsesQ? +%C§’ses2 33)

where b=b"+b", Q* =(q12+q%), and ¢ = 0.

At equilibrium the value of Q under the influence of the strain coupling is given by:

g_g =0=a(T-T,)0+50> +2A5e50 (34).
Hence, Q =0, or:
Q2 - (a(Tc - Tb)— 2),56’5 ] (35)

Expressing the excess free energy in terms of es alone gives, for T < T:


file:///b/q/

Elastic-constant variations due to phase transitions 709

1
==a(T-T -
6=z “)[ b 4 b

T,-T)-2A
+15e5[“( € g 5e5}+%C§’5e52 (36).

a(T, = T) - 2Ases } L] b{a(Tc ~T)-2Ases T

For transitions in which changes in Q are rapid relative to changes in es, Css is given by the
second derivative of G (equation 36) with respect to es:

Yoo - (@t T<T) 37).

Since Q =0 at T > T¢, the excess free energy would simply become:
G= —;:Cgseg (38)
and the second derivative with respect to es is:

Css = 2 =G (39).

At T = T, therefore, there should be a step in the elastic constant Css with no softening in
anticipation of the transition as T, is approached from either the high-temperature or the low-
temperature side (Fig. 5g). ‘

The algebra becomes more complicated for a tricritical transition, but the general solution
discussed in a later section (equation 79) yields an expected temperature dependence for Css of the
form (at T < T¢):

oy

T b+2c0? (40)

Css = C§’5

as illustrated in Fig. 5h. Here c is the coefficient of the sixth-order term in Q, and the fourth-order
coefficient, b*, as renormalised by the coupling between 0? and es (b* =b-21? / Css ), is zero.
A schematic representation of the possible behaviour of Css at a first-order transition is illustrated
in Fig. 5i.

The non-symmetry-breaking strains e, e; and e3 can be added to equation 32. Because
they couple with q12 + q22, it follows that Cy1, Csz, C33, C13, C13, C23 would also show a step at
T = T, for a second-order transition. C5, C,5 and C;5 are constrained by symmetry to be zero in

the orthorhombic phase but may be non-zero in the monoclinic phase, when they should show
variations that are qualitatively similar to those of Css. In all cases, of course, the precise values of
the elastic constants in the monoclinic phase would depend on the signs and magnitudes of the
relevant coefficients.
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The alternative situation in which quadratic coupling arises is when es is the driving order
parameter for the transition and there is also a non-symmetry-breaking strain, such as e;. In this
case, the excess free energy becomes:

G=—;-a(T—-TC)e52 +%be§‘ +lle1e52 +%C1°1e12 (41).

Here the coupling coefficient A; is also proportional to the third-order elastic constant Ciss
(Tolédano et al., 1983).

The elastic constant Css remains the inverse susceptibility of the crystal with respect to es
but is now:

2
Css =ge—5G2=a(T—TC)=a(T—TC)+3be52 +20e; “2).

Under equilibrium conditions the crystal is stress free and the condition dG/de; = 0 yields:

M 2
€ =——¢5 (43).
et
Substituting this into equation 41 and manipulating terms in e§ gives, for the renormalised fourth-
order coefficient:
2
b =b- 2’/}} (44)
G
and, for the equilibrium variation of es at T < 7¢ in a second-order transition:
a
et =—(T,-T7) (45).
b
The temperature dependence of Css derived from equation 42 is then:
Css=a(T-T,) (atT>T) (46)
b
Css=2a—(T.-T) (atT<T) 7.
b

Thus, due to the non-symmetry-breaking strain ey, the ratio of slopes for Css below and above T,
in Fig. 4a becomes Z(b/ b ):1 instead of 2:1.



Elastic-constant variations due to phase transitions 711

At a tricritical transition a sixth-order term, %ceg, is needed in equation 41 and b = 0,

el = (afc)(T. - T). Above T, Css behaves as in equation 46, but for T < T, it can easily be
shown that:

Css =4ces +2bed

2 1
=4a(T, - T)+ 4C)°1 [ﬁ(Tc - T)]A (48).
C

0
11

The behaviour illustrated in Fig. 5b is therefore modified by a non-linearity in the stability field of
the monoclinic phase, the magnitude of which depends on A;.

Whatever the thermodynamic character of the transition, the variation of Cj; is given
simply by:

C11=87= 11 49

with no anomaly predicted. Other elastic constants can be derived as easily, with Cs, for example
being given by:

0%G
Ce=——-—-=21 50).
15 aelaeS 165 ( )

This produces variations of the form illustrated in Fig. 5j, k, 1 for second-order, tricritical and
first-order transitions, respectively. Cjs is strictly zero in an orthorhombic crystal.

2.4 Simultaneous linear and quadratic coupling of strain components to the
driving order parameter

For an orthorhombic = monoclinic transition driven by Q in a real crystal there would almost
certainly be both a symmetry-breaking strain, es, and non-symmetry-breaking strains, ej, e; and
e3. Again using only es and e; for simplicity, the free-energy expansion for a second-order
transition is:

G= %a(T— T.)Q + ibQ‘t + a0’ + ’15e5Q+%C101912 + %Cgsesz (D)

where es and Q are both associated with the active representation.

From all the preceding examples, the physical origin of the elastic-constant renormalisation
should be apparent. Rather than follow the same approach, which becomes increasingly more
laborious as strain terms are added, a general mathematical solution given towards the end of this
section is anticipated and the behaviour of Css, C;; and C;s5 are merely quoted here without
derivation. For the free-energy expansion in equation 51 the renormalised elastic constants are
expected to behave as:
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Css = €5 — A2y (52) Ci1 = Chy -4210°x (53)
Cis =—20As0x (54).

Here the order-parameter susceptibility is itself renormalised by the coupling between e; and 0?
such that, from equation 51:

o _9%G

_W=a(T—TC)+3bQ2 +21161 (55)

which, after the usual substitutions, yields for a second-order transition:

x'=a(T-T,) (at T>T: ) (56)
P =2a—bl—:7(T:-—T )+a(T:—Tc) (atT<Tf) (57).

This gives, for 7> T: :

3

Css = C3s5 - oT-1.)
c

(38) Ch=C (59)

Cs=0 (60).

At T < T: , the equilibrium value of Q depends on the renormalised values of 7. and the
renormalised value of b as Q° = (a/ b*)(T : -T ) which may be substituted into equations 52 —
54, together with the susceptibility given in equation 57, to obtain Css, C11 and Cjs5. Css behaves
as shown in Fig. 5d except that the ratio of the slopes as 7 — T: is 2( b/ b ):1 rather than 2:1.
C11 does not have a step of the form shown in Fig. 5g, but varies continuously through T: as in
Fig. Sm. C15 decreases continuously to zero at T = T: , though more steeply than shown in Fig.
5j.

At a wicitical wransidon, b* = 0, Q*=(a/c)(1~T) and y'=da(r} -]+

Y
(41% / Cf’l)[(a/c)(T: - T)] ’ +a(T;l< —Tc), which can be substituted into equations 52 — 54 to

predict the variations of Css, C1; and Cjs. Schematic representations of Cp; at tricritical and first-
order transitions are shown in Fig. 5n and 5o, respectively.
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2.5 Other couplings

In principle, the correct free-energy expansion to describe a phase transition should always contain
all six of the possible strain components. Usually these are incorporated in the lowest-order form
allowed by symmetry, and higher-order terms are assumed to be negligibly small in comparison.
As discussed above, in the case of an orthorhombic = monoclinic transition where the active
representation is associated with the Brillouin zone centre, the symmetry-breaking strain, es,
couples with Q. The non-symmetry-breaking strains, e, e; and e3, which are associated with the
identity representation, each couple with Q2. To show how the remaining two strain components,
e4 and eg, contribute to the transition it is necessary first to examine the irreducible representations
of the point group of the high-symmetry phase.

The condition for any term appearing in the Landau expansion is that it must be invariant
with respect to all symmetry operations of the high-symmetry space group, or, in other words, the
product of the related irreducible representations must contain the identity representation. For a
zone-centre transition involving the symmetry change mmm = 2/m, the active representation is
By when the retained diad is parallel to the crystallographic y-axis (Table 2). Thus the symmetry
of a term in e5Q is Bog ® By, which necessarily contains the identity representation Ag. Similarly,
the symmetry of terms in elQZ, e2Q2 and e3Q2 is Ag ® Byg ® By which, again, necessarily
contains the identity representation. The remaining strain components, e4 and e, are associated
with B3g and B4 respectively (Table 2), and the lowest-order coupling terms in e4 or eg allowed
by symmetry have the form e20? and ZQ?. [B3; ® B3, ® By, ® By, and B1y ® By ® By, ®
By, obviously contain Ag]. It is always necessary to check other possibilities, however, and in
this case B1g ® B3g = Byg. Thus a term in e4eQ is also invariant and is allowed in the free-energy
expansion. The full free-energy expansion of the transition with Q as the driving order parameter
should therefore be:

G=1
2 1 1
+14€50° + Ae20° + Areses 0+ 2 Cheer += . Coel (61).
ik=1-3 i=4-6

a(T-T,)0* + %bQ“ + 216,07 + Apey0% + A3630% + AsesQ

Table 2. Irreducible representations and basis functions for point group mmm. Only basis functions up to second
order are shown. Individual strain components are related to the basis functions as: x2 — e;, y2 — e,, 22 = e3, ¥z
—> ey, X7 — €5, Xy — e6. R,, R, and R, relate to properties which involve rotations about the principle axes, such
as optical activity; x, y and z become polar properties.

E Cz Cz C2 i (6 (s (o) Basis
[001] [010] [100] (001) (010) (100) functions

A, 1 1 1 1 1 1 1 1 x2,y2, 72
Big 1 1 -1 -1 1 1 -1 -1 R,, xy
By, 1 -1 1 -1 1 - 1 ~1 Ry, xz
B3, 1 -1 -1 1 1 - -1 1 Ry, yz
Ay 1 1 1 1 -1 - -1 -1
Biu | 1 -1 -1 41 -1 1 1 z
By 1 -1 1 -1 a1 1 -1 1 y
Bz, 1| -l -1 1 -1 1 1 -1 x
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The terms in ¢*Q? are frequently not specified because they are expected to be small. They are
significant in some materials, however, including, for example, K,SeO4 (Cho & Yagi, 1981;
Cummins, 1983) and quartz (Liithi & Rehwald, 1981).

Under equilibrium conditions the crystal must be at a free-energy minimum with respect to
e4 and eg, giving:

G

5 =0= 22.4¢40% + X760+ Cpes (62)

€4

and

g—G =0=2Age60Q% + Aye,Q+ Coeeg (63)
€6

for which the only solution is, as expected for a monoclinic crystal, e4 = eg = 0. The second
derivatives are:

%G %G
S 20407 +Cy (64) 307" 2260" + Cgs (65)
%G
= 66).
de,des ArQ 0

These are independent of e4 and eg and are not constrained to be zero. By inspection of equation
61 it is in fact evident that the renormalised elastic constants C44, Cgg and Cyg could have been
given directly as:

Cau = C24 +22,0° (67) Ces = C +270 (68)
Ca6 =170 (69).

Such variations of C44, Cgg and Cyg are illustrated for second-order, tricritical and first-order
transitions in Fig. 5p-u. Again the precise values of the elastic constants depend on the signs and
magnitudes of the coupling coefficients A4, Ag and A7.

These coupling terms clearly do not have any influence on the minima of the free-energy
expansion describing a transition, and need not be considered in an analysis either of the
equilibrium free energy or of the equilibrium values of Q, e;, ez, e3 or es, therefore. Their
influence is only in modifying the shape of the free-energy function away from the equilibrium
point and, hence, in renormalising some of the elastic constants.

2.6 Temperature-dependent coupling coefficients

In Landau theory the excess entropy due to a phase transition driven by some order parameter Q is
taken as being proportional to Q?, and the coefficient of the second-order term in the free-energy
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expansion is made explicitly temperature dependent as -%a(T -T, )Qz. If the transition is driven by
a symmetry-breaking strain, such as es in the preceding discussions, the equivalent term is
1a(T - T,)e? and it i the elastic constants which are explicitly temperature dependent. These two
cases correspond to two extremes — either Q or es drives the transition. The coupling term AsesQ

also has the same form, however, and might be temperature dependent in the same manner, i.e.
with A5 = A5(T - T), where A5 is a constant. The driving mechanism would be ascribed to the

temperature dependence of the coupling coefficient and not to either of Q% or e%. Equation 24 can
be adapted to give Css as:

Css = C3s —[A5(T - Tc)]zl (70)

where ¥ may or may not be explicitly temperature dependent. The behaviour of Css would be
quite different from the previous examples and, although this point is not considered further in this
paper, equations of the form of equation 70 provide a basis for predicting the elastic behaviour of
such systems.

Following the same line of reasoning, it is not expected that the coefficients of coupling
terms with the form AeQ? would be strongly temperature dependent since they contribute only to
the fourth-order Landau terms.

2.7 General solutions

In summary, it is evident that the elastic constants of a material vary at a phase transition in a
manner that is highly sensitive to the transition mechanism. Three mechanisms, in particular, have
been considered: (i) strain as the driving order parameter at a purely elastic instability, (ii) some
structural feature other than strain acting as the driving parameter, and (iii) a temperature
dependence of the coupling between strain and some other structural feature. In each case, a full
set of elastic-constant measurements through a transition would show some pattern characteristic
of mechanism and thermodynamic character. While the underlying causes of this sensitivity can be
understood by following the step by step approach adopted up to this point, it is fortunately not
necessary to follow every step for every material of interest. A general solution can be used to
predict the same effects more economically.
By definition a second-order elastic constant is given by:

0’G
C, =
ik ae,-aek

(71).

When G is expressed purely in terms of strains, this double differentiation gives the elastic
constants directly. All relaxations of the crystal, when a stress is applied, are accounted for
explicitly. For example, if the excess free energy is written in terms of elastic energies and a
coupling energy, equation 41 can be written as:

G= %Csseg +Aeres + % Chief +Ciseres 72
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The bare elastic constant Cps has been added for completeness, although it is strictly zero by
symmetry. A stress, 05, produces strains according to:

Os = 'aa'g' = Csses +2A4,¢165 + Clsey )
€s

Css is the constant of proportionality for es and the additional relaxation, e, is accounted for by
the elastic constant Cys (which is given by 5 +2A.es =2A,es; equation 50). When the same
stress is applied to a crystal with es coupled to Q, the relaxation of Q is not accounted for in the
same way. The inverse susceptibility of the crystal with respect to es, i.e. Css, now also involves
the susceptibility of the crystal with respect to Q.

To find a general solution for systems driven by Q, it is convenient to take a general
expression for the excess free energy as a function of Q and a strain e, G(Q,e). The first derivative
of this with respect to e is:

dG _a_G_ 9G 90
de Qe aQ de (74).

Here the second term on the right-hand side is zero under equilibrium conditions because
9dG/3dQ =0, though dQ/de is not zero. Any elastic constant is then:

d’G _d (dG) 82G 3°G 90
C= 75).

a4 de e aeaQ de (75)
dQ/de is found by considering the derivative:
d (oG %G a_zg 9Q (76)
e\ 3¢ ) 9ea0 T 907 de
which, taking dG/dQ = 0, is also equal to zero. Thus:

-1

30 __0%G (%G
de  0edQ [E)QZ 7.
Substituting for dQ/de in equation 75 then gives:

2’6 %G (#c)" ¥%G
€=% 30 (agzj 900 (78).

This is the general result for a transition with a driving order parameter which is not a strain, as
first obtained by Slonczewski & Thomas (1970). 92G/de? is the inverse susceptibility of the

crystal with respect to strain alone, i.e. the unrenormalised or bare elastic constant Cj;. The terms
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-1
in 9%G/dedQ incorporate the coupling between e and Q, while (BzG/ aQZ) is the order-

parameter susceptibility, Y.
For standard applications, equation 78 is usually written in a form such as:

2 2 )
BG_( aG) G 9

Cyp=C3 - .

! : mE,:l aeian anaQn aekaQn
where, for m = n, Q,, and Q,, are the same order parameter, and, for m # n, Q,, and O, might be
two discrete order parameters or two components of a single order parameter. This equation yields
elastic-constant variations in a quite straightforward manner. Some useful expressions for 27! at
second-order transitions are listed in Table 3.

Table 3. Order-parameter susceptibilities for second-order transitions with a single, one-component order parameter.
ey, is the symmetry-breaking strain, e,g, is a non-symmetry-breaking strain.

Role of ey Value x!
of ensp
. a(T-T,) at T>T,
driving order parameter 0 { 20 ( T, - T) =9 beszb at T<T,

(a(T-T,) at T>T,
" " " 20 |, ,
2ab—*(TC—T)=2besb at T<T,

( *
oT-T,) at T>T,

% % *
2a(Tc —T)+a(Tc -—Tc) at T<T,
oT-T,) at T>T,

1, b (. * * *
2a—*(Tc —T)+a(Tc —Tc) at T<T,
b

(a(T-T,) at T>T,

quadratically coupled to Q (AesQ) ~ #0 )
2a—(T,~T)=2bQ* at T<T,
L b

3. Criteria for stability with respect to elastic lattice distortions

For a crystal to be in an equilibrium state, its free energy must be at a minimum with respect to any
distortion. In other words, the elastic energy, %Zc,.ke,.ek , must be positive for all strains e;, e;.
ik
This requires, formally, that the elastic-constant matrix is positive definite (Born & Huang, 1954).
An identical expression of the stability condition is that all the eigenvalues of the elastic-constant
matrix must be positive. Should one (or more) of the eigenvalues go to zero the crystal will



718 M.A. Carpenter, E.K.H. Salje

become unstable with respect to some spontaneous lattice distortion (Boccara, 1968; Cowley,
1976; McLellan, 1980; Liakos & Saunders, 1982). The resulting strains have the symmetry of the
corresponding eigenvector(s). A simple set of stability criteria based on the properties of the Cj;
matrix may therefore be derived. For this, the diagonalised form of the elastic-constant matrix is of
more practical use than its conventional form. In the following sections, a brief outline of the
symmetry properties of the elastic constants is given, before returning to the criteria for stability. It
can also be convenient, when writing out Landau expansions, to express strains and elastic
energies in their symmetry-adapted forms.

3.1 Symmetry properties of the elastic-constant matrix

Elastic properties are centrosymmetric since they do not depend on whether the stress in a given
direction is positive or negative (compressional or tensile). Rather than having to deal with
different sets of elastic constants for all thirty-two crystallographic point groups, it is therefore
necessary only to consider the eleven Laue classes. The second-order elastic constants allowed by
symmetry for Laue classes m3 and m3m are the same, however, as are those for Laue classes 6/m
and 6/mmm, which reduces the number of distinct matrices to nine. These are given in many
standard texts (e.g. Nye, 1985), and each is a real, symmetric 6 x 6 matrix with six eigenvalues
that are also real. Associated with each eigenvalue is at least one eigenvector. The eigenvectors are,
or can be chosen to be, orthogonal to each other. They have six components which may be
understood most easily in terms of their relationship to the six components of the strain tensor.
Each eigenvector has a symmetry which is specified by reference to the irreducible representations
of the thirty-two crystallographic point groups. In the present context of trying to understand
elastic anomalies at structural phase transitions, it is not necessary to be able to derive all the
eigenvalues and eigenvectors. They are tabulated and discussed in detail elsewhere (e.g. Boccara,
1968; McLellan, 1980; Liakos & Saunders, 1982; David, 1983a; Nye, 1985; Terhune et al., 1985;
Bulou, 1992; Bulou et al., 1992).

The most_significant aspects of the symmetry constraints may be illustrated with two
examples, m3m and 422, as the point-group symmetry of a parent crystal. For a cubic crystal the
conventional form of the second-order elastic-constant matrix is:

G Gy Gy O
G, G G O
G, G G O
0 0 0 Cy
0 0 0 0 Cu
0 0 0 0 0 Cy

S © O O
S © o ©

(=]

Diagonalisation yields:
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G, +2Cp, 0 0 0 0 0
0 G -G, 0 0 0 0
0 0 C;-CG, 0 0 0
0 0 0 Cyu 0 0
0 0 0 0 Cyu O
0 0 0 0 0 Cy

The eigenvectors and their corresponding irreducible representation labels are given in Table 4.
The eigenvalue (C;; +2Cj,) is associated with the eigenvector (-\71_3—,%,—‘71—3—,0,0,0), which has the

symmetry of the identity representation, Ag. The six components of the eigenvector scale as the
six strains, e] — eg, so that the equivalent spontaneous strain becomes e, = }/1—'3‘(el +ey+e;) inits
symmetry-adapted form. This is a pure volume strain. There are two degenerate eigenvalues
associated with eigenvectors with Eg symmetry and three degenerate eigenvalues associated with
T, eigenvectors. The symmetry-adapted spontaneous strains describe orthorhombic distortions,
€= 71-2—(e1 —ey), or tetragonal distortions, e, = -J=(2e3 — e, —e, ), for the former, and trigonal (D
=E=F, e4=e5 = eg), monoclinic (D = E# F, eq = e5 # eg) or triclinic distortions (D# E # F, ey
# e5 # eg) for the latter. The coefficients D, E and F (introduced in Table 4) are related by D2 + E2
+ F2 =1, and are needed to ensure that the eigenvectors have unit length.

Table 4. Symmetry-adapted elastic constants (eigenvalues) and strains (from the eigenvectors) of the elastic constant
matrix for point group m3m. Note: A2+ B2=D2+E?+ F2=1.

Irreducible Eigenvalue Eigenvector Symmetry-adapted
representation spontaneous strain
Ajg C11 +2C12 (—%%%000) e="(e+er+e)
E {C“ -—CIZ A(%7_%’0’0’0’0) eO =—,\/%(e1 —e2)
g

Ci~Co B4, %.000) e =k(2e-c1-e))

Cys D(0,0,0,1,0,0) ey4

Tog Cyu E(0,0,0,0,1,0) es

Cas F(0,0,0,0,0,1) €6

The most obvious difference for a parent crystal with symmetry less than m3m is that some
of the eigenvalues are not such simple functions of the standard elastic constants. For a tetragonal
crystal with point group 422 (Laue class 4/mmm), the eigenvalues of the elastic-constant matrix
are (C“ - Clz), Ce6, C44, Ca4 and the eigenvalues of a submatrix:

Ci+Cy V2C;
V2G5 Cs3
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which are:

1 %
7 (C11+C12+C33)+[(C11+C12‘C33) +8C13]
and

1 2 2 V2
7 (Cu+C12+C33)‘[(C11+C12—C33) +8C13]

(Table 5). The coefficients &, a’, B and B’ in Table 5 describe the eigenvectors. They are
constrained by 20r% + 2 = 20’ + B’% =1 to ensure, again, that the eigenvectors have unit length.
An additional constraint, 2cet” + Bf” = 0, ensures that the two A; eigenvectors are orthogonal.

Table 5. Symmetry-adapted elastic constants (eigenvalues) and strains (from the eigenvectors) of the elastic constant
matrix for point group 422 (Laue class 4/mmm). Note: 20> + 8% =22 + B2 =1,2aa’ + BB’'=0, A2 + B2 =
1. A semi-colon is placed between two strains to signify that, although they have the same symmetry, they would
develop in different proportions according to the values of the coefficients &, 8, @’ and §’.

Irreducible Eigenvalue Eigenvector Symmetry-
representation adapted
spontaneous
strain
A 1[G+ G+ Gys) b (wap o )
1 ~ 2 2 o, 0, ,07090 € +€2 > €3
2 ‘[(C11+C12"C33) +86‘123]
A 1[G+ G+ Gas) ( )
1 = a a’,°,0,0,0 ej+e); e
2 + [(Cll + C12 - C33 + SC ]/ ﬁ ) ! z 3
B, G- Cin (5.-5.0.0,00) €, = (e; - e,)
B, Ces (0,0,0,0,0,1) e
E Cy A(0,0,0,1,0,0) ey4
Cyy B(0,0,0,0,1,0) es

For parent crystals with still lower symmetry, some of the eigenvalues and eigenvectors
become algebraically more complex in a similar manner, but the essential features remain the same.
The eigenvectors are of less practical use than the symmetry-adapted strains which are derived
from them. Note, however, that the parameters A, B..., «, B ..., refer to real properties of a
material. The values of coefficients specified here by capital letters determine the symmetry of the
product structure at the instability due to a degenerate eigenvector. They determine, for example,
whether a crystal becomes orthorhombic or tetragonal at an Eg instability in a cubic crystal. Values
of the coefficients specified by greek letters characterise the relative magnitudes of two (or more)
strains with the same symmetry belonging to non-degenerate representations.
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3.2 Stability criteria

Stability with respect to spontaneous elastic distortions can be assessed by inspection of the
eigenvalues of the relevant elastic-constant matrix. Thus, if (C;; — €, ) became zero with pressure
or temperature, a cubic crystal would be expected to deform spontaneously to an orthorhombic or
tetragonal form (Table 4). In this case the active representation for the transition is Eg. If Cyq
became zero the crystal would become unstable with respect to shearing, leading to trigonal,
monoclinic or triclinic states, with Ty as the active representation. Similarly, a spontaneous
volume change, in excess of the normal effects of thermal expansion, would occur if (C;; +2C)

became zero, though this would not involve a change in symmetry. For a tetragonal crystal with
point group 422 (Table 5) the condition (C;; — Cj;) — 0 would lead to the development of an
orthorhombic form (B, or B; active), and C44 — 0 would yield a monoclinic form forA # 0, B =
0(e4#0,e5=0),orA=0,B#0(e4=0,e5#0),or A =-B #0 (e4 =—es5 # 0), and a triclinic
form for A # B # 0 (e4 # es # 0). Rather than using the eigenvalues to predict elastic stability
limits with respect to A; strains, however, it is simpler to refer to the determinant of the submatrix
(the determinant of a matrix equals the product of its eigenvalues). Thus, considering the
submatrix given in the previous section, if (Cj; + Cj3)Cs3 ~2Ck tended to zero, a tetragonal
crystal would become unstable with respect to an A; (non-symmetry-breaking) strain. This is the
same limiting condition as for the full A; eigenvalue. It is unlikely that two or more eigenvalues of
the elastic-constant matrix which are not related by symmetry would tend to zero simultaneously in
areal material.

These elastic stability criteria are summarised for all possible symmetry changes in Table 6
(after: Boccara, 1968; Cowley, 1976; Liakos & Saunders, 1982; Terhune et al., 1985; Bulou,
1992). Note that, more often than not, it is a combination of elastic constants and not the value of
an individual elastic constant that determines whether an elastic instability develops. Also, while
the diagonal elements, C;;, of the conventional elastic-constant matrix must be positive for
stability, the off-diagonal elements, Cj; (i # k) need not be. In the limiting case of a triclinic
crystal, the general stability condition with respect to any elastic distortion reduces to the
requirement that the determinant of the full elastic-constant matrix remains positive. If an elastic
instability point of this type is reached, the low-symmetry form of the crystal remains triclinic, but
has a different unit cell.

Instabilities determined by elastic effects of this type are approached both when the
spontaneous strain acts as the driving order parameter and when it is linearly coupled to a different
driving order parameter. The symmetry-adapted elastic constant might go to zero (or at least
become very small) at the equilibrium transition temperature if the transition is thermodynamically
continuous. For first-order transitions, the symmetry change certainly occurs before the eigenvalue
reaches zero, though the relevant elastic constants would be expected to show significant softening
as the transition is approached. On the other hand, as will be seen, if the transition is driven by an
order parameter which couples with strain as AeQ?, the nature of the primary elastic anomaly is
rather different.



Table 6. Elastic stability limits for proper and pseudo-proper ferroelastic phase transitions: symmetry, strain, soft-acoustic-mode orientations and velocities (modified
after Cowley, 1976, and Terhune et al., 1985; see, also, Liakos & Saunders, 1982).

Representation  Spontaneous strains! Stability limit? Transition  Orientation of soft pv2 for soft acoustic modeS
Ci—0) type3 acoustic mode4
Cubic classes
Ay eg=ey=¢ Ci1+2C, 0 - -
E o =—e,, e3=—2¢; =-2e, Cii—Cip I g//[110], u//[170] 3(Cu - Cio)
T, ey, €5, € Cag I q-1[100], ©//[100] Cuy
Hexagonal classes
24, e =e; e (Ci1 +Cip)Cy —2CT 0 - -
E; e =-e, € Ci-Cp i G.L[001], @1[001] & § 1€ -Ga)
E; €y, es Cas I g1[001], @//1001] Cus
Trigonal classes 32, §m, 3m
2A, e =e; e (Cii+Cia)Cx —2CT 0 - -
_ , 2 - I 1[(Ci— G +2C4)
2E =" %63 6 (G~ Cia)Cus - 2Cis ! ¢Llootl, 1 ' Z{ —[(Cn -C —2(1'44)2 +16C124]%}
Trigonal classes 3, 3
2A e =€ e (Ci1+Cip)Ca3 —2CT 0 - -
2E e, =—ey, €; €4, €5 (Ci1 = Ci2)Cua I Gl[001], #Lg 1 (Cui = Ciz +2Cu) 2 %
-2C% -2C% 4| ~[(ci-Cr-2Cu) +16(ck + C&)]
Tetragonal classes 4mm, 42m, 422, 4/mmm
244 e =ey e (€1 +Cip)Cy3 —2Ch 0 - -
B, e =—e, C-Cpy I /1101, @/110] HCu-Gp)
B, eg Ces I q//[100], @//[010] Ces
E ey, €s Cas I g1[001], @//[001] Cys4

L

affes "H Y H ‘uedie) VN



Tetragonal classes 4, 4, 4/m

2A e =e; €3 (Ciy +Cia)C33 - 2Cy 0 - -
G- Gy +2C, )
- - - 1 ( 11~ C12 66
2B e =—¢€; ¢ (C“ - C12)C66 _2C126 I ql[OOI], u-L[OOI] & q —_ 2 VA
4] -[(cu-Cia—2Cq) +16CK]
E ey, €5 Cys I g1[001], ©//[001] Cu
Orthorhombic classes
3A1 €5 €, €3 Kl 0 - -
B, €6 Ces I q//10101, &//[100] Ces
B, es Css I q//[1001, u//[001] Css
B3 é4 C44 I q//[OOI], l_l'//[OIO] C44
Monoclinic classes
4A e;; €y; €3; e K> 0 - -
2B €4 € C44Ces — Cis I g//1010], &1[010] & g %{(C44 +Ces) — [(c44 ~Ces)* + 4036]%}
Triclinic classes
6A e); e); e3; ey4; es; € K3 0 - -

K;=detlCyl, i,k<3; Kp=detlCyl, i,k<3or5; Kz=detlCyl, i,k<6

Notes:

1. Degenerate strains in each class are separated by a comma; non-degenerate strains which have the same symmetry as each other are separated by a semi-colon.

2. Under "stability limit" is the combination of elastic constants, derived from the relevant eigenvalue of the elastic constant matrix, which tends to zero at the transition
point.

3. "Transition type" refers to the classification scheme of Cowley (1976): 0, no acoustic mode can give the required strain; I, g and % of the soft acoustic mode are restricted
to specific directions; II, § of the soft acoustic mode is restricted to a specific direction but # is unrestricted within a specific plane (or vice-versa).

4. Only one orientation of the soft mode is specified; others may be derived by interchanging g and #, and by considering all symmetry-related directions. For trigonal (2E),
tetragonal (2B) and monoclinic (2B) classes, the angles between § or # and a prominent crystallographic direction are functions of the elastic constants and are listed by
Terhune et al. (1985).

5. The set of soft-mode velocities has been derived from Table III of Bulou (1992).

suonsuel) aseyd 0} ANp SUOHBLIBA JUBISUOD-OTISE[H

€CL
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3.3 Symmetry-adapted elastic constants and elastic energies

‘When writing out a Landau free-energy expansion in full, use of symmetry-adapted strains can
simplify the task of specifying coupling terms in their invariant forms, and use of symmetry-
adapted elastic constants can lead to similar simplification of the elastic energy. In the case of a
transition m3m — 4/mmm, for example, the elastic energy is:

1

1 1
5 Y Cyeier = 3 Chel + 5 Ce}

ik

1 1 2 1 2
= 5(?11 +2C12)[7§"(e1 +e +€3)] +5(C11 - C12)[ﬁ(263 —e - ez)}
(80).

C, represents the Ajg eigenvalue, the symmetry-adapted elastic constant for the Ajg strain, and C;
is the E; eigenvalue corresponding to the symmetry-breaking strain e; (i.e. for A =0, B = 1 in
Table 4). These strains are often quoted as e, = e] + e, + e3 and e, = %(2@ —e —e,), as in
Carpenter et al. (1998a), for example, with the corresponding elastic constants then given as
1(G1+2Cy,) and 1(Cj; - Cpy). Placing of the scale factor either in expressions for the elastic

constants or for the strains is a matter of arbitrary choice.

Symmetry-adapted strains and elastic constants can be obtained by inspection of the
eigenvalues and eigenvectors for the elastic-constant matrix of the high-symmetry phase. For a
symmetry change 422 — 222, the active representation is B; and the symmetry-adapted elastic

2
energy due to the By strain would be +(C; - G 2)[% (e —ez )] . An equivalent simplification is

not achieved for the A; (non-symmetry breaking) elastic energy because of the algebraic
complexity of the eigenvalues and eigenvectors. In this case there might be some advantage in
making use of the submatrix to express the energy as:

l(el"'ez e)cll'*'cu V2G5 f—l—%
202 A V2as o )|

For lower-symmetry systems it may be more convenient simply to take the sum of individual
contributions, -;—Cuelz +%C12e1e2, etc.

4. Elastic instabilities and acoustic phonons

In the preceding sections, only macroscopic stresses and strains have been considered. The
velocities of acoustic waves in a crystal are also functions of the elastic constants, which means
that anomalous variations in the elastic properties are necessarily accompanied by anomalies in the
behaviour of the acoustic phonons. If an elastic constant, or symmetry-adapted combination of
elastic-constants, decreases (softens) to zero as the equilibrium transition point is approached from
above or below, the velocity of a related acoustic phonon, the soft acoustic mode, will also tend to
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zero. The mechanism of a ferroelastic transition may be thought of, on a mesoscopic length scale
(~10 — 1000 unit cells), as the freezing in of lattice distortions due to certain critical acoustic
waves, therefore. An additional consideration is that elastic constants are not usually determined
directly, but are often obtained by measuring the velocities of acoustic waves in a crystal of
interest.

In order to be more specific about the role played by acoustic phonons in phase transitions,
it is necessary to start with the relationship between acoustic-wave velocities and elastic constants.
Formal treatments of this relationship are given in a number of standard texts (see, for example,
Landau & Lifshitz, 1986, or Dove, 1993). A summary is presented here primarily to emphasise
that, although the criteria for predicting an elastic instability, based on the properties of the 6 x 6
elastic-constant matrix, are quite different from those used to predict the velocity, polarisation and
propagation direction of soft acoustic modes, based on the properties of a 3 x 3 dynamical matrix,
the mesoscopic and macroscopic pictures of a phase transition must be mutually consistent. On the
other hand, if some understanding of additional anomalous softening due to dynamical effects is
also sought, it is essential to consider processes at the mesoscopic or microscopic (atomistic)
length scale.

4.1 Orientation, polarisation and velocity of acoustic waves

Following Landau & Lifshitz (1986), the general equation of motion for elastic waves in a crystal
is given by:

paz“i("j) _90(x;)

81

where p is density and u; is the displacement which would be observed at a distance x; from the
origin in the direction of propagation of the wave, and ¢ is time. Summation over repeated indices,
1 -3, is implied both here and in the following equations, and four-figure suffix notation is used
for maximum clarity. A stress o;; is related to the strain e;; by Hooke's law which, for present
purposes, is written as:

O'ij(xj) = Czjklekl(xj) (82).

The strain ey, is defined by:

ouulx.
ey =—”§£j-‘f—) 83)
so that equation 81 becomes:

=C,
ot K ox 0%,
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One solution is:

ui(xj) =Uy; exp[i(qjxj - a)t)] (85)

where u,; is the amplitude and @ the frequency of the elastic wave, and g; is a component of its
wavevector, §. The normal usage of g; for a component of the order parameter and ¢; as the
component of a wavevector can, unfortunately, lead to some confusion. In this review, the
distinction is almost always clear from the context but is expressly stated wherever there might be
some doubt. Differentiation of equation 85 gives equation 84 in the form:

szui(x j) = Cjuq ﬂIuk(x j) (86)

which is the equation of motion of acoustic waves in a crystal for wavelengths that are large
relative to the unit-cell dimensions. The 3 x 3 matrix, z Ciju1q4; » represents the dynamical matrix
Jid

of Brillouin-zone-centre (§ — 0) acoustic phonons, and therefore governs the behaviour of soft
acoustic modes at proper or pseudoproper ferroelastic transitions. Note in passing that the elastic
constants, C;jx, considered here usually refer to adiabatic conditions. When motion occurs in a
deformed crystal, small temperature variations occur as functions of time and distance in the
crystal and it is generally assumed that the time scale of acoustic vibrations is short in comparison
with the time required for heat transfer and local thermal re-equilibration.

The equation of motion may be expressed in terms of acoustic-mode velocities, v, by
substituting v = @/|g| in equation 86 and normalising the wavevector, g, through the use of
direction cosines, n; (n; = g /|g], etc.). This yields, in its conventional form:

(Cl] ,njnl —pv25i,; )uk =0 (87)

. or, in the form due to Christoffel (see Musgrave, 1970):

Ty —pv28yly, =0 (88).

Here § is the Kroneker symbol, §;; = 1 for i = k and 6;; = O for i # k, and T'j; are quadratic
functions of the direction cosines, n;, with coefficients as specified in Table 7 (from Musgrave,
1970).

Equations 87 and 88 represent a set of three equations for the displacements %1, u and u3.
This is more easily visualised if the equations are written out in full as:

Al - pv2 00y 003 2]
oo,  Ay—pv? o0 [uy =0 (89)
003 0y 0y A3 - pv2 Uz



Elastic-constant variations due to phase transitions 727

where each of the new terms is defined in Table 7. The only non-zero solutions occur if the
determinant of the coefficients is zero, i.e.:

Det|l";, — pv28y|=0 (90)

in the Christoffel form. The three solutions for pv2 are the three eigenvalues of the matrix T .
Associated with these eigenvalues are three mutually perpendicular eigenvectors which determine
the displacement vectors, #. For any given direction in the crystal, as specified by a set of
direction cosines, ni, ny and n3, therefore, three velocities and three polarisation vectors are
obtained and these are the three modes of vibration for the chosen wave-propagation direction. In
high-symmetry directions, i.e. for waves propagating parallel to rotation or inversion-rotation
axes, the modes are purely longitudinal or purely transverse in character. For propagation
directions within a mirror plane one mode is purely transverse, with its displacement vector
perpendicular to the mirror plane; the other two modes are of mixed longitudinal/transverse
character. For arbitrary directions all three modes will generally be of mixed character, though
pure modes can occur in orientations which depend on the numerical values of the elastic constants
(Brugger, 1965; Vacher & Boyer, 1972).

Table 7. Coefficients for Equation 88 (from Musgrave, 1970).

n12 n% ng 2n,yn;, 2n3ny 2nyn,
' =4 Cii GCes Css Cse Cis Cie
22 = Az Ce6 Cr2 Cua Caa Cas Ca6
I3z = A3 Css  Caq Cs3 Cia Css Cis
Faz3=0a203 Cs¢ Cau Cis 1(Cu+Cy) 3(Ci+Cis)  2(Cos+Cy)
F=o103 Cis Cas Cis  3(C+Cys) L(Cz+Css)  1(Cu+Csg)
T2 =010 Cie Cae Cys %(CZS +C46) %(C14+C56) %(C12+C66)

In piezoelectric crystals, the analysis of acoustic-wave velocities derived from equation 90
has to include electrostriction because the lattice distortions due to the acoustic waves would give
rise to varying electric polarisation and, hence, to electric fields (David, 1983b).

4.2 Soft acoustic modes

The formal problem of identifying which acoustic mode might be expected to soften as an elastic
instability point is approached has now been reduced to finding the eigenvalue of the dynamical
matrix for a chosen direction of g which goes to zero simultaneously with the relevant eigenvalue
of the elastic-constant matrix. Aubry & Pick (1971) and David (1983b) proved that there is always
at least one purely transverse, zone-centre acoustic mode which should have zero velocity at any
elastic stability limit governed by the elastic-constant matrix, with the exception of the eigenvalue
associated with the identity representation. Three categories of behaviour can be illustrated using
the example of a cubic parent crystal, and making use of the eigenvalues quoted in Table 4 (see,
also, David, 1983b).
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For a phase transition giving a symmetry change m3m — 4/mmm the elastic stability limit
is given by (C“ - C12) — 0 (Eg symmetry, Table 4). From equation 88 it can easily be shown

that the velocity of the transverse acoustic mode with § /# [110] and # / [110] is
(1/2p)(Ci1 - C12). This mode would clearly go to zero velocity at the elastic stability limit. A

solution with G // [1 10] and # // [110] is equally valid, however, which means that the soft mode
consists of two mutually perpendicular transverse acoustic waves which possess identical
velocities and frequencies. By symmetry in a cubic crystal, equivalent pairs of modes must also
exist in each of the yz and xz planes. The strain at a cubic — tetragonal transition is produced by
two sets of these soft modes (4-fold axis retained), and the strain at a cubic — orthorhombic
transition is produced by all three. This is illustrated for one plane in Fig. 6. The spontaneous
strain is, of course, given by the Eg eigenvector of the elastic-constant matrix, as discussed above.

[001] [001]

]
)

[010] [010]

Fig. 6. A soft transverse acoustic mode acts as two mutually perpendicular waves to produce distortions which,
when frozen in, result in a loss of macroscopic symmetry. In this plane a square becomes a rectangle (after David,
1983b). The same form of distortion occurs simultaneously in two perpendicular planes at a transition m3m —
4/mmm or in three planes at a transition m3m — mmm.

For cubic — trigonal, cubic — monoclinic or cubic — triclinic transitions, the elastic
stability limit is given by C44 — O (active representation Tyg, Table 4). The corresponding soft
acoustic mode, with velocity 1/Cyy/p, has g // [100] and # in the plane perpendicular to [100].
Again, each soft mode operates as a mutually perpendicular pair of modes, and there are
symmetry-related modes in other planes. The spontaneous strains develop in an analogous manner
to the case illustrated in Fig. 6 (see David, 1983b).

Finally, the eigenvalue of the m3m elastic-constant matrix corresponding to Ay symmetry
(identity representation) is (CH + 2C12). There are, of course, no individual acoustic modes which
would go to zero as (Cj; +2Cj,) — 0. The spontaneous strain at such an elastic instability would
be a pure volume, non-symmetry-breaking strain and could not be directly responsible for any
change of symmetry.

The direction and polarisation of the soft acoustic mode associated with an elastic
instability is not always so simply related to the crystallographic axes. For a transition involving a
symmetry change 4/m — 2/m, for example, the relevant elastic-constant eigenvalue is

|}
%{(Cll - Clz + C66) - [(Cll - C12 - C66 )2 + 8C126]/2} (aCtiVe representation Bg, Table 6). This
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goes to zero simultaneously with a transverse acoustic ~mode that has
/s - -
pv2=%{(C11—C12+2C66)—[(C11—C12—2C66)2+16C126] 2} and both § and @ in the (001)

plane but not otherwise constrained by symmetry (Benyuan et al., 1981; David, 1983c; Cummins,
1983; Tokumoto & Unoki, 1983). The actual orientation of g is characterised by the angle 6
between g and the x-axis, [100]. Its numerical value depends explicitly on the elastic constants as
(Benyuan et al., 1981; David, 1983c; Cummins, 1983):

4C16

tan40 =
G — Gy —2C

1.

Note that if the ratio between Ci¢ and (Cjy—Cjp —2Cg) changes as a function of pressure,
temperature or chemical composition, the direction of the soft mode rotates in the (001) plane. A
mechanism for inducing this transition can again be thought of as the freezing in of displacements
due to two mutually perpendicular transverse acoustic waves (Fig. 7). Expressions equivalent to
equation 91 for the angles between soft-mode directions and prominent crystallographic directions
are listed by Terhune e al. (1985).

2

<

[010] [010]

A
1
1
1
1
|
Y B

[100] [100]

Fig. 7. A mutually perpendicular pair of transverse acoustic waves produces the distortion arising at a transition 4/m
— 2/m (after David, 1983c).

Although derived in different ways, the expressions for pv? and the critical elastic-
constant eigenvalue should have the same form. That they do not in the example used here and in
some trigonal systems, is a consequence of the convention used to reduce nine strains of the form
ejj (i, j= 1 - 3) to six of the form ¢; ({ = 1 - 6) and changing Cjjy; to Cj notation (Cummins,
1983; Terhune et al., 1985). Bulou (1992) has shown how the apparent discrepancy can be
resolved using an alternative convention. The value of pv2 for a soft acoustic mode (involving
pure shear strains) should be half the value of the critical elastic-constant eigenvalue (Cummins,
1983), though the comparison must be made using eigenvalues derived via the formal conventions
of Bulou (1992). This highlights the need to use the Voigt notation with care. A complete set of
expressions for pv? of the critical soft acoustic modes, using the normal conventions, is given in
Table 6.

One general and important conclusion which results from this type of discussion is that
those zone-centre acoustic modes which could (theoretically) have zero velocity at a second-order
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phase transition inevitably occur as pairs of mutually perpendicular modes even when the two
propagation directions are not related by crystallographic symmetry. The propagation and
displacement directions of one wave are respectively the displacement and propagation directions
of the other (Aubry & Pick, 1971; David, 1983c, 1984; Terhune ef al., 1985). The orientations of
transformation twins which arise at ferroelastic transitions are controlled by the same physical
effects, as may be understood from the following argument (from David, 1983c). Energy
minimisation requires that there should be no mismatch in lattice dimensions across the boundary
between two transformation twins. In the direction of propagation of a purely transverse distortion
there is also no change in the lattice dimension. As a result, the propagation direction of the soft
acoustic mode lies within the transformation twin plane. There are, however, two equally soft
(orthogonal) directions in the crystal as the transition point is approached and there must therefore
also be two mutually perpendicular twin planes. The soft-mode propagation directions lie at right
angles to the line of intersection of these twins, therefore. A useful corollary of this, pointed out
by David (1983c) and Cummins (1983), is that the orientation of the critical soft acoustic mode for
a ferroelastic transition in a crystal can always be found simply by locating the transformation twin
boundaries in that crystal.

The propagation directions and polarisation of all possible soft acoustic modes for phase
transitions associated with the Brillouin zone centre are given in Table 6 (after Cowley, 1976;
David, 1984; Terhune et al., 1985; Bulou, 1992). The classification scheme of Cowley (1976) has
also been used to distinguish between transitions in which the soft acoustic mode has different
dimensionality. Type I behaviour refers to transitions in which the wave vector, ¢, and the
displacement vector, i, of the soft acoustic mode are restricted to specific directions (a one-
dimensional soft mode). Type II behaviour refers to situations where g is restricted to specific
directions but # can be anywhere within the plane perpendicular to g (or vice versa). In this case
the soft acoustic mode is two-dimensional. One example of the former is 4/m — 2/m, and one
example of the latter is m3m — 2/m with T, as the active representation. Most natural ferroelastic
materials appear to be of type I, but a few examples of type II behaviour are known, the best
characterised of which occurs in NayCO3 (Harris ef al., 1993, 1995; Harris & Dove, 1995). Type
0 behaviour refers to the cases of eigenvalues associated with the identity representation going to
zero, when the resulting (non-symmetry-breaking) strains cannot be described in terms of any
acoustic phonons.

As with the analysis of elastic instabilities, this discussion is relevant only for transitions
involving symmetry changes associated with the I" point of the Brillouin zone (zone centre). The
velocities of acoustic modes with wavevectors other than close to the zone centre do not depend on
the elastic constants in the same way. Critical softening of an acoustic branch at the Brillouin zone
boundary might be accompanied by a slight softening of the same branch at the zone centre, but
this would be a property of specific materials and need not be a general phenomenon. The Landau
potentials used so far do not predict this type of softening unless, for example, the effects of
fluctuations are included. Schematic dispersion curves are shown in Fig. 8 to illustrate some
alternative situations.

4.3 Soft acoustic modes and the Landau free-energy expansion

If the driving mechanism for a phase transition is the softening of an acoustic mode, the excess
entropy is purely phononic with no further contributions from configurational effects. The
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(a) (®)
. %;CTC ® >>T:
T=T,
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T=T,

Fig. 8. Schematic dispersion curves illustrating possible softenings of a transverse acoustic mode for: (a) a zone-
centre transition, (b) a zone-boundary transition, (c) a zone-boundary transition with some softening at the zone
centre. The slope of the dispersion curve as g — 0 is ,/C,, /p - (0 = frequency, g = wavevector).

transition would be described in the physics literature as being "ideally" displacive. In this case,
the function describing the energetics of the elastic deformation in terms of atomic displacements,
the effective Hamiltonian (H,¢r), has the same form as the Landau-type Gibbs free energy (Salje et

al., 1991). Additional heterogeneities which are thermal in origin can be described by the
Ginzburg energy, %g(Ve)2 , so that the energy on an atomistic level becomes:

Hye = %c:.,se2 + i—be“ o+ -;—g(Ve)z 92).

Two types of heterogeneities due to thermal effects are possible. At T < T, small variations of e
locally in a structure will occur about the equilibrium value, but will not be large enough in
amplitude to exceed the central barrier in the double potential well of Hegs. The first two terms in
equation 92 can therefore be replaced by the susceptibility, giving:

1 _ 1
Hep =2 7'¢ + Eg(Ve)2 (93).

This is a wave equation equivalent to equation 90, with the excitation of a harmonic phonon for
which pv2 = }('1. For the limiting case of proper ferroelastic behaviour, it was shown earlier that
2= Css at an orthorhombic = monoclinic transition, so that the low-amplitude excitation is,
indeed, the soft acoustic mode with pv? = Css.

The second type of thermally induced heterogeneity involves the transfer of the local strain
state from one minimum of Heg to another. This means that the spontaneous strain does not
oscillate around its stable equilibrium position but changes sign. On a macroscopic level, such a
change of sign is equivalent to transferring from one side of a twin wall to the other. The thermal
excitation is then a kink-soliton, with the solution for the simplest case (Salje, 1993) being:

X
e=e, tanh(W) 94)



732 M.A. Carpenter, E.K.H. Salje

where e, is the equilibrium value of e, X is distance in the crystal measured perpendicular to the
solitary wave, and W = 1/g/ (a|T— T, |) is the wall thickness. W increases when 7 is approached

from below and incorporates the whole crystal at 7= T in a second-order phase transition. At this
point, the notion that an acoustic wave with @ — 0 and a soliton with W — oo coexist becomes
meaningless, and theories beyond the scope of this paper are necessary to describe the situation.
Nevertheless, if the limiting case close to T, is excluded, it is apparent that the acoustic softening
and the elastic instability describe the same physical mechanism in the case of a proper ferroelastic
phase transition.

Another aspect of the relationship between acoustic modes and macroscopic effects also
leads to some questioning of the validity of the analysis close to 7. for a second-order transition.
Elastic constants in the Landau expansion refer to equilibrium, i.e. isothermal, conditions. The
macroscopic crystal should become soft with respect to a particular stress orientation at the
transition point. In describing the acoustic modes, however, it has been assumed that, as a wave
propagates through a crystal, the time scale of local distortions is too short for any thermal
reequilibration to occur. At temperatures and pressures well removed from any equilibrium
transition point the difference between the adiabatic and isothermal values of an elastic constant is
less than 1%. For many practical purposes, such a small difference can be ignored, but a
divergence can occur when the transition is approached. This is most easily illustrated for the
difference between the adiabatic compliance, S,i, and the isothermal compliance, s,{ (from Nye,

1985):

T
S§ — Sk =—04;04 o (95).
(o}

(The elastic compliance is obtained by writing Hooke’s law as e; = S;; 0y instead of 0; = Cjey).
Cy is the heat capacity at constant stress, and ¢;, o are thermal expansion coefficients. The
equivalent expression for elastic constants is (from Rehwald, 1973):

T
Con = Cirn = E‘Zaiakcmicnk (96)

€ ik

where C, is the heat capacity at constant strain (for a clamped crystal). The divergence near a phase
transition is due to the increase in o; and o as T — T, and the effect can become large. As
discussed by Coe & Patterson (1969) and Dolino & Bachheimer (1982), for example, the
difference between the adiabatic and isothermal elastic constants of quartz in theory amounts to
~10 —20% at ~3 K below the B = o transition. Within 1K of the transition in KDP the difference
may be 50% or more (Brody & Cummins, 1974; Cummins, 1979). Thus the data from acoustic-
mode velocities in the close vicinity of the transition point do not necessarily represent the
equilibrium variations in elastic constants quantitatively. In the same context, measured acoustic-
wave velocities are the principal source of elastic-constant data. The equations used for pv? are
themselves derived on the basis of adiabatic conditions. When the acoustic-mode velocity tends to
zero, this assumption becomes increasingly tenuous and the elastic constant governing the soft
acoustic mode may become neither truly adiabatic nor truly isothermal.
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4.4 Elastic softening due to dynamical effects

In its conventional form, as used so far in this review, the Landau free-energy expansion describes
the consequences of static phenomena. The order parameter is treated as having a fixed value
which is uniform throughout a crystal under equilibrium conditions. In real crystals there are
fluctuations which may be understood in terms of local variations in the value of the order
parameter and of the effects of normal phonons. These may contribute an additional variation to
the elastic properties in the vicinity of a phase transition when their amplitudes become large. Their
influence will be most clearly identifiable as variations of those elastic constants of the high-
symmetry phase (above the transition temperature) which, according to the static predictions, are
expected to be unaffected by the approaching phase transition. In B-quartz, such softening is
observed over a temperature interval of at least 100 K (Kammer et al., 1948), and comparable
effects are observed in the high-symmetry forms of gadolinium molybdate (GMO) (Hochli, 1972),
terbium molybdate (Yao et al., 1981) and KMnF;3 perovskite (Cao & Barsch, 1988). If the
temperature interval over which the softening occurred was restricted to only a few degrees, it
might be attributed solely to the effects of critical fluctutations. That this is not the case implies that
normal (non-critical) fluctuations are important.

Following the theoretical analysis of Pytte (1970, 1971) and Axe & Shirane (1970),
fluctuation contributions to elastic softening have usually been considered in terms of the effects of
coupling betwen different vibrational modes (Hochli, 1972; Rehwald, 1973; Cummins, 1979;
Liithi & Rehwald, 1981; Yao ef al., 1981; Fossum, 1985). The underlying physical picture is that,
associated with a soft mode at some specific point in reciprocal space, there will be a set of
branches which also soften to some extent. Along with the soft mode itself, when the frequencies
of modes along the soft branches decrease so their amplitudes become larger. They can combine to
produce stress fluctuations and, hence, also, strain fluctuations. The summation of all such
combinations will yield a net softening of some specific acoustic modes and, therefore, of some
specific elastic constants. The total effect should increase as the amplitudes of the modes increase,
reaching a maximum at the transition point. The temperature dependence of the softening can be
described conveniently by:

Cie = G = ACy = 4|7 - [ 7).
Ajr and K are properties of the material of interest; K is sensitive both to the degree of anisotropy
of dispersion curves about the reciprocal lattice vector of the soft mode, and to the extent of
softening along each branch (Axe & Shirane, 1970; Pytte, 1970, 1971; Hochli, 1972). An
approach going back to the original atomistic approach of Born & Huang (1954), also following
the analysis of Axe & Shirane (1970) and Pytte (1970), has been adopted here. The treatment is
set out formally in an appendix, while the main conclusions are summarised in this section.

If a crystal is deformed elastically by some external stress, the atoms in it can move in two
ways: a uniform change in all interatomic distances may be induced, or atoms may move relative to
each other in some non-uniform manner. The latter would be caused by rotations of relatively rigid
polyhedra, for example. The non-uniform motions can be thought of as creating internal strain and
might, by chance, mimic the atomic motions of certain phonons. If they matched the motions due
to a soft optic mode, there would be a much reduced restoring force on the atoms in the vicinity of
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a transition point associated with that soft mode. As a result, the crystal would appear to be
unexpectedly soft. This softening is exactly that described by bilinear coupling in a Landau
expansion, since motions due to the soft mode and due to the elastic deformation would have the
same symmetry — that of the active representation for the transition.

If, on the other hand, the internal strains due to non-uniform atomic motions do not match
the symmetry of the soft mode, there can still be interactions which lead to the elastic deformation
becoming easier. Anomalous softening not anticipated from the static Landau expansion is then
expected. In this case, optic phonons with opposite wave vectors +4 and —g combine to produce
a fluctuating stress field. The average value for the amplitude of this stress field is zero but the
average value of the square of the amplitude is not, and an energy reduction, as specified by an
interaction term of the form ey, < Q,% >, is possible. Here ejqcq is the internal strain and < Q% >
is the mean square amplitude of the optic phonon. The total effect is given by the summation over
all optic phonons, but the greatest contribution will clearly be due to phonons with the largest
amplitudes, i.e. those which also reduce in frequency with the soft mode itself as the transition
point is approached. The analytical treatment in the appendix leads to the following conclusions
concerning this anomalous softening.

(a) There are symmetry constraints dictating which elastic constants can soften by this
mechanism. The effect should be observed only for those elastic constants which transform as the
identity representation. The influence on other elastic constants is expected to be zero under the
approximations made in the appendix. As a consequence of the constraints of symmetry on which
phonons may interact, variations in different individual elastic constants may also be related. For

2 2 2
all crystal systems (ACp,) = AGACy, (AG,) =AC)ACs; and (ACy) = ACy,ACy; should
apply, implying that there are only three independent variables. For elastically uniaxial systems
2 2
these reduce to ACj, =AG; and (AC;3) =(ACy) = AC;ACs; (2 independent variables). For

cubic or elastically isotropic systems there is only one independent value since
AC|; = ACy, = AGy3 = AC|, = AC|3 = ACy; is expected. These relations may not hold in systems
with significant thermal expansion, which contributes an additional effect to the diagonal terms of
the elastic-constant matrix, AC;;, but not to the off-diagonal terms, AC;,, AC;3 and AC,;.

(b) The value of K in equation 97 depends on the anisotropy of soft branches around the
critical point in the Brillouin zone. Four situations, illustrated schematically in Fig. A.1 (see
appendix), have been considered. For the limiting case of weak dispersion in three orthogonal
directions and more or less uniform softening of each branch with the soft mode itself, K = -2 is
obtained. For strong dispersion, different results are obtained depending on the anisotropy of the
branch softening. If a single branch flattens significantly as the soft mode decreases in frequency,
the result is K = —3/2. If two branches flatten while the third remains relatively steep, the result is
K =-1. If the dispersion of all three branches reduces with the softening of the soft mode, then K
=—1/2 is obtained. A constant value of K may not describe the variations of AC; in systems with
significant thermal expansion.

(c) A large value of Aj;; and, hence, a large softening effect might be anticipated for
materials which display large mode Gruneisen parameters, indicative of strong acoustic mode —
optic mode coupling. If the softening is observed in the high-symmetry phase it must also occur in
the low-symmetry phase, where it would be superimposed on static effects predicted in the normal
manner. Its magnitude need not be the same in both phases.
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(d) The approach outlined in the appendix is quite general for systems in which the soft
optic mode shows a classical temperature dependence. Thermal fluctuations or critical fluctuations
can be treated in the same manner. Similarly, the soft mode might be associated either with the
zone centre or some zone-boundary point without loss of generality.

A great deal more effort has been expended in attempts to understand the role of the critical
fluctuations. These are highly correlated local regions of a crystal in which the amplitude of
fluctuations of an order parameter becomes greater than its mean value, and occur in the so-called
Ginzburg interval around the transition point. For type I proper and pseudo-proper ferroelastic
transitions this interval is strictly zero (Folk et al., 1976a and b, 1979; Cowley, 1976; Als-Nielsen
& Birgeneau, 1977; and see: Wadhawan, 1982; Cummins, 1983; David, 1984). For type II
ferroelastics and improper ferroelastic or co-elastic transitions, there is no general criterion for the
size of the Ginzburg interval. Fluctuation corrections may be large in isotropic systems and may
lead to significant corrections both for the spontaneous strain and the elastic constants (Levanyuk
et al., 1993). Salje & Vallade (1994) have shown that these corrections are irrelevant in
sufficiently anisotropic materials (e.g. with two rather than three elastically soft directions). Only
the latter cases are considered in this review.

5. Measurement of elastic properties

In principle, it should be possible to find the elastic stability limit of a crystal with respect to some
phase transition by applying an external stress, adjusting temperature or pressure and measuring
the resultant strain. With the appropriate selection of stress and strain orientations a complete set of
elastic constants might be determined. The isothermal values of Cj; obtained in this way could
then be used directly in thermodynamic descriptions of equilibrium behaviour. A dynamical
mechanical technique with a frequency range (~0.1 — 50 Hz) which approaches the static limit has
been applied to phase transitions in a small number of systems (e.g. Schranz et al., 1993; Schranz
& Havlik, 1994; Kityk et al., 1996), but most experimental studies have depended on high-
frequency measurements of the velocities of acoustic waves. These make use of the general
relationship:

G =pv? 98)

where vy is the propagation velocity of a long-wavelength acoustic wave in a given direction and
C; is the related second-order elastic constant (or combination of elastic constants). Acoustic
vibrations are fast relative to thermal diffusion, so the values of Cg obtained refer to adiabatic
conditions.

There have been many investigations of the elastic anomalies accompanying phase
transitions using ultrasonic interferometry (reviewed by: Rewald, 1973; Liithi & Rehwald, 1981;
Berger, 1989). The essence of this technique is that a piezoelectric transducer is used to generate
sound waves in a crystal at an operating frequency of ~10 — 100 MHz. Values of vs are determined
in different directions within crystals which have dimensions, typically, of a few mm. Equally
effective has been the use of Brillouin scattering (Cummins, 1979, 1983; Fleury & Lyons, 1981).
Smaller crystals are used and the frequency range is higher, at ~10 — 60 GHz. The basis of this
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technique is that light scattered by thermally-activated acoustic phonons present in a crystal suffers
a frequency shift, Aw, with respect to the frequency, @, of the incident beam. Because energy is
conserved, the Brillouin shift is the frequency of the acoustic mode responsible for the scattering.
The velocity of this acoustic mode is given by:

Vs'—'A—m ) g 99)
@ \/ni +ng —2n;n,cos O

where c is the velocity of light in a vacuum, »; and n, are the refractive indices of the crystal in the
directions of the incident and scattered beams, respectively, and 8 is the angle between these two
directions (typically chosen to be 90°).

Experimental difficulties have certainly restricted the use of elastic constant observations
for characterising the mechanisms of phase transitions in minerals. In the case of conventional
ultrasonic measurements, crystals of natural materials are not necessarily available with the size
and perfection required. There can also be problems in devising a coherent and stress-free
interface, between the buffer rod (to which the transducer is usually attached) and the sample,
which retains its integrity to high temperatures (or high pressures). For Brillouin scattering,
comparable difficulties might arise with identification of peaks in complex spectra from low
symmetry crystals, or the loss of intensity as acoustic modes become progressively depopulated
with increasing temperature. Fortunately, there has been significant progress with experimental
techniques during the last few years and the prospects for immediate advances in this field seem
auspicious. By moving to GHz frequency, the thicknesses of crystals required for ultrasonic
interferometry has been reduced to ~100 um (Chen et al., 1993; Spetzler et al., 1996; Shen et al.,
1998). In an alternative approach, resonance ultrasound spectroscopy (RUS), the acoustic
resonance frequencies (~0.5 — 2.0 MHz) of crystals cut to convenient shapes are used to derive
values for individual elastic constants (Migliori et al., 1993; Isaak & Masuda, 1995; Ohno, 1995;
Maynard, 1996; and references therein). Crystals with dimensions down to a few hundred
microns can be used (Maynard, 1996), and the method has a distinct advantage of only requiring
minimal contact between sample and buffer rods for transmitting the sound waves to the crystal.
Impulsive stimulated scattering (ISS) is a new optical technique operating at ~1 GHz which makes
use of light scattered from acoustic phonons which are excited from outside the crystal (Brown et
al., 1989; Zaug et al., 1992, 1993; Chai et al, 1997). It does not yet seem to have been applied to
phase transitions, however.

Among mineralogical systems, elastic-constant data for MgAl,O4 spinel, calcite,
corundum, olivine, wadsleyite, garnet, orthopyroxene and wiistite have been collected at
temperatures of up to ~1800 K and pressures of up to ~200 kbar (Suzuki ez al., 1983; Vo Thanh &
Lacam, 1984; Isaak et al., 1989; Webb, 1989; Goto et al., 1989; Jackson et al., 1990; Rigden et
al., 1992; Zaug et al., 1993; Webb & Jackson, 1993; Askarpour et al., 1993; Zha et al., 1996,
1998; Chai et al., 1997; and see Sumino & Anderson, 1984, for a compilation of results published
prior to 1980). Data for quartz at high temperatures have been available since the 1940's
(Atanasoff & Hart, 1941; Atanasoff & Kammer, 1941; Kammer et al., 1948; Zubov & Firsova,
1962; Shapiro & Cummins, 1968; Hochli, 1970; Hochli & Scott, 1971; Pelous & Vacher, 1976;
Unoki et al., 1984; Ohno, 1995).
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All these techniques can give results which are modified by the influence of domain walls
within the sample. The effects may be most serious in the vicinity of a ferroelastic transition
because of the development of transformation twins (e.g. SrTiOs3, Rehwald, 1973). Light
scattering techniques are the least susceptible to this problem since the volume sampled at each
scattering event is only on the order of the wavelength of the phonons (~2,000 — 5,000 A). If the
size of twin domains present in the crystal is larger than this, the influence of domain walls on the
total signal may be small.

Brillouin scattering and ultrasonic methods both give the propagation velocities of acoustic
waves which have wave vectors, g, that are small with respect to the dimensions of the Brillouin
Zone, §max, for most crystals. In a typical ultrasonic interferometry experiment at ~10 — 100 MHz,
the range of wavelengths of sound waves with propagation velocities of ~5x106 — 107 mm.s"! is
~0.05 — 1 mm. If the unit-cell dimension is ~10 A this gives a |g|/|gmay| value of ~10-5 — 10-6. In
Brillouin scattering experiments, the wavevector of the acoustic mode sampled varies with 8 and
the wavevector, k , of the incident laser beam according to (Fleury & Lyons, 1981; Berger, 1989):

q= 2ksing (100).

For a 5,000 A light source and a 90° scattering angle, |al/|gmax| is ~10-3 in a crystal with a 10 A
unit-cell repeat. Under normal conditions, the propagation velocities of acoustic waves are
effectively constant over these ranges of |g|/|gy.,| and both techniques should give a good
estimate of the static elastic constants (for § — 0). In other words, the dispersion curves for
acoustic modes are usually very close to being linear functions of g in this part of the Brillouin
zone. The dispersion curves of selected acoustic modes might change radically in the vicinity of a
second-order transition, however. One form of variation is illustrated in Fig. 8a; the slope at § —
0 can go to zero, in theory at least, with a recovery in frequency at g # 0. If there is a soft optic
mode which couples with the acoustic mode when their frequencies converge, more complex
dispersion relations can result (e.g. Fig. 2 of Cummins, 1979). The ultrasonic interferometry and
Brillouin experiments should then give different acoustic-mode velocities because they would
effectively be sampling different parts of a non-linear acoustic branch. For a thorough
investigation of the temperature evolution of the full dispersion curve in the soft direction, inelastic
neutron scattering data are required (e.g. Dorner, 1981; Dove, 1993), but this technique does not
resolve details of the evolution close to the zone centre.

An alternative, and more likely cause of discrepancies between ultrasound and optical
scattering data for a given phase transition relates to the response time of the order parameter to an
applied stress. It has been emphasised at several points earlier in this review that elastic softening
due to coupling of a strain with a driving order parameter, Q, will only be observed if the time
scale for changes in Q is short with respect to the time scale of the lattice distortions in the acoustic
wave for which v is measured. If the frequency of the acoustic wave is too high relative to the
frequency of the response of Q, then the experimental value of Cj; will not represent equilibrium
behaviour. A clear example of this is .provided by the orthorhombic (Pmnb) = orthorhombic
(P21nb) transition in NH4LiSOy4, for which ultrasonic and Brillouin scattering experiments yield
quite different patterns of evolution of Css (Schranz et al., 1987; Schranz, 1993). Such a
discrepancy yields insights into the microscopic processes responsible for a transition, but also
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serves to emphasise the need for caution in interpreting all elastic-constant data in the close vicinity
of the transition point. Another possible example is the frequency dependence of C; in KBry.,
KCN;,, observed by Feile et al. (1982) over a temperature interval of ~4 K.

Considerable effort has also been put into measurements of the attenuation of acoustic
waves near phase transitions since, in principle, these carry information about dynamical aspects
of the transitions (e.g. Rehwald, 1973; Liithi & Rehwald, 1981; Fossheim & Fossum, 1984;
Fossum & Fossheim, 1985; Fossum, 1985; Deorani et al., 1990; and references therein). The loss
of energy by a transmitted acoustic wave due to absorption or scattering is observed in an
ultrasonic experiment as a decrease in signal intensity and in Brillouin scattering experiments as
spectral line broadening. Critical fluctuations in the Ginzburg interval might cause attenuation with
some characteristic temperature dependence, but the presence of inhomogeneities, impurities and
domain walls can also cause similar effects near the transition point (Liithi & Rehwald, 1981).
Response time effects can also result in line broadening of Brillouin peaks (Schranz et al., 1987).
The observation of attenuation cannot be taken as unambiguous evidence for the existence of
critical fluctuations in a given system, therefore.

6. Renormalisation of second-order elastic constants at phase transitions: some
examples of ideal behaviour

Having established the criteria which determine the evolution of individual elastic constants at a
phase transition, it is possible to derive expressions for the variations of all the elastic constants of
a crystal when it undergoes a given change in symmetry. This is illustrated here using four
selected examples, which, in terms of the point groups involved, are m3m = 4/mmm, 422 =
222, mmm = 2/m and 622 = 32. Between them, these examples display many of the features
likely to be encountered in the analysis of elastic properties of materials undergoing phase
transitions. They are also relevant for some of the real systems discussed in the following section.

For the first three examples, the macroscopic mechanisms considered involve either strain
as the driving order parameter (proper ferroelastic behaviour) or a different structural effect,
associated first with the centre of the Brillouin zone (pseudo-proper) and then with a special point
on the zone boundary (improper), acting as the driving order parameter. In the fourth example,
622 = 32, there are no symmetry-breaking strains. Any spontaneous strain which does arise is
associated only with the identity representation (co-elastic behaviour) and is due to coupling with
the square of the driving order parameter. The possibility of temperature-dependent coupling
coefficients providing the driving mechanism is not considered. Also, no attempt is made to
explain the group-theory manipulations required to determine which coupling terms are allowed by
symmetry. As pointed out in section 2.3 these can be complicated, particularly for transitions
associated with points away from the centre of the Brillouin zone.

For reasons of space, the illustrations are restricted to second-order transitions, but their
extension to tricritical or first-order character should be quite straightforward, as discussed for
individual elastic constants in earlier sections. For a similar reason, the possible effects of
fluctuations are not included. Use is made of the symmetry-adapted strains and symmetry-adapted
elastic constants, as appropriate. Only coupling between the driving order parameter and the
individual strain components is considered, and only the lowest-order coupling terms allowed by
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symmetry are included. Some of the coefficients have a physical meaning related to high-order
elastic constants (Tolédano et al., 1983) but these are not set out explicitly here.

For geological problems, bulk and shear moduli may be of more practical use than
individual elastic constants. These can be derived from the equations given here using an
appropriate averaging procedure, as required. Different approaches to this averaging are
summarised by Sumino & Anderson (1984).

6.1 m3m = 4/mmm

Proper. The active representation for an equitranslational (Brillouin zone centre) phase transition
involving the symmetry change m3m = 4/mmm is the two-dimensional representation Eg. The
order parameter therefore contains two components which, in terms of strains, correspond to the
orthorhombic strain, e, = %(el — e, ), and the tetragonal strain, ¢, = %(2(33 —e; —e,) (Table 4).

The remaining strains are associated with the identity representation, e, = %(el +e,+e3), and

with the three-dimensional representation Ty (es, es, eg). Treating the transition as being driven
by the symmetry-breaking spontaneous strain, the relevant Landau free-energy expansion can be
given (after Tolédano et al., 1983) as:

G= %a(T— TC)(eZ +et2) +%u(et3 - 3ete§) +ib(e§ + etz)2 + /laea(eg +et2)
+),4[\/§e0(e§ —e§)+et(2e62 —é? —e52)]+%C;’ea2 +%CZ4(eZ +e§2 +e§) (101).

The third-order term in ¢; and e, with the coefficient u ensures that the phase transition is first
order in character. The term with the coefficient A, corresponds to the normal coupling of non-
symmetry-breaking strains with the square of the driving order parameter. The term with 14 as the
coefficient (from Liithi & Rehwald, 1981) represents the lowest-order coupling allowed by
symmetry between strains with E; symmetry and strains with T, symmetry. It contains elements
of the form ete‘% because ng ®T2g contains the active representation, Eg, and, hence,
E, ® T,, ® T, must contain the identity representation (see character table for m3m in Wooster,
1973, or Cotton, 1990). (Determination of the precise form of this term requires an analysis of the
symmetric square of the T,y representation and its associated eigenvectors). The remaining
contributions to the excess free energy are Hooke's law elastic energies (note: C; = Cf} +2Cp,,
from Table 4). Tolédano et al. (1983) also included a term describing coupling between strains
with Ay symmetry and strains with T, symmetry but, because it does not involve direct coupling
with the driving order parameter, this contribution has been omitted here.

Variations of the elastic constants can be obtained by differentiating equation 101. Thus,
for example, in the absence of non-symmetry-breaking strain (A, = 0), C;; is obtained from
02G/de} quite simply. Ignoring the terms in ey, es and eg which do not influence Cj, the first
derivative is:
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(102)

and the second derivative is:
0°G 2 ( 2e) 5¢2 2epe,  5). 1
—=Za(T-T.)+ul e, ——L |+ b| =2 - Ll +¢ |+=C; 103).
P A G A T I i (199
Now, ¢, = 0 in a tetragonal crystal so that equation 103 becomes:

2 7 1
C =§a(T—Tc)+bet +§ca (104).
For T > T, it follows that:

2 1/ o o
Cll = ga(T‘— TC)+§(C11 +2C12) (105)

Expressions for the remaining elastic constants can easily be obtained in a similar manner. For
example, the variation of Cy4 is given by 92G/de?, so that, for e, = O:

Ciy=Chy (aT>T,) (106)
and
Cyy = Cgy —2A4¢; @T<T) (107).

From the equilibrium condition, dG/de, = 0, it is straightforward to derive the variation of
e with T:

/4
e = e 1+|1-o| T Te. (108)
4" NT,-T,

where e is the value of e; at the transition temperature, Ti,. The latter is given by:

2

T, =T, +
tr c 9ab

(109).

At T > Ty, the Eg eigenvector of the m3m elastic-constant matrix varies linearly with 7 as:

(G1—G2)=a(T-T,) (110).
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At T < Ty, the equivalent combination of elastic constants is 1(Cj; + C +2Cs3 —4C3), from the

form of the symmetry-breaking strain tensor and the relationships between elastic constants under
4/mmm symmetry (see Table 1 of Tolédano et al., 1983). For the case of A, = 0 (i.e. e, = 0), this

recovers as:

(G- Ca)=1(Ci1+ G +2C53 - 4Gy3)

a(T—Tc)+2uet+3bet2 (11D).

It is interesting to note, however, that the symmetry-adapted combination (C“ —Clz) of the
tetragonal phase only recovers below Ty, as (for e, = 0):

(Cy - Cp)=a(T-T,)-2ue, + be? (112).

Thus, as pointed out by Tolédano et al. (1983), a crystal will be close to the instability point for an
orthorhombic distortion if equation 101 represents an adequate description of the excess energy.

Comparison with the effects of other symmetry changes is most easily achieved by setting
u = 0, to produce a second-order transition at T = T, with (for e, = 0):

et = afe=T) (113).

b
A complete list of expressions for the elastic constants then obtained is given in Table 8, and their
evolution through the transition point is illustrated schematically in Fig. 4. Note that (C“ -G 2)
(tetragonal) and (C“ - C12) (cubic) have slopes in the ratio 2:1 below and above T. First-order
behaviour (« > 0) would give a similar pattern of evolution, except that (Cj; —C;,) would not
reach zero and there would be discontinuities at T = Ty,.

The soft acoustic mode for the transition has § /#/ [110]cupic and # /#/ [110]cupic, plus all
symmetry-related directions, with pv* =1(Cj; - Cj,) in the cubic phase (Table 6). For u = 0,
(C“ - Cu) remains zero in the 4/mmm phase, which would imply that a crystal should remain at
the stability limit with respect to an orthorhombic distortion, i.e. acoustic modes with g // [110];
and i@ // [110].e would not recover below 7.

Equation 101 yields the variations of the elastic constants for A, # 0 by the same sequence
of steps. The resulting temperature dependences of the second-order elastic constants are also
given in Table 8 and shown schematically in Fig. 4, again for the simplified case of u = 0.
Significant differences can arise as a consequence of coupling between the driving strain and non-
symmetry-breaking strain, depending on the magnitude of the coupling coefficient, A,. In
particular, the ratio of the slopes of critical elastic constants below and above T,

(G, +Cp+2C33-4C3),, and (G - Cpp) .., becomes Z(b/b*) : 1 instead of 2:1, where b

tet cubic’
is the renormalised fourth-order coefficient (=b—[2/1§ / ( D +2 f’z)]) The individual elastic

constants Cy1, C33, C13, C13 Will be expected to show some deviation from linearity. Note that no
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G +2C = +207;

Cyy =Cs5=Co5=Cy4

1
G +2G, = §(C33 +2G; +2C); +4C3)

=) +2C

Cyy = Cs5=Cis 2049,

Cos = Cis +2A4q,

=1
Cll +2C12 = §(C33 + 2C11 +2C12 +4C13)

2.2
4424;
b

=(c{’I +2C3)- . .
2a—*(Tc - T) +a(TC - Tc)
b

Cag = Cs5 = Cly = 2244,
Cos = Cay +2M4q,

Proper ferroelastic transition (assuming third-order term = 0)

m3m phase

e, =0

4/mmm phase, e, =0

etz = %(Tc -T)

4/mmm phase, e, # 0

1 2
C1=Cp=C= E(Cﬁ +2Cf2)+§a(T‘ T.)

1 1
Ca=C3=Cp =§(C1°1 +2C1°2)‘§‘1(T~ T.)

Ci—-Cr=a(T-T,)

Cll +2C12 = C]O] +2C102

Cas =Cs5=Co6=Ci4

1
Ch=Cp =§(C1°1 +2C)+
1/ o) 4
C33 = E(C” + 2C12) +§a(Tc - T)
1 1
C12=§( T1+2 1°2)+§‘1(Tc“T)

1 2
C3=Cy= §(C1°1 +2C1°2)—§“(Tc -T)
G -Gy =0

~ 1
Gi-Gy= g(cu +Cjp +2C3 - 4Cy3)

=2a(T,-T)

—~ =1
G +2C, = §(C33 +2C); +2Cp, +4Cp3)
=Cj +2C)
Cas = Css5 = Ciy = 204e,

C66 = CX4 + 2/’1,4(,’!

e =;a*—(TC—T), b =b- ﬁ}
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Ca= 1(C101 +2 f)z)*%abi*(Tc —T)"zg'laet
C3=Cp= %(c{’1 +2C{’2)—§a—:~*(Tc -T) +%;Laet

G1-Gy=
~ o~ 1
C1-Cp= g(cu +Cpp +2C53 ~4Cy3)
=2a2(1, - 1)
b
— 1
G, +2C, = §(C33 +2C, +2C)p +4Cp3)
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C44 = CSS = C24 *2l4et
C66 = C‘(1)4 +214€[
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Table 8. (Previous two pages and below) Predicted variations for elastic constants of a material subject to a phase
transition involving the symmetry change m3m = 4/mmm. The expressions for individual Cy's have been derived
for second-order transitions.

Improper ferroelastic transition

Pm3m phase IA/mcm phase, e, =0
a
Q=0=9=0 q1=9,=0, q§=b—*(Tc—T)
2
b*=b+b'—|:%]
11— Ci
422
C1=Cp=Cp=C Ci=Cp= 101“{3(17—_‘_21),)]
1643
Cpy=C —| 222
33 = () [3(b+b')}
423
Cpp =Ci3=Cp3=C; Cp=Ch—| 2~
12=C3=Cpn =0 12=Cn [3(b+b’)}
843
C3=Cp=Ch+|——2—
13=Cp=Cp [3(b+b’):'
C-Cr =G -C C-Cp =G - Cpy
- = 1
Gi—Cp =§(C11 +Cjp +2G53 - 4C;3)
2473
=(C1°1 _sz)_{—3(b+2')}
G +2Cp =Cy +2G7 E‘”+ZE‘]2=%(C33+2C11+2C12+4C13)
=Cpy +2C0
C, C C, cs C, C. C A%
44 =55 =Les = Caq 44 =Cs5 =Lyq — ,
[12,1% /(e -cy)]-»
Cos = Cis

anomaly is expected for C;, in spite of there being coupling of e, with the square of the driving
order parameter.

Pseudo-proper. Should the strains arise by coupling with a different driving order parameter with
Eg symmetry, the relevant free-energy expansion becomes:

1 1 1 2
G=a(T~To)(as +4?)+5u(a? ~3aa5) +b(ad + i) + Mu(aoeo + 4i&))
+2g0a(a3 + )+ Aa[V3go(e - e2) + g (2e2 — €3 - 3|
1 1 1
+5(c1°1 —Cy )(e2 +e?) +5C:e§ +5C24(e2 +e3 +ef) (114).
The two components of the driving order parameter Q have been specified as g; and g, here to

correspond with the tetragonal and orthorhombic distortions, and the equation is derived from
equation 101 by replacing e; with g, and e, with g,. If terms in (qg +qt2) and (eg +et2) are
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allowed by symmetry, then so is the bilinear coupling term (qoeo + qtet). Because the strains e;
and e, are now being treated as "driven" rather than "driving", the series expansion representing
their contributions to the free energy is truncated after this second-order term. The remaining terms
represent B, ® Ty, ® T, type coupling energies, as in equation 101, and elastic energies.

Variations of the individual elastic constants may be predicted from equation 114 by
making use of the general solution given earlier (equation 79). As an example, the variation of Cij
for a material with u = 0, A, = 0, is given by:

76 (7Y 36, 6 (6] 3%
0,09, \ 9g> ) dedq, dedq, \ 9g2 | deidq,

L% ( %G J‘l_ 3%G
dejdq, \ 99,99, ) 9ejdq, (115).

Under equilibrium conditions g, = 0 at all temperatures and g2 = (a/b)(T;l< - T) at T < T: for a

Ch =G '{

second-order transition. The renormalised transition temperature, T , is given by:

2
T, =Tc+——o-)-”‘——0— (116).
a(Cu—Clz)
Thus equation 115 becomes:
cp=co 2 A @T>T)) (117)
11 11 3 a(T—Tc) c

and:

2
cy=co -1 Ay —-;—(cf’l—cf’z) @T<T.) (118).

6 2a(T;k - T) + a(T: - Tc)

Solutions for all the elastic constants are given in Table 8, and their predicted elastic-constant
temperature-dependences are illustrated schematically in Fig. 4. As discussed for the simple case
in section 2.2, the critical combinations of elastic constants, (Cjj—GCp),,; and

1(C1 +C1p +2C33-4Cy3), ., now show a marked curvature, though the ratio of the slopes

tet’
below and above T: still tends toward 2:1 as T — T: ; (G =) 1o TEMAINS Zero below T: as a
consequence of choosing u = 0. The bulk modulus is not affected by the transition.
Elastic-constant variations for the same driving order parameter with u = 0, but 4, # 0, are
also given in Table 8 and Fig. 4. The general form of their variations is rather similar to the case of
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Aa = 0, but, significantly, there is now expected to be an anomaly in the bulk modulus, and the
ratio of the slopes for the critical elastic-constant variations is expected to tend to 2(b/ b*):l

instead of 2:1 as T = T, .

Improper. Finally, if the active representation for the transition is not Eg, the lowest-order
coupling allowed by symmetry is between strain and the square of the order parameter. This might
occur for a cubic = tetragonal transition in which a unit-cell dimension is doubled, for example.
The order parameter becomes triply degenerate and, as discussed in section 2.3, the group-
theoretical derivation of terms allowed in the Landau expansion depends on the precise change in
space group. A well known example is Pm3m = I4/mcm, associated with the R point (%,%,%) of
the Brillouin zone, for which the excess free energy can be expressed to fourth-order terms in g;
(after Slonczewski & Thomas, 1970; Ridou et al., 1980) as:

G=5a(T-T)a + a3 +ad)+yblal + 3 +3) + (i + a3 +af)
+haea(al +3 +a3)+ Aao[Beo(af - a3 )+ e (243 — af - 43|

1
+A3(esqid + esdds + €sd2d3) + E(Cf L —Chh )(e§ + etz)

+:21—C:e§+%C24(e2+e52+e62) (119).

The third-order term in equation 114 (with coefficient #), which makes a Pm3m = P4/mmm
transition first order, is constrained by symmetry to be strictly zero in this case. The form of
allowed terms arises from group-theoretical considerations discussed by Rehwald (1973): the
order parameter is an axial vector belonging to Tjg, the symmetric square of which contains all the
strain representations (T;; ® Ty; = Aj; ®E; @ Typ).

Variations of the individual elastic constants may now be derived in the usual way. The
algebra becomes complicated for the general case, so the expressions given in Table 8 and
illustrated in Fig. 4 are for A; = 0, i.e. for no non-symmetry-breaking strain. The equilibrium
evolution of the order parameter at 7 < 7, for a second-order transition is given by q; = g2 = 0,

and q32=(a/b*)(Tc-—T), with b*=b+b'—-[813/(cl°1— 1"2)] Taking Cj; as an example,

equation 79 gives:

-1
3%G ( %G ] 3*G
L Cy=CP - : (120)
e ,nz,:‘,aelaqm 99,99, ) 0e9q,
which yields, from equation 119:
2
Ci =Gy -2 (121).

3(b+b)
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There is expected to be a step in Cy; at T = T, but it should not show any strong temperature
dependence in either of the cubic or tetragonal phases. Cj2, C33 and C;3 are also expected to show
steplike features at T (Fig. 4). The bulk modulus is expected to remain constant if A; = 0, but will

display a step similar to the other elastic constants if there is any non-symmetry-breaking strain
accompanying the transition. C44 (=Css) will show a step at T, derived from the term in
As(esq192 + .-..), but Cgg should be unaffected. The next higher-order coupling term for eg would

be Agegqs, which would give the variation Cg = Cg +2A4q3.

6.2 422 = 222

Proper. For a transition giving the symmetry change 422 = 222, but with no change in
translational symmetry, the active representation is Bj. From Table 5 the symmetry-breaking strain
is [(e, -e )/ V2 ] for which the associated elastic constant is (Cj; — Cj5); the non-symmetry-
breaking strains are (el + e2) and e3. The remaining strain components are e4 and es, associated
with the E representation, and eg, which belongs to the B, representation. When the driving order
parameter for the transition is the symmetry-breaking strain, the relevant free-energy expansion
may be written as:

1
C&(ef +352)+Ecg6e62 (122).

From group theory (Stokes & Hatch, 1988; Hatch, pers. comm.), (e, +e,) and e3 each couple
with [(el -e)/ «/5]2 in the normal way, e and —e? couple with [(el -e)/ \/5]

(E®E=A;®B, ®B,, which contains B), and eé couples with [(el —ez)/ﬁ]2. The
symmetry-adapted elastic constant for A; strains is analytically complex, but a convenient
simplification is achieved by taking —%—( o+ Cl"z) and C3; as separate elastic constants for (e; +
e7) and e3, respectively. In this case the scaling factor has been transferred to give (C1°1 + C1°2) and
[(eI +e2)/«/§].

Variations in the elastic constants may be predicted from the second derivatives of equation
122, as for the proper ferroelastic examples already discussed. Expressions for these variations are
given in Table 9 and they are shown schematically in Fig. 9. The transition occurs when Cy; =
C12, and the related soft acoustic mode has g // [110] and # // [110] (or vice versa) in the
tetragonal phase, with pv?> = 1(Cj; = Cj) (Table 6). The values of £(Cj; +Cy, —2Cip), ,, and
(C“ - C12) ot 81ve slopes in the ratio 2:1 if there is no non-symmetry-breaking strain (e; + ez = e3
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=0), or 2(b/ b ):1 otherwise (e + €2 #0, e3 # 0). The negative sign of —e? in the coupling term

M(eﬁ - e52, )[(el - ez)/ V2 ] arises in the group-theoretical analysis and ensures that C44 and Css
diverge in the stability field of the orthorhombic phase.

Pseudo-proper. If the driving order parameter is not the symmetry-breaking strain, the excess free
energy may be written as:

1 1
G= Ea(T - TC )Q2 + ZbQ4 + A‘l (el + €2)Q2 + 2«2 (el - ez)Q + 2{333Q2
1
+4 (e% e )Q +26600” + Z(Clo 1+ sz)(el +rey)’
1
+2(C1°1 - C102)(e1 —e2)" + C(er + e )es

1 2 1 2. 2y, 1,0 2
+§C§3e3 +5C24(e4 +e§)+5‘C6636 (123).

Here the factor of 71—2— in the strains has been incorporated into the coupling coefficients. The

elastic-constant variations may again be predicted using the general solution for the case of order-
parameter/strain coupling (equation 79). Analytical expressions are given in Table 9 for the cases
of zero and non-zero values of the non-symmetry-breaking strain parameters (e, +e,) and e3,
while schematic variations are illustrated in Fig. 9.

Improper. Finally, an example of improper ferroelastic behaviour is provided by the symmetry
change P422 = (222, where the driving order parameter is associated with the R; representation

and the special point (%,0, %) of the Brillouin zone. The order parameter is doubly degenerate in

this case. Making use of the tables of Stokes & Hatch (1988) and group-theoretical analysis of
allowed coupling terms (Hatch, pers. comm.), the excess free energy due to the transition can be
written as:

G= %a(T— Tc)(qxz + CI%) + %b(ql2 + q%)z + %b’(qf’ + q;‘) + Ml +e)(at +43)
+ha(e1— e2)nds + Aaes(af +43 )+ Aol — €3 )arar + As(ef + 3 )(of +43)

+ﬂse§(412 + qg)"'%(clol + CIOZ)(el rep) +%(C1°1 - CIOZ)(el —e,)’

1 2 1 2, .2y, 1 2
+Cis3(e; +e3)es +§C§383 +§CX4(34 +es )*‘Z'Cgé% (124).

Fig. 9. (Facing page) Schematic variation of elastic constants at second-order transitions involving the point-group
change 422 = 222, based on expressions given in Table 9. Note: (C“ —cn)=%(c” +Cp —2Cyy),

(Ell + 6’12) = -ZL(C“ +Cp +2C12). The improper example is P422 = C222.
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Proper ferroelastic transition
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1 1
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0 0
G +Cr=C+Cp

Cay=Cs5=Cl4

Ces = Cos

1
C1=Cp =5(C1°1 +Cy)+a(T - T)
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1 1
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~ - 1
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=24(T, -T)
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E= %C"ez (A.19)

and the energy for the coupling between the optic and acoustic mode is:
Ecoupling = 9< Q2 >e = e (A.20)

where A plays the role of a stress produced by the phonons. The change of the elastic constant in
Equation A.18 can now be rewritten as:

A,Z

AC=—F———
2a)}%<Q2>

(A21).

The denominator is twice the optical phonon energy. Expressing A? via the elastic strain-stress
relation A= C°e yields:

2
AC_ 3C%"  _ AEye (A.22).
C° w'<0’> Eopiic

Thus, the relative change of the elastic constant is equal to the ratio of the elastic energy (with the
bare elastic constants C° and the thermal strain e at T > T) to the total energy of the Einstein
oscillator. In crystals without phase transitions the thermal expansion is typically on the order of e
~ 10 per AT = 1 K. The phonon energy is much larger than the resulting elastic energy and,
consequently, the ratio (AC/ C°) is small enough to be ignored for all practical purposes. In the
case of displacive phase transitions, on the other hand, the energy of the soft mode is of the same
order of magnitude as the elastic energy. A typical example is quartz where the soft optical phonon
at T> T, approaches the acoustic branch near g =~ (1/10a) where a is the lattice parameter. Then,

taking C° = (a)fcousﬁc / qfcousﬁc) equation A.22 can be rewritten as:

2
AC 1acoustic 1 1 o
C° 2 0l Gronic <0*>
Opth qaCOUSth

(A.23)

and, if @ycoustic = Woptics < Q° > = 10*a%, which leads to (AC/ c°) ~10%¢2. This rough estimate
gives a value of (AC/ CO) =~ 1 for e = 10, Thus the elastic constants soften completely due to the
interaction between the optic and acoustic phonons. In three dimensions the summation is for all
g, and the coupling can occur between the strain and any phonon. There is, however, the
symmetry constraint that terms of the form €qp < Qi > must transform as the identity
representation, so that any strain, eqg, which transforms as the identity representation can be
involved. As a consequence, those elastic constants which themselves transform as the identity
representation should always soften in the high-symmetry form of a crystal as the transition point
is approached. In addition, those strains which transform as the active representation may couple
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derivative ¢ in the direction of A). It is important to recognise that in this approach it is not
necessary to identify the actual physical mechanism by which large values of <Q% > are
generated. Typical causes might be fluctuations of the order parameter (< Q% >=<Q?>), or
phononic vibrations with large amplitudes (i.e. phonons with low frequencies) which are not the
driving soft modes, for example.

The second term represents bi-quadratic coupling between the strain and the phonon
coordinate:

3 17 ol 1 I
ACoypn.= |44 { %’ = 2 2 %W[’? Kok k']xﬁ (ilxl(?)

" oky Uk'v

1 - e q
T efe,? exp(—ankx) < Qz(j] > }

In this equation, the fourth derivative, ¢oyyyv, is only relevant if the crystal is anharmonic with
respect to both the elastic deformation and the phonon movement. It is generally assumed that this
is rarely the case although there is little experimental evidence in favour of such an assumption.
The normal situation is that the phonons are not those of the active representation and have < o>
o< T at high temperatures. The renormalisation due to this term leads to a linear temperature
evolution of the elastic constants at 7> T, without any anomaly at 7. Such an effect appears as a
general background in the 7-dependence of elastic constants and is not significant in relation to the
analysis of elastic softening associated with a phase transition.

The third term in Equation A.10 is dominant in determining those elastic anomalies which
are not generated by direct bilinear coupling between the strain and the order parameter. The

(A.17).

coupling is now described by Pap (_Jq ‘JZ) the coefficient of a third-order anharmonic interaction
between phonons and strain. Here j is the phonon branch, and coupling involves optic phonons
with wave vectors + 4 and —g along the same branch.

Before describing this interaction in more detail, it is instructive to illustrate its relevance
using, again, the simple example of a one-dimensional crystal. Consider a system that has an
acoustic mode and an optic branch of an Einstein oscillator with frequency @g. The
renormalisation of the elastic constant C° is due to the interaction between the acoustic and optic
phonon via:

1~k k) [k
AC=Y
C=25u7 (1 l)<Q 1)
1

- 200>
=N ¥ <e> (A.18)

where the omission of (k, /) indicates that the summation over N atoms has been carried out. The
unrenormalised elastic energy is:
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atoms inside the unit cell, and can be understood as an "internal" strain which compensates the
uniform strain. Such a compensation leads to a reduction of the elastic constants — an effective
softening of the crystal.

The essence of the physical effect is easily illustrated by a one-dimensional example. In
this case the indices can be dropped and only the momentum, P, and phonon amplitude, Q, need
be considered. The harmonic phonon then has the simple Hamiltonian:

H=%2(P2+w2Q2)—hQ (A.12)

where A is the field that is generated by the macroscopic strain:
h=ge (A.13)

with g as a proportionality constant. The phonon energy follows from the transformation

0’ =[0+(#*/@?)] with:

H,=12(P2 +wzQ,2)_lﬁ (A.14).
2 2 w?

The oscillator is again harmonic with the same frequency. The energy:

1) 14
E,=Y ﬁco(n+5)—EF (A.15)

is that of the phonon without a field, minus the self energy. This self energy depends on e? as:

AE=—1%e2=——;—ACe2 (A.16).

The elastic constant of the system is reduced by (g/@)?, therefore.

Now consider the dimension of the first term in equation A.10. The elastic softening in the
stability field of the high-symmetry phase here is due to the existence of the soft phonon, but is
independent of its amplitude, Q. This result is identical with the earlier prediction in equation
A.11, as becomes clear when @? is identified with ™! in a displacive phase transition, with

AC oc 71 oc (1/ a)z), The symmetry constraints are that [Q(?)eaﬁ] has to transform as the identity

representation. This is always the case if Q(?) and eqg belong to the same representation, e.g. the

active representation of the transition. Only the elastic constants transforming as the representation
of eqp will show this anomaly, and the result is the same as derived from a standard Landau

expansion with bilinear coupling between the macroscopic order parameter and strain.
All other terms in equation A.10 are proportional to < Q,% > and can hence be called
"dynamic" renormalisations. (The index A is added to indicate that this amplitude stems from a
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uniform 0 9 —9 q -q
Car%l =Coyprt> 2 Z¢(aﬁ X7A) ( )Q(JJQ( j’) (A.8)

i

leaving out terms linear in the phonon amplitude for symmetry reasons. The thermodynamic
expectation value of < Q2 >, which is the average value of the square of the amplitude (averaged
over the whole crystal) for a given phonon, depends simply on the number of excited phonons via:

Two(q)
h J
2
<Q°>= th A.9).
Q (q) O kT (A-9)
20|
J

For 2kT >> h®, <Q?> increases linearly with temperature. Adding all contributions to the
elastic constants gives, for temperatures above the equilibrium transition point, a renormalisation
per phonon branch (j = j*) of:

I o

1 _
Capr = Capp. =7, 2 2[ ] %ﬁ( )‘Pﬁ[ J+Zjdq3 9(ap)(a) (q ;Z)<Q2>
J

J

il e e s )
J
(A.10).

The four terms in this expression represent four separate contributions which are now discussed in
turn.
The first term is due to a static response and does not depend on the amplitude of the

phonon movement. Rewriting ¢ o (?) in real space leads to:

%ﬁ( ] % %%u(k k}' (g\/;—yeu(k’) (A.11)

where ¢aﬂ(,l€ ]?,) is the derivative of the force constant for the movement of atom (k, /) against

atom (k’, 0), and xg (]l{) is the projection of the position vector of atom (k, [) along the B-axis. The

normal coordinate of the phonon movement is e, (k”) (atom k’ along the p-axis). The physical
meaning of this is that a phononic movement leads to shifts of atoms that do not correspond to a
simple uniform compression or dilation of the sample. These movements involve relative shifts of
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where Hj describes the phonon:

w133 31l

Strain is measured with respect to the actual time and space averaged structure as eg’gal, with

Hy =Y ) el (A3)
af

where h(eP) is the field conjugated to eg’lﬁal; h(@B) is allowed to depend on the normal coordinate of

the phonon, i.e. it depends on the pattern generated by the phononic lattice distortion. Finally, the
elastic energy is:

2 2NV z 2 Cumform e}fﬁal ;zlcal ( A. 4)
af YA

where N is the number of atoms, V is the volume per unit cell and C;?%’,‘{m is the elastic constant

that describes a uniform deformation. By uniform, what is meant is a deformation which only
causes distances between all atoms in a structure to change by the same fraction.

Interactions between phonons and strain are due to the Q)-dependence of 4(®8), These are
expressed formally as:

00k THO)o Tl ) rs

q9.J]

where hgxtgr)nal =0 when there is no external stress. Writing the other field coefficients as force

constants, one finds:

HP) = NGyl ° (A.6)
J

and

<f; 7)el; 7

The two field parameters correspond directly to the first and second derivatives of the force
constant @op. For convenience they can be written in reciprocal space rather than real space, where
the connection is made by standard Fourier transformation. Direct coupling between the elastic
constants and optical phonons is also introduced:
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Landau theory then highlight more subtle details of a transition, such as the role of fluctuations or
coupling between other phonons, which are specific to a material. The symmetry constraints on
the elastic behaviour also define general categories of behaviour such that the general form of
elastic-constant variations may be predicted successfully with very little prior information
concerning either the detailed crystal structure or the transition mechanism.

Many mineral systems could be examined in the context of the overall philosophy set out
here, and a summary list of some of these was given in Table 1. The theoretical background is
well established and the weak link is now a paucity of experimental data. With improved
techniques for determining the elastic constants of small and low-symmetry crystals at ranges of P
and T it should become possible to advance our understanding of the behaviour of geological
materials under stress to a far higher level of sophistication than has so far been achieved.
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Appendix: Anomalous softening due to dynamical effects

A conventional Landau expansion can be used quite effectively to predict variations of elastic
constants at phase transitions. It only gives the variations due to static effects, however, and does
not account for changes due to thermal fluctuations. One way of accounting for the dynamical
effects is to adopt a more atomistic approach and consider a simple "ball and spoke" model of a
crystal. Atoms may be treated as balls on lattice points (k, I; k-th atom in /-th unit cell) with mass

my. These atoms are connected by springs with a spring constant, ¢a,6(11< l;:”)’ describing the
movement of (k, ]) along the o-axis and (k’, I’) along the B-axis. Details of this approach go back

to the illuminating book of Born & Huang (1954) and many subsequent studies. In order to allow
anharmonicity to enter into this model, an optical phonon is introduced. It has kinetic

encrgyZP/% (CJI) and potential energy Za)z(‘})gﬁ (‘Jl), where P, is the momentum, Q, is the
normal coordinate, A is a Cartesian coordinate, g is the wavevector and j is the number of the
phonon branch. The basic idea is to allow the phonon to be the soft mode (w2 = )(_l oc A|T - TC])

which drives a displacive phase transition. It is the anharmonic interactions between O and strain
coordinates which then give rise to the elastic anomalies.
The atomistic picture is described by a model Hamiltonian:

H=Hy+H;+H, (A.1)
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Fig. 27. Variations of the eigenvalues of the
elastic-constant matrix for crystals with point
group 622 (T > T,;) and point group 32 (T < Ty)
(from Carpenter et al., 1998b). Expressions for
the eigenvalues of 622 crystals are given in Table
12. E; is plotted as Cy4 and E; as Cgg. Ay
eigenvalues of crystals with 32 symmetry have
the same form as those of crystals with 622
symmetry. The smooth curves were determined
from the calculated variations shown in Fig. 25
(solutions derived from assuming ACy; = AC,
and AC;;2 = AC|;AC3; in B-quartz). Solid lines
represent the A; eigenvalues; broken and dotted
lines represent the other eigenvalues. Each of the
E, and E, eigenvalues of B-quartz splits into two
in o-quartz. Experimental data points for A;
eigenvalues are shown below 7, (data from
L Ohno, 1995). There is reasonable agreement
[FERRANYRRA R SRR RRRRI ANSRUNNRNANNNEL - betweenca.lculatedandexpeﬂmentaldata over the
400 600 800 1000 complete temperature range for one of the A;
T (K) eigenvalues and close agreement between T, and
~700 K for the other. Neither of the A,

eigenvalues reaches zero at the transition point.
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Other minerals. Co-elastic transitions are particularly common amongst minerals and yet appear
not to have been examined from this overall point of view. Some examples of transitions which
may display co-elastic features are: I4,/acd = I41/a leucite (Boysen, 1990; Palmer, 1990a; Palmer
etal., 1990, 1997; Palmer & Salje, 1990; Hatch et al., 1990a; Heaney & Veblen, 1990; Ito et al.,
1991), C2/c = P2i/c pigeonite (Cameron & Papike, 1980; Shimobayashi & Kitamura, 1991;
Shimobayashi, 1992), I 1 = P1 anorthite (Salje, 1987; Redfern & Salje, 1987, 1992; Redfern et
al., 1988; Angel et al., 1989; Hatch & Ghose, 1989; Angel, 1992; Redfern, 1992), R3m = R3c
calcite (Redfern et al., 1989; Dove & Powell, 1989), P63/mmc = P6322 tridymite (de Dombal &
Carpenter, 1993; Cellai et al., 1994), C2/m = P2;/m cummingtonite (Prewitt et al., 1970), P6322
= P63 kaliophilite (Cellai et al., 1992), P6smc = P63, P6smc = P6smc with multiple
superlattices, and P63 = P63 with \/3A superlattice in kalsilite (Carpenter & Cellai, 1996; Xu &
Veblen, 1996), A2/a = P2,/a titanite (Taylor & Brown, 1976; Ghose et al., 1991; Van Heurck et
al., 1991; Bismayer et al., 1992; Salje et al., 1993; Zhang et al., 1995; Meyer et al., 1996; Kunz et
al., 1996; Chrosch et al., 1997) and Cmcm = Pmcn = P2jcn lawsonite (Libowitzky &
Armbruster, 1995).

8. Conclusion

Landau theory provides a straightforward framework for generating quantitative descriptions of
the elastic-constant variations that accompany phase transitions in many materials. The elastic-
constant variations themselves also provide unique insights into the mechanisms of these phase
transitions. Matching observed and predicted variations provides a test of any proposed
mechanism that is far more stringent than simply matching the variation of the order parameter
alone. In particular, it is necessary to account correctly for contributions due to both symmetry-
breaking and non-symmetry-breaking strains. Anomalies in the elastic properties not anticipated by
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(Scott, 1974; Yamamoto, 1974; Dolino, 1988, 1990, and references therein). It can now clearly be
seen that most of the energy reduction associated with the transition is actually due to the coupling
of Q with strain. For example, at T = %Ttr =424 K, separate contributions to the total excess
energy due to the transition (1085 J.mole!) are Gg = 358 J.mole"!, G oupling = —2885 J.mole-1,
Gelastic = 1442 J.mole-1 (Carpenter et al., 1998b). Substantial renormalisation of the fourth-order

coefficient from b = +4900 J.mole’! to b~ = —1931 J.mole-! (equation 163) due to this coupling
also drives the transition from second order to first order in character. In addition, the
renormalisation causes the value of 7! (equation 162) to increase much more steeply than would
be anticipated for a classical soft-mode transition and accounts, at least semi-quantitatively, for the
steep recovery of the soft-mode frequency in o-quartz (Fig. 26; w? data for the soft mode from
Tezuka et al., 1991, and Hochli & Scott, 1971).

Fig. 26. Comparison between experimental

3 TITT[ITTITIITT TTTTJTT T ITTTITI T [IrY dataforthefrequencyofthesoftrnodeof
35x10° l o J l I ' 7 8000 quartz and the calculated susceptibility from
30 e a Landau free-energy expansion (from

—_ L . 6000 Carpenter ez al., 1998b). A relationship of
o 5 i 4 €, the form @? e« x| is expected. The axes for
S 20 ; —~ 2 (right) and y! (left) hav.e been adjusted
= : J 4000 g so that, above T}, the experimental data for
= 15 ' . o @? (open circles, from Tezuka et al., 1991)
= 10 : ] ~ are superimposed on the calculated variation
= ] - 2000 of y1 = a(T— Tc) (solid line). Below T,
- experimental data for @? are shown as filled

0 ‘s eenaape—0o—o—5 0 circles (from Hoéchli & Scott, 1971), and

AR RERREENURARRARERERRARRUNE RRENE AT = the SOlid line iS x‘l Calculated USing

700 800 900 1000 equation 162. (Note that the mismatch
T (K) below T could be reduced by choosing an

alternative scaling between @2 and y! at T
> Ty).

While the B; soft mode provides the symmetry-breaking mechanism, the spontaneous
strains and the largest elastic anomalies are associated with the A; (identity) representation of point
group 622. McLellan (1973) suggested that one of the A; eigenvalues might extrapolate to zero at
the transition point in much the same way that the eigenvalues associated with the active
representation can evolve at a proper ferroelastic transition. The individual elastic constants have
therefore been used to calculate variations of the relevant eigenvalues, as shown in Fig. 27. The
A eigenvalues show large variations but do not go to zero. In this regard, the elastic behaviour is
consistent with the classical behaviour of a co-elastic material. An unexplained curiosity remains,
however, in that C;3 extrapolates to zero at 847 + 1 K (Fig. 25). By itself, this cannot lead to an
elastic instability, but it corresponds to a limiting point beyond which the elastic energy %C13e1e3
for e) and e3 with the same sign becomes negative, i.e. starting to favour simultaneous contraction
parallel and perpendicular to the z-axis. Thus, while the overall elastic variations may not be
regarded as being primarily responsible for the f = o transition, they are certainly associated with
most of the energy change and could also be involved in some aspect of the triggering mechanism.
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(1948) and Zubov & Firsova (1962) under this cubic constraint yields K = —0.65. Including the
hexagonal symmetry constraints in the fitting gives values of Kj; = —0.63, K13 = —0.60 and K33
= —0.60. A value of K = —0.5 would be expected if the branches of the soft mode all soften
uniformly in three dimensions, while softening in two directions would be described by K = -1
(section 4.4). The implication of the fit values of ~—0.6 is again that B-quartz softens more or less
isotropically. These fits reproduce the observed softening quite well, as shown in Fig. 25, and
also yield values for the bare elastic constants, C{j, C3, C3, Cs3.

Expressions derived from equation 161 for the variations of the elastic constants of o-
quartz are listed in Table 15. They were used to extract values for the coupling coefficients A4, As,
Ag and Ag, using values of Q given by equation 157 and experimental data for C14, C44 and Cgg.
A reasonable description of the observed variations results (Fig. 25) but is, of course, not a real
test of the model. On the other hand, the predicted variations of C1;, Ci, C13 and C33 depend on
values of the coefficients extracted from independent measurements of strain or heat capacity, and
on values of the bare elastic constants extracted from the data for B-quartz. Close agreement
between the observed and calculated values of Cq; and Cjp, therefore implies that equation 161
provides a good description of the strain and elastic behaviour of quartz in the (001) plane. The
agreement for C33 within ~100 K of T and for C;3 is not as close, but the correct form is
reproduced. Below ~700 K, C33 increases more steeply than predicted, and it seems likely that the
description of strain parallel to [001] is incomplete. Finally, there is no evidence for a divergence
between the calculated elastic constants, which represent isothermal conditions, and the
experimental values, which are adiabatic, immediately below the transition point. This is perhaps
because the transition is just first order and occurs at a temperature which is sufficiently far from
T, that the thermal expansion coefficients do not become large enough to cause a measurable
difference between isothermal and adiabatic values (equations 95 and 96).

Table 15. Equations for calculating the elastic constants of o-quartz, as derived from equation 161 which includes
higher-order strain/order parameter coupling terms.

o-quartz (32)
iy = Cyp = C +2260° —[2}'1Q + 4/17Q3]2JC Ci-Cp= (C1°1 - 102) +4260°
Cy3=C35 - [2/13Q + 4’18Q3]27C Cii+Cip = (CP +CR) - 2[2/11Q + 4/17Q3]2)(
Cpp = Cfy —2260% - [2/11Q + 4/'L7Q3]2)C Ciy =—Cyy = Cs = AsQ + A0
Ci3=Cy=C3— [2/11Q + 417Q3] ~[213Q + 413Q3] x Cay = Css = Ciy + 22407
Cos = Cgs +2260° = ‘;—(Cll -Cp)

Having demonstrated that an appropriate Landau expansion can account quantitatively for
most of the elastic variations of o-quartz and that the softening in B-quartz is consistent with a
dynamical origin (though not involving critical fluctuations), what can be concluded about the
nature of the p = o transition? The soft zone-centre (B1) optic mode observed by Axe & Shirane

(1970), Tezuka et al. (1991) and Dolino et al. (1992) follows the w2 o |T— Tc| behaviour of a
classical soft mode and is generally accepted as providing the driving mechanism for the transition
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A general expression for the order-parameter susceptibility derived from equation 161 is:
-1 2, 1 *) 4 *\ 6
x =a(T—TC)+(2b+b )Q +§(8c+7c )Q +(4d+3d )Q (162)

where b, ¢ and d are unrenormalised coefficients for the fourth-, sixth- and eighth-order terms in
the standard Landau expansion; d” is the renormalised eighth-order coefficient and is assumed to
be zero in equation 158. The renormalised and unrenormalised coefficients are related by:

* 1%((5101 + C102) +241C5s - 44, 2,Cly
b =b-2 - (163)
(cfr +Chy)egs -2¢

e 1318(6'101 + CIOZ) +2,A7C33 = 2, A5C3 — 2430713

0 0 0 0 2 (164)
(Cu + CIZ)C33 -2G;

* 225C3; — 447 25CP3 + l%(cfl + CIOZ)
d*=d-4 s (165).
(Cll + C12)Cz3 —2G;

Numerical values for all the coefficients in these equations have been extracted from strain and
heat-capacity data. For calculating variations of the individual elastic constants, the only additional
information required is a set of values of the bare elastic constants, which may be extracted from
the Cy data for B-quartz.

Pronounced softening shown by Cjq, C12, C13 and Cs3 in B-quartz as T — Ty has been

accounted for successfully by dynamical effects of the type described in section 4.4 (Axe &
Shirane, 1970; Pytte, 1971; Hochli, 1972; Yamamoto, 1974). Hochli (1972) used the
experimental data to fit the coefficients in equation 97 and obtained values of K = —0.60 * 0.06 for
Ci1 and K =-0.64 £ 0.06 for C33, with T, = 838 £ 5 K. Axe & Shirane (1970) fit the same data
with K = -1 and a lower value of T.. The observed variations of the four elastic constants are
almost parallel, and the simplest explanation for this is that the bare elastic constants, Cfy, G,
Cf3 and C3, are effectively constant, with a dynamical softening, ACy, which is the same for
each. Ceg is almost constant in B-quartz, which, since Cgg = %(CH —Cyy), is consistent with C{y
and (7, being effectively constant as well. C44 hardly varies with temperature either. The very
small thermal expansion of PB-quartz (Kihara, 1990; Carpenter et al., 1998b; and references
therein) is a further indication that the bare elastic constants might not vary strongly with
temperature.

The symmetry constraints for a hexagonal system require ACG;=AC, and
(AC13)2 =AC;AC33 (section 4.4), but quartz appears to conform to the -constraints
ACy; = AC), = AC; = AC;; that apply in a cubic system. In other words, as far as local
fluctuations in the order parameter are concerned, the material behaves as if it is an isotropic
medium. Obtaining the coefficients in equation 97 by fitting them to the data of Kammer et al.
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2
2_ 22 ] ek 1
0*=303 1+[1 4(Ttr—Tc)] (157).

This is derived from the standard Landau expansion to sixth order:
1 s 1% 4 1 % ¢
G=Ea(T—TC)Q +Zb 0 +-6—c 0 (158)

where b is the fourth-order coefficient, as renormalised by strain coupling, and is negative in this

case; ¢ is the sixth-order coefficient as renormalised by higher-order strain-coupling terms. The
jump in Q at the transition temperature, Ty, from Q =0to Q = Q, is given by:

Q§=—%(TH—TC) (159).

The difference (T}, — T, ) may be expressed as:

2
(Te-Tc)= 3(b ) (160)

which provides a measure of how close the transition is to being tricritical (b* =0).

At this level, the most important parameters are Ty, and 7. Carpenter et al. (1998b)
adopted T, = 847 K and 7, = 840 K for internal consistency, on the basis of T, falling between
hysteresis limits of & — P on heating, B — IC on cooling, T, = 841 from spectroscopic
investigation of the soft mode in B-quartz (Tezuka er al., 1991), a best fit value of
(T —T.)=7.2 K from second-harmonic generation of light data (Bachheimer & Dolino, 1975),
and an analysis of heat capacity through the transition.

A new set of lattice-parameter measurements suggests that there is higher-order
strain/order-parameter coupling in o-quartz, which means that terms in AeQ4 must be added to
equation 129 if the elastic behaviour is to be described correctly. A higher-order coupling term can
also be included to describe the non-linear behaviour of Cj4. The full Landau expansion is then
(from Carpenter et al., 1998b):

G= —;—a(T— T.)0* + %bQ“ +écQ6 + éng + (e, + €,)0% + Aze;0?

+l4(€% + 852)Q2 + 2,5 (8164 — €6y + €5€¢ )Q + )'6[862 + (61 - 62)2]Q2
+l7(€1 + €y )Q4 + 2.883Q4 + lg (6164 —€7€y4 + €5€g )Q3
1

1
+2(C1°1 +Cy)(er + &) +z(01°1 - CR ) - &)’ +Ci(e+e5)es

1 o 2.1 2, 2\, 10 2
+—2—C§’3e3 +'£'C24(e4 +€5)+EC8686 (161)
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7.4 Co-elastic behaviour

Quartz. The zone-centre B = o (622 = 32) transition in quartz has been investigated intensively
over many years. Its most characteristic features are reviewed by Dolino (1988, 1990), Heaney
(1994) and Dolino & Vallade (1994). Early studies of lattice dynamics and elastic properties are
summarised by Scott (1974) and Hochli (1972), respectively. Data from the literature for the
variations of the elastic constants are shown in Fig. 25. The incommensurate phase (IC) is stable
only over a temperature interval of <2 K above the transition point (Dolino et al., 1992; Vallade et
al., 1992; and references therein) and probably does not have a direct bearing on the elastic-
constant variations over the much wider interval considered here. As pointed out by Salje et al.
(1992), the transition is co-elastic, with a large non-symmetry-breaking spontaneous strain.
Critical fluctuations are unlikely to occur over any easily measurable interval on either side of the
equilibrium transition point and, contrary to views expressed in the 1970's (e.g. discussion in
Scott, 1974), classical critical exponents are expected to provide a good description of the
thermodynamic evolution. A full analysis of the elastic behaviour has recently been completed
(Carpenter et al., 1998b) and the main results are summarised here.
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Fig. 25. Comparison between observed and calculated elastic-constant variations of quartz (from Carpenter et al.,
1998b). Data from: Atanasoff & Hart (1941), Atanasoff & Kammer (1948); Kammer et al. (1941), Zubov &
Firsova (1962), Shapiro & Cummins (1968), Hochli (1970), Pelous & Vacher (1976), Unoki et al. (1984), Ohno
(1995). For C};, C33 and Cy4 a distinction has been made between data from ultrasonic experiments (open symbols)

and data from Brillouin scattering (open symbols containing a dot). Two sets of calculated variations are shown for
Ci1, Ciz, Ci3 and Cij, depending on how the bare elastic constants, Cj, were determined. For one set
ACG, = AG, and (ACK;)2 = AC|;AC;3; were assumed (solid lines); for the second set AC); = AC), = ACj; =ACy,
was assumed (broken lines). In the case of C;; the two curves are almost superimposed. Fits to the data for Cyy,
Cy4 and Cgg in O-quartz, using equations listed in Table 15, are shown as solid lines; Cg, and Cg, were assumed to
be constant.

Among others, Grimm & Dorner (1975), Bachheimer & Dolino (1975), Banda et al.
(1975) and Dolino & Bachheimer (1982) have shown that the B = o transition is first order in
character and that the evolution of the order parameter in o-quartz follows, to a good
approximation:
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attributed the discrepancy to heterogeneous stresses in the polycrystalline sample. Wide variations
in published values of the equilibrium transition pressure and temperature reflect a high degree of
sensitivity of the transition to non-hydrostatic stresses (Decker & Zhao, 1989).

(Mg, Fe)SiO3 perovskite. Without the appropriate experimental data, what predictions can be made
in relation to the possible elastic behaviour at a phase transition in natural (Mg,Fe)SiO3? Firstly,
the proximity of a tricritical point to the cubic = tetragonal transition in perovskite may be typical,
allowing a first approximation of the likely evolution of the order parameter. The Pm3m = Pbnm
(cubic = orthorhombic) transition in the natural perovskite neighborite (NaMgF3) is also close to
being tricritical, for example, based on the strain data given by Zhao et al. (1993a and b) (and see
Carpenter et al., 1998a). Secondly, both the fluoride and oxides perovskites can show anomalous
softening due to fluctuations in the cubic phase as the transition point is approached. In a
polycrystalline sample, the bulk modulus would be expected to show a more or less sharp
discontinuity at the transition point, depending on the strength of coupling between the driving
order parameter and the volume strain. The shear modulus of such a sample would also show a
discontinuity if coupling described by the terms with A, and A3 as the coupling constants in
equations 119 and 154 was significant. Natural (Mg,Fe)SiO3 perovskite appears to be
orthorhombic (Pbnm) under most of the relevant range of mantle conditions (Mao et al., 1991;
Hemley & Cohen, 1992; Stixrude & Cohen, 1993; Funamori & Yagi, 1993; and references
therein) but a tetragonal = orthorhombic transition has been suggested (Wolf & Bukowinski,
1987; Bukowinski & Wolf, 1988; Wang et al., 1990, 1991; Kapusta & Guillopé, 1993; Warren &
Ackland, 1996). The equivalent transition, as a function of temperature alone, in CaTiOj3 certainly
appears to give rise to a stability field for the tetragonal phase between those of the cubic and
orthorhombic phases (Redfern, 1996, and references therein). A Pm3m = I4/mcm transition in
CaSi03 could occur at P, T conditions appropriate for the lower mantle (Stixrude et al., 1996).
Suitable Landau free-energy expansions could be derived quite simply for any proposed symmetry
change, allowing at least the form of likely variations in elastic properties associated with the
transition to be predicted.

Other systems. Other systems that show improper ferroelastic behaviour and provide useful
illustrative examples of the ways in which the influence of a phase transition on elastic properties
can be understood include Pb3(POg4); and Gdy(M0O4)3. The former is reviewed in Bulou et al.
(1992) and Salje (1993), and the latter in Fleury & Lyons (1981), Liithi & Rehwald (1981),
Cummins (1983) and Bulou e al. (1992). One example of improper ferroelastic behaviour among
minerals is the cubic = tetragonal transition in cristobalite, though this is strongly first order in
character (Hatch & Ghose, 1991; Hatch et al., 1994; Schmahl et al, 1992; Finnie et al., 1994;
Dove et al., 1997; and references therein). An example of improper ferroelastic behaviour with
pressure as the external driving force is the R3¢ = P2;/c transition in calcite, CaCO3, (Merrill &
Bassett, 1975; Hatch & Merrill, 1981; Vo Thanh & Lacam, 1984; Vo Thanh & Diep-The-Hung,
1985; Biellmann et al., 1993). The elastic constants appear to vary through the transition in a
manner that conforms closely to the predictions from a standard Landau free-energy expansion
(Vo Thanh & Diep-The-Hung, 1985).
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al, 1986; Ramirez et al., 1990). The most recent location of the tricritical point is ~35 kbar, ~233
K (Decker & Zhao, 1989). The A;y and Ty, elastic constants, (Cj; +2Cj,) and Cas, show little
softening in single crystals of the cubic phase in anticipation of the equilibrium transition pressure
at room temperature (Ishidate & Sasaki, 1989). On the other hand, the E, elastic constant,
(Ci1—Cyp), does soften (Fischer & Polian, 1987; Ishidate & Sasaki, 1989), implying
AC; #AC, in the thermal fluctuation regime. The transition pressure is marked by
discontinuities in some of the Cj; variations, but a full set of elastic constants for the tetragonal
phase is not yet available. A polycrystalline sample, in the form of a hot-pressed pellet, gives a
discontinuity in the bulk modulus ( %(CM +2Cy, ) for the cubic phase), with no softening ahead of

the transition pressure (Fischer ef al., 1993). The shear modulus (%[(C“ —C12)+3C44] in the

Voigt approximation for an aggregate of cubic crystals, Hill, 1952) shows a break in slope. These
anomalies are not entirely consistent with the single-crystal data, however, and Fischer et al.
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Rousseau et al., 1975; Berger et al., 1978). The same transition in RbCaF3 occurs close to a
tricritical point (Buzaré et al., 1979), for example.

Fig. 23. Variation of AC; with AT (=T — 185 K) for
L L KMnF;, as extracted from data of Cao & Barsch (1988).
The logarithm of ACj; is clearly a non-linear function
of InAT. Over a range of InAT, InAC;, is

approximately linear, with a slope of K = -1.37 for the
line shown here; the intercept yields A;, = 12.0 GPa.
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SrTiO3 perovskite. The same transition in SrTiOs is second order in character, though with a small
deviation from f = 1/2 over a few degrees below T. (Miiller & Berlinger, 1971; Franke &
Hegenbarth, 1974; Sato et al., 1985; Cowley, 1996). The region of Cq; and Cj; softening is
within ~70 K of T (Fig. 24a, after Migliori et al., 1993), and again extends well beyond the
interval of strong acoustic attenuation (Fig. 24b, after Deorani et al., 1990), (see also: Bell &
Ruprecht, 1963; Rehwald, 1970a and b; Liithi & Moran, 1970; Fossheim & Berre, 1972; Okai &
Yoshimoto, 1975; Rehwald, 1977; Fossum & Fossheim, 1985). Both AC, and AC;;, extracted
from the data of Migliori et al. (1993), vary in a manner consistent with K = ~—3/2, though
InAC,, is less obviously a linear function of InAT than InAC,, (Fig. 24c). Ca4 softening
coincides more nearly (though not exactly) with the range of observed attenuation (Fig. 24).
Measurements of the elastic properties of the tetragonal phase are complicated by the presence of
transformation twins, but, under a non-hydrostatic stress applied to suppress these twins, Cy;
tends towards the variation expected for a second-order improper ferroelastic transition — a simple
step at T = T; (Fossheim & Berre, 1972; Rehwald, 1977). Details of the transition behaviour again
appear to be highly sensitive to the influence of defects (Andrews, 1986; Nelmes et al., 1988;
McMorrow et al., 1990; Cowley, 1996).

BaTiO3 perovskite. One example of a zone-centre improper ferroelastic transition is the cubic =
tetragonal transition in BaTiO3, which occurs by the displacement of the Ti atoms rather than
rotations of the TiOg octahedra. The symmetry change is Pm3m = P4mm, and the active
representation is T1,. There are no strains associated with this representation and the lowest-order
coupling allowed between the symmetry-breaking strain and the driving order parameter is linear
in strain and quadratic in Q. The Landau free-energy expansion has the same form as for the cubic
= tetragonal transition in KMnF;3 and SrTiOs3 because the point symmetry at the R point of the
Brillouin zone is identical to the point symmetry at the zone centre (Rehwald, 1973). The transition
is first order as a function of temperature at one atmosphere pressure (Clarke, 1976; Irie et al.,
1987; Kovaleva et al., 1988; Tomonaga et al., 1990; Darlington et al., 1994), and also first order,
but close to tricritical, as a function of pressure at room temperature (Samara, 1971; Malinowski et
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As discussed in section 4.4, the influence of dynamical effects on the elastic constants
above T is not included in a simple Landau expansion, but can be described using a power law of
the form given as equation 97 (for elastic constants associated with the identity representation). In
KMnF; there is marked softening along the whole branch between the R (%,%,%) and M (%,%,0)

points of the Brillouin zone (Minkiewicz et al., 1970; Shirane et al., 1970; Shapiro et al., 1972;
Gesi et al., 1972; Hidaka et al., 1986; Nicholls & Cowley, 1987). According to the arguments
presented in the appendix, this might correspond to the situation illustrated as (b) in Fig. A.1, for
which K = —3/2 is predicted. The results of Cao & Barsch (1988) have been used to estimate C
and C, as linear functions of 7, extrapolated from the highest-temperature data points. ACj,
varies in a manner consistent with K = —1.4 for a value of 7, assumed to be 185 K, but a single
value of K does not describe the variation of AC; (Fig. 23). A large deviation from the expected
symmetry relation ACj; = AC), is due to the effects of thermal expansion contributing to Cj;
(Appendix A.1). Off-diagonal terms in the elastic-constant matrix are not expected to be modified
in the same way and the observed AC,, variation represents good agreement between experiment
and theory.

The overall picture that emerges for the cubic = tetragonal transition in KMnFj3 is of
improper ferroelastic properties and tricritical thermodynamic character. The transition  is
accompanied by elastic softening over a wide temperature interval as T — Ti, from above, in a
manner not predicted by the Landau free-energy expansion. The influence of defects and any
critical fluctuations appears to be restricted to a small temperature range near T;;, and the rest of the
softening in the cubic phase can be accounted for by thermal fluctuations. This pattern of elastic-
constant variations and ultrasonic attenuation is repeated in other fluoride perovskites (e.g.
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tetragonal phase are sparse and of uncertain quality due to the problem of accounting for the
influence of domain boundaries (Holt & Fossheim, 1981), but they are broadly consistent with the
predicted variations. C1; shows a marked curvature as Ty, is approached from below, comparable
with the predicted form for an average of the C;;, C; and C33 variations shown in Fig. 20. Cy4
shows a step at T}, but little obvious curvature in the stability field of the tetragonal phase, again
with the expected general form. Cj, shows a curvature in the tetragonal field which is similar in
form to the average of predicted variations for Cj, C13 and C»3. In the cubic stability field, all
three elastic constants show a marked curvature as T}, is approached over a temperature interval of
~50—100 K for Cj; and Cj,, and over an interval of ~10 — 20 K for C44. This anomaly is not
predicted by the normal static Landau expansions and has been attributed to the influence of
fluctuations of the order parameter (Pytte, 1971; Rehwald, 1971; Cao & Barsch, 1988). Strong
attenuation of ultrasonic waves has been observed within ~5 — 10 K of T, (Fig. 22, from
Fossheim et al., 1974; Reshchikova et al., 1970; Fossheim & Holt, 1980; Holt & Fossheim,
1981; Fossheim & Fossum, 1984), suggesting an outer limit on the temperature interval of any
critical fluctuations. Details of the structural evolution in this narrow temperature range also appear
to be sensitive to the influence of defects (e.g. Stokka & Fossheim, 1982; Nicholls & Cowley,
1987; Cox et al., 1988; Cox & Cussen, 1989; Scott, 1989a and b; Gibaud et al., 1989, 1991).
Such defects and any critical fluctuations could account for the weakly first-order character of the
transition, a small difference between Ty, and T, and the steep variation in Cy4 close to Ty, but do
not account for the much broader elastic anomalies in C;; and Cj5.
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Table 14. Predicted variations for elastic constants of a material subject to a phase transition involving the
symmetry change Pm3m = I4/mcm when the transition is tricritical in character.

Improper ferroelastic transition

Pm3m phase I4/mcm phase, e; =0
alT.-T
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_ ignored).
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Experimental data for the elastic constants of KMnF;3 are shown in Fig. 21 (Aleksandrov et
al., 1966; Reshchikova et al., 1970; Melcher & Plovnik, 1971; Cao & Barsch, 1988). Data for the
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carried out with externally applied non-hydrostatic pressure confirm the proximity to a tricritical
point (Stokka er al., 1981; Stokka & Fossheim, 1982). The same transition can be induced by the
application of hydrostatic pressure at room temperature, when it displays second-order character
(Asbrink et al., 1993).

The order parameter for the transition is three-dimensional and the relevant Landau free-
energy expansion has the form given in equation 119. In order to describe a transition which is
close to being tricritical it is necessary to extend the expansion to sixth-order terms (as given in
Appendix Table 1b of Salje, 1993). The full equation then becomes (after Slonczewski & Thomas,
1970; Rehwald, 1973; Ridou et al., 1980; Liithi & Rehwald, 1981; Fleury & Lyons, 1981; Cao &
Barsch, 1990; Bulou et al., 1992):

G=%“(T-Tc)(qf +a3 +q§)+%b(‘112 +a3+ai) +%”'(‘1f +a3 +43)

1 51, 1,
+claf +ai+a3) +—c (014245)° +cc(af +a3 +af)(af + a3 + i)

+hiea(af +a3 + a3 )+ Ao[V3eo(af - a3) + e (243 - af - 43|
+3(esq192 + es193 + €49293) + %(Clol +2Cp )63 + %(Clol -Cp )(eg' + et2)

+2Co e+ ek +ed) (154).

Variations of the elastic constants can be predicted from this free-energy expansion in the usual
way. The simplification that the volume strain is treated as being negligible (A; = 0) has been
incorporated because the algebra becomes overly cumbersome otherwise.

Under equilibrium conditions, g1 = g2 = e, =0 and ¢, # 0, g3# 0 at T < T,. It can easily be
shown that the coupling between e; and q,-2 terms leads to a renormalisation of the fourth-order
coefficient such that:

843

b =bab -2
* (Clol "CIOZ)

(155)

which is zero for tricritical behaviour. The susceptibility with respect to g3 is given by:

2 -1
(gq—?) =[2(b+b)+4(c+ c")q;‘]’1 (156)

and expressions for the individual elastic constants are listed in Table 14. A schematic
representation of the temperature dependence of these parameters is shown in Fig. 20. Note that
the lowest-order coupling term which can influence the evolution of Cgg is not given in Equation

154 but would be A4e2q3. This gives Cgg = C34 +2A,4g7 as a possible dependence on g.
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The data of Gibaud ef al. (1991) have been used here to calculate symmetry-breaking
[et = 71—6—(2e3 —e - ez)] and non-symmetry-breaking [ea = %(el +e)te3 )] strains, using
reference values of a, extrapolated from the cubic phase at high temperatures. As already
mentioned, e, for the transition is small, but the variation of eg with T shows little scatter and is
remarkably close to being linear (Fig. 19a). eZ extrapolates to zero at 187.7 K, which is barely
distinguishable from the transition temperature of 186.5 K given by Gibaud et al. This suggests
transition behaviour which is very close to tricritical (8 = 0.25, eg oc 0% o< T). A non-linearity
between the symmetry-breaking and non-symmetry-breaking strains (Fig. 19b) could be
accounted for by a higher-order coupling term, etQ4, becoming influential at large values of e;.
This would in turn account for the deviation from a linear variation of et2 with temperature (Fig.

19¢). In any case, the transition at one atmosphere is evidently close to being tricritical in character
(Sakashita et al., 1981, 1990; Nicholls & Cowley, 1987).
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Fig. 19. Spontaneous strain variations at the Pm3m =
I4/mcem transition in KMnF;, as calculated from lattice-
— parameter data of Gibaud ez al. (1991) for a sample with
Cf ! ! ! ! ! ': T, = 186.5 K. (a) The square of the non-symmetry-
-800x10° [-i ® - breaking strain (e,2 << Q%) varies linearly with temperature
L g ] and extrapolates to zero at 187.7 K. This is consistent
600 |- . with the transition being close to tricritical in character.
[ ] (b) If both ¢, and e, coupled only with Q? they should
N & E vary linearly with each other. That they do not might
- 4 imply the existence of a significant higher-order coupling
[ ] term, such as eQ* (c) The square of the symmetry-
200 - breaking strain (e o< Q%) is linear in 7 for (T, — 7) < 40
i ] K, as also found by Nicholls & Cowley (1987), but
O . deviates at lower T. The deviation can be accounted for by
ilereabiini b b b b L a higher-order strain/order parameter coupling term and

[

0 1 2 3 4 6x10° need not necessarily imply a value of B significantly
€ different from ~0.25. The straight line shown gives e? —
0 at 188.9 K.

Data of Aleksandrov & Flerov (1978), Stokka et al. (1981) and Stokka & Fossheim
(1982) for the excess specific heat of KMnF3 over an interval of (7, -T) up to ~7 K are

consistent with ACp o (T, —T)™%, with & = 1/2, as expected for a tricritical transition. Only in
the range (Ttr - T) < ~0.3 K do the data appear to deviate from this relationship. Measurements
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7.3 Improper ferroelastic behaviour

In a geological context, perhaps the material for which elastic properties have provoked the most
interest is perovskite. The lower mantle is believed to consist predominantly of perovskite with
composition ~(Mg,Fe)SiO3, and there has been a debate as to whether it undergoes a phase
transition from an orthorhombic form to some higher-symmetry form with increasing depth
(Navrotsky & Weidner, 1989; Mao et al, 1991; Wang et al., 1990, 1991, 1992; Hemley & Cohen,
1992; Stixrude & Cohen, 1993; Funamori & Yagi, 1993; Kapusta & Guillopé, 1993; Warren &
Ackland, 1996; and references therein). If such a transition occurs, it could give rise to an anomaly
in the bulk elastic constants of the lower mantle (Bukowinski & Wolf, 1988; Yeganeh-Haeri et al.,
1989a and b), perhaps over a rather narrow depth interval. This issue is discussed also by
Stixrude et al. (1996) for CaSiO3. Data for the natural material are sparse but the likely form of
elastic-constant variations can be anticipated with some confidence from studies of synthetic
analogues.

KMnF3; perovskite. Structural phase transitions in perovskites are frequently improper ferroelastic
in character. The order parameter is associated with a special point on the Brillouin zone boundary
and couples with symmetry-breaking strains as eQ?. A useful illustrative example for which
extensive experimental data are available is the Pm3m = I4/mcm (cubic = tetragonal) transition in

KMnF;. The transition mechanism involves a soft mode at the R point (%,%,%) of the Brillouin

zone (Minkiewicz et al., 1970; Shirane et al., 1970; Shapiro et al., 1972; Gesi et al., 1972). A
small discontinuity has been observed in properties such as birefringence, spontaneous strain and
superlattice reflection intensities at the equilibrium transition temperature (7)) of ~186 K (one
atmosphere pressure), and the transition has therefore been referred to as being weakly first order
(e.g. see Furukawa et al., 1970; Shirane et al., 1970; Gesi et al., 1972; Hirotsu & Sawada, 1973;
Benard & Walker, 1976; Kleeman et al., 1979).

Values of the critical exponents for the transition are controversial, largely because of
problems associated with making measurements on finely twinned crystals in the tetragonal
stability field. The proportions of different twin components vary with temperature (Tietze et al.,
1983), and, as a consequence, measurements of superlattice reflection intensities are an unreliable
quantitative measure of the order-parameter behaviour (Nicholls & Cowley, 1987; Cox, 1989).
Birefringence measurements have also produced inconsistent results (Aleksandrov &
Reshchikova, 1970; Hirotsu & Sawada, 1973; Benard & Walker, 1976; Kleeman et al., 1979).
The spontaneous strain and excess heat capacity should be influenced by the twinning to a much
lesser extent and indeed reveal a more self-consistent pattern. The volume strain is sufficiently
small that the symmetry-breaking strain can be expressed as [(c - a)/a], rather than as its correct

form [(c—ao )/ao], without introducing significant error. Values of f = 0.26 = 0.02 (Nicholls &
Cowley, 1987; Cox, 1989) and = 0.316 £ 0.005 (Gibaud et al., 1991) have been obtained from
data collected over temperature intervals, (T[r —T), of ~40 and 90 K respectively, using the
relationship [(c - a)/a] o< (T, - T)zﬁ . The temperature at which [(c — a)/a] extrapolates to zero is

greater than Ty, the actual transition temperature, by only a few degrees at most. (For observations
in the vicinity of Ty, see also Ratuszna et al., 1979; Sakashita et al., 1981, 1990; Sakashita &
Ohama, 1982).
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Minerals. Comparable studies of ferroelastic transitions in minerals have not yet been undertaken,
but there are some possible candidates for pseudo-proper behaviour. The cubic = tetragonal
transition in leucite discussed in the previous section might belong to this category. Similarly, the
hexagonal = orthorhombic (P6,22 = (222;) transition in tridymite, SiO,, is in principle a
proper ferroelastic transition, but several other structural changes occur over a temperature interval
of ~200 — 300 K (references to recent work include Wennemer & Thompson, 1984a and b; Kihara
etal., 1986a and b; Smelik & Reeber, 1990; Graetsch & Florke, 1991; de Dombal & Carpenter,
1993; Xiao et al., 1993, 1994, 1995; Cellai et al., 1994; Xiao & Kirkpatrick, 1995; Kitchin et al.,
1996). Coupling between several lattice modes almost certainly occurs. Variations in the elastic
constants would probably be diagnostic of the underlying driving mechanisms in these phases.
The tetragonal = monoclinic (P4/nnc = P2/n ?) transition in vesuvianite described by Groat et al.
(1995) has tentatively been placed in this category on the basis of its change in space group and its
very small spontaneous strain, but rather little is known about the underlying mechanism.

In addition to the standard determination of the temperature dependence of the symmetry-
breaking strain and the corresponding symmetry-adapted elastic constant, key features to be
examined in detail are the exact relationships between the strain and the proposed order parameter,
and the behaviour of all the other elastic constants. For real materials with an order parameter
different from the strain but bilinearly coupled to it, we should expect conformity to a Landau free-
energy expansion of the form:

G=-;—C'e2+-‘1;C”e4+ e + 10+ A Q%+ ... +%AQ2+%BQ4+ (153)

where C’ and C” are second- and fourth-order elastic constants; e is the symmetry-breaking strain
and the non-symmetry-breaking strain has been ignored. For LaP5O14 and BiVOy, it is believed
that the soft optic mode drives the transition, implying that the A coefficient is temperature
dependent. The elastic-constant softening then occurs purely as a consequence of the coupling
between Q and e such that C” is the bare elastic constant and is not by itself strongly temperature
dependent. The fourth-order term in e and the high-order coupling terms can be neglected. If, on
the other hand, the driving order parameter was e, it would be the temperature dependence of C’
(and the higher-order terms in ¢) which would account for the transition. The A coefficient would
not be expected to be temperature dependent and the Q* term could be neglected. In this case the
optic-mode softening would be a consequence only of the bilinear coupling with e. The third
possibility is that the coupling coefficient, A, is the temperature-dependent property giving rise to
the transition, though this at present appears to be only a theoretical possibility and has not been
considered in the case of real materials. Between these three extremes are cases where both C’. and
A (and A;) might have an explicit temperature dependence, implying that both soft acoustic and
soft optic modes contribute to the driving mechanism for the transition. In each case, the
relationship between e and Q and the variations of elastic constants can be predicted using the
manipulations discussed in detail in the body of this review. Comparison of the real behaviour of a
pseudo-proper ferroelastic material with the predicted variations should then indicate whether
details of an initial model are in fact physically correct. Such details might be of less importance
relative to, say, predicting the grosser characteristics of the elastic-constant behaviour at some
phase transition in a geological material for which little or no data were available, however.
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K>Cd»(S04)3. Another instructive transition is the first-order P2;3 = P2;2;2; transition in
langbeinite, KoCdy(SO4)3 (Abrahams et al., 1978; Lissalde et al., 1979; Devarajan & Salje, 1984,
1986; Percival et al., 1989; Percival & Salje, 1989; Percival, 1990; Hatch et al.,, 1990b;
Kaminsky, 1996; Guelylah et al., 1996). The evolution of the symmetry-breaking strains is at
least consistent with linear coupling of e, and e; with a two-component order parameter (Carpenter

et al., 1998a), and the symmetry-adapted elastic constant (C;; — C;,) of the cubic phase shows the
characteristic curvature of a pseudo-proper ferroelastic transition (Fig. 18, after Antonenko et al.,

1983). Antonenko ef al. (1983) extracted a value of (T: - TC) = 16 K from their data, using an

equation of the form of equation 31 (replacing Css by (Ci;—Gyp) and C35 by (Cf - CR)),

suggesting relatively weak strain/order-parameter coupling. A soft optic mode has not yet been
found (Moiseenko et al., 1983; Devarajan & Salje, 1986). Speer & Salje (1986) and Devarajan &
Salje (1986) suggested that the transition is triggered by a local distortion of the CdOg octahedra.
This is supported by optical spectroscopy data, though in detail the nature of the distortion may be
slightly different from that originally envisaged (Percival & Salje, 1989; Hatch et al., 1990b).
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A straightforward measure of the strength of coupling between soft optic and soft acoustic
modes, the magnitude of the coefficient As in equation 127, is given by the difference between T
and the renormalised transition temperature 7, . T, is the temperature at which the transition

would occur in the absence of coupling of Q to the strain, and is given by the linear extrapolation
of @? to zero in Fig. 15 (where @ is the frequency of the soft optic mode in the orthorhombic

phase). T, is the observed transition temperature and the difference, (Tc - Tc), is proportional to

l% (equation 16). For LaP5014 the observed value of (T: ——Tc) is 161 £ 11 K (Errandonea,

1980; Errandonea & Savary, 1981) and the value calculated by Errandonea is 170 K, implying
strong bilinear coupling. Errandonea was also able to derive the observed pressure dependence of
the transition temperature from the Landau expansion and the numerical values of the coefficients.
Other examples of pseudo-proper ferroelastic behaviour are reviewed by Rehwald (1973),
Liithi & Rehwald (1981), Cummins (1983), Tolédano et al. (1983) and Bulou ez al. (1992). An
interesting comparison can be made between BiVO,4 and LaNbOy, for example. Both materials
have the same structure and undergo a transition which involves the symmetry change /41/a =
I2/a. However, there is a soft optic mode in BiVO, which is believed to drive the transition and to

which the strain is linearly coupled. The value of (T : - Tc) is ~163 K (Pinczuk et al., 1979)

indicating that the coupling is quite strong (Pinczuk et al., 1977, 1979; David, 1983a; Tokumoto
& Unoki, 1983). In LaNbOy no equivalent soft mode is observed and the transition appears to
have strain as the driving order parameter (Wada et al., 1979; Hara et al., 1989). The soft acoustic
modes in each case clearly display this difference in mechanism. In LaNbOy, the square of the
frequency of the soft acoustic mode goes linearly to zero as T — T, while in BiVO, the same
acoustic mode shows a marked curvature (Fig. 17, after Ishibashi et al., 1988; and see Benyuan et
al., 1981; Tokumoto & Unoki, 1983).
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Fig. 17. Variation of the square of the Brillouin
frequency shift of the soft acoustic mode
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constant (Css) shows the distinctly non-linear approach to zero characteristic of a pseudo-proper
transition. The ratio of slopes in the vicinity of the transition point is 2.9:1 instead of 2:1 due to the
renormalisation of the fourth-order coefficient by non-symmetry-breaking strains. Errandonea
(1980) determined values for all the Landau coefficients and then calculated values of Cj from the
free-energy expansion. These calculated values match the observed values closely, suggesting that
the mechanism proposed for the transition is broadly correct. Not every detail is reproduced by the
chosen Landau expansion, however. For example, C44 shows an anomaly which is not predicted.
As suggested by Errandonea, this deviation could arise by coupling of e4 with the B34 optic mode
which softens in a manner that could be unrelated to the mmm = 2/m transition. Similarly,
deviations from e52 o< T observed at low temperatures can be explained by the contribution of
higher-order terms in Q (Fousek et al., 1979; Errandonea, 1980) or by the contribution of a
higher-order strain/order parameter coupling term. The detailed variations of strains and elastic
constants again expose subtelties of the transition mechanism specific to the material.
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Fig.16. Variations with temperature of the complete set

of elastic constants for LaPsO;4 at the mmm = 2/m
transition (after Errandonea, 1980). Solid curves are
solutions of the form listed in Table 11, from equation
127, for a pseudo-proper ferroelastic transition with
values determined for all the coefficients. Only Cg4
deviates substantially from its calculated trend. Cy¢
remains zero in the monoclinic phase for structural
rather than symmetry reasons (4; = 0 in equation 127).
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phase. The square of the symmetry-breaking strain (e52 ) varies approximately linearly with
temperature as T — T, indicating a classical second-order transition (Errandonea & Bastie, 1978;
Errandonea, 1980). Small deviations from linearity can be accounted for by the addition of a sixth-
order term in the Landau expansion (Errandonea, 1980).

2.4,
\ 77,

N

Fig. 14. Two orthogonal acoustic modes, g, # and
Gy, Uy, parallel to the crystallographic x- and z-axes
generate a monoclinic distortion (solid lines) from an
U orthorhombic unit cell (dotted lines), as shown
schematically here.

Raman spectroscopic studies have shown that two zone-centre optic modes also soften as
the orthorhombic = monoclinic transition is approached (Fig. 15, after Errandonea & Sapriel,
1979; Errandonea & Savary, 1981; Chen & Scott, 1989). The softer of the two has By, symmetry
and is regarded as providing the driving mechanism for the transition (Errandonea, 1980).
Significant non-symmetry-breaking strains have also been observed (Errandonea, 1980), and the
appropriate form of Landau expansion to describe the transition is thus the same as equation 127.
The expected form of elastic-constant variations is that illustrated in Fig. 10 for a pseudo-proper
transition with eng, # 0.
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500 } 4 transition temperature to 7, , where
i _ - Css tends to zero instead.
0 1 1 1 -t - 1 1 1 1 1 1
100 150 200 250 300 350 400 450 500 550
T (K)

All the elastic constants and their variation with temperature through the transition have
been measured by Brillouin spectroscopy (Fig. 16, after Errandonea, 1980). The soft elastic
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There is an analogous transition in the (Ca,Sr,Ba)Al;SiyOg system where crystals develop
high degrees of AUSi order under equilibrium conditions and the symmetry change is I2/c = I 1
(Nager et al., 1970; Bambauer & Nager, 1981; Tribaudino et al., 1993; McGuinn & Redfern,
1994a and b, 1997; Redfern et al., 1997). These materials have not been investigated in as much
detail, but the transition mechanism would be expected to be rather similar, and should be
amenable to the same analysis.

The mineral leucite (KAISi;Og) undergoes a cubic = tetragonal transition at ~938 K
followed by a tetragonal = tetragonal transition at ~918 K (Peacor, 1968; Sadanaga & Ozawa,
1968; Grogel et al., 1984; Lange et al., 1986; Riischer et al., 1987; Palmer et al., 1988, 1989,
1990, 1997; Palmer, 1990a; Palmer & Salje, 1990; Heaney & Veblen, 1990; Hatch et al., 1990a;
Boysen, 1990; Ito et al., 1991). Both transitions are associated with the Brillouin zone centre and
the sequence of changes in point group is m3m — 4/mmm — 4/m. The high-temperature
transition is ferroelastic, but the transition mechanism is not yet understood. Although no zone-
centre soft optic mode with the symmetry of the active representation (Eg) has yet been observed
(Palmer et al., 1990), there appear to be changes in structure involving the K* ions which
influence the transition (Palmer & Salje, 1990; Boysen, 1990), and which might imply a pseudo-
proper mechanism. On the other hand, analysis of possible rigid unit modes (those involving only
relative motions of rigid SiO4 and AlO, tetrahedra) suggests that an appropriate soft acoustic mode
does exist to provide the driving mechanism (M.T.Dove, pers. comm.). Observations of the
temperature dependence of (C” - C12) would resolve this question. Interestingly, the transition
appears to be not far from second order in character (Palmer et al., 1989, 1990; Palmer, 1990b),
implying that energy contributions from odd-order terms in the driving order parameter are small.
The elastic behaviour might therefore have the general form illustrated in Fig. 4, though with
additional superimposed anomalies from the second transition at ~918 K.

7.2 Pseudo-proper ferroelastic behaviour

A more common circumstance among ferroelastic materials is that the symmetry-breaking strain is
not the driving order parameter for the phase transition. Changes in some other physical property
may be responsible for the transition and the symmetry-breaking strain arises only as a
consequence of linear coupling to it. Softening of a zone-centre optic mode might be implicated,
for example, as in BiVO, (Pinczuk et al., 1979) and LaPsOy4 (Errandonea & Sapriel, 1979).

LaPs0O}4. The most thoroughly characterised transition showing the effects of pseudo-proper
behaviour on a complete set of elastic constants is the Pncm = P2i/c (mmm = 2/m) transition in
LaPs0;4 at ~398 K (Tolédano et al., 1976; Errandonea & Bastie, 1978; Errandonea & Sapriel,
1979; Fousek et al., 1979; Errandonea, 1980; Errandonea & Savary, 1981; Chen & Scott, 1989;
Cai et al., 1990; Scott & Chen, 1991; and see reviews by: Tolédano et al., 1983; Bulou et al.,
1992). It serves as a perfect model for minerals. The soft acoustic mode has By symmetry and its
velocity in the orthorhombic phase is given by pv? = Css, which should tend to zero at the elastic
stability limit (Errandonea, 1980). The transition can be described in terms of the softening of two
mutually perpendicular transverse acoustic waves with direction and amplitude vectors along the
crystallographic x- and z-axes of the orthorhombic phase (Fig. 14). Transformation twins in the
monoclinic phase will lie perpendicular to the [001] and [100] directions of the orthorhombic
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using substitutions from equations 142 and 143, and by incorporating the equilibrium variation of
e‘% given below in equation 151. This shows that C44 does not go to zero at T = T: but reaches a

2
minimum value, (C&) / Cgs » and then recovers in the triclinic stability field.

There are sufficient experimental data available to estimate values for all the coefficients in
equation 138, and hence predict numerical values for C44 and Cye. The data for e4 (= —coso™) and
eg (= cos)) give (from Carpenter et al., 1998a):

eg = 0.0251e, +7.78¢3 (150).

Best estimates for Cgs and Cgg in monoclinic albite are provided by the ultrasonic data of
Haussiihl (1993) for sanidine, —0.8 and 39.3 GPa respectively. These give the first coefficient in
equation 140 as —Cf;/Cg =0.020, which is in reasonable agreement with the equivalent
coefficient in equation 150. Treating the other coefficients of equations 140 and 150 as also being
equivalent gives A =~39.3 x 7.78 = =306 GPa (= —306 x 105 J.mole-!, using a molar volume of
100.1 cm3 for NaAlSi3Og). The sixth-order term in equation 141 turns out to be small and the
renormalised equilibrium temperature dependence of e4 becomes:

e =—:T(T: —T) (151).

Taking the estimate of a = 5.48 J.mole-1.K-1 from Salje et al. (1985b) gives b" = 6801 J.mole!
for T: = 1241 K (using the transition temperature from Fig. 9a of Carpenter et al., 1998a).

Rescaling the coefficients so as to replace Q by ey4 gives a = 835 J.mole-1.K-! and b =1.58x 108
J.mole-! (using —eq = cosal” = 0.081Q from Carpenter et al., 1998a). Equations 142 and 143 then

give (T c* - TC) =2.0K and (b* - b) = -2 x 106 J.mole-l. Thus, also to a good approximation,

equation 149 reduces to:

0

+2a(T;k - T) @T<T (152).
66

Finally, variations of Cy4, C4¢ and Cgg due to the C2/m = C1 transition may be calculated
using the estimated coefficients and the data of Haussiihl (1993) for Cgs and Cgg. These are

shown in Fig. 13b, ignoring the normal weak temperature dependence of the bare elastic
constants. According to this model, the transition occurs because Cy4 softens almost to zero. The

softening is a linear function of temperature in the stability fields of both polymorphs, but the
transition point is at T: , when Cy4 = 0.016 GPa, rather than 2 K lower, when it would

extrapolate (from 7' > T: ) to zero. The ratio of slopes for C44 below and above T: should be
close to 2:1. The strain component eg remains small and is a distinctly non-linear function of e4
because, in both monoclinic and triclinic feldspars, Cyg is already close to zero (Ryzhova, 1964;
Ryzhova & Alexandrov, 1965; Haussiihl, 1993).
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Substituting for eg in equation 138 then gives:

1 ¥\ o 1 %4 2,2 6
G= Ea(T— T )e4 Rt (141)
where:
2
cs o
T, =T, +( 460) (142) b = b—ioc“ﬁ (143).
aC66 C66

The elastic constants Cy4, C46 and Cgg may be derived from equation 138 in the usual way:

9°G 0°G 2
Cee =—= = C2 144 Cye = =Ch +3e 145
6 = 32 66 (144) 46 Seadeg 46 ; (145)
2 0 2
Cua =g—(2;=a(T—Tc)+[3b— 6'1f46 )e}{ - 6’10 et (146).
€4 66 66

Thus Cgg is not expected to be influenced by the transition, C46 should show a linear deviation

from Cgy for ef o< (T;I< - T), and Cy4 behaves almost as the critical elastic constant for a classical

proper ferroelastic transition, with Cyy =a(T - T,) at T> T: . At the transition point T = T: and

e4 =0, giving:
C44 = a(TC TC)
2
_(c)

Cgs (147)

or:
0 0 2

C14Ce6 = (C46) (148)

in accordance with the predicted elastic stability limit (equation 135). (Note that the elastic
constants must in reality behave as (C44C66 - C}G) — 0 with T — T, but in this model Cg¢ is

taken to be effectively constant and equal to Cgy). For T < T: , equation 146 can be reformulated
as:

2
Cae ACS 612
c44=( 0) +2(b——6§ ei-c—&eﬁ (149)
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Fig. 13. Proper ferroelastic behaviour at the C2/m = C1 transition in albite with no long-range Al/Si order. (a)
Schematic illustration of the relationship between soft acoustic mode propagation directions (g, gp) and

displacement directions (i, , p), twin-plane orientations (A = albite, P = pericline), and crystallographic axes (x, y,

zc s a reciprocal lattice direction) for the triclinic phase. X, Y and Z are the Cartesian reference axes. (b)
Calculated variation of the elastic constants Cy4, Cgs, Cye (ignoring their normal background temperature

*
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