УДК 551.242:552.3

ИЗОТОПНО-ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ПОЗДНЕМИОЦЕНОВЫХ СУБЩЕЛОЧНЫХ И ЩЕЛОЧНЫХ БАЗАЛЬТОВ ЮГА ДАЛЬНЕГО ВОСТОКА РОССИИ КАК ПОКАЗАТЕЛЬ РОЛИ КОНТИНЕНТАЛЬНОЙ ЛИТОСФЕРЫ В ИХ ПРОИСХОЖДЕНИИ

© 2007 г. А. А. Чащин*, Ю. А. Мартынов*, С. В. Рассказов**, С. О. Максимов*, И. С. Брандт**, Е. В. Саранина**

*Дальневосточный геологический институт Дальневосточного отделения РАН

690022 Владивосток, просп. 100-летия Владивостока, 159, Россия; e-mail: achashin@mail.ru

**Институт земной коры Сибирского отделения РАН

664033 Иркутск, ул. Лермонтова, 128, Россия; e-mail: rassk@gpg.crust.irk.ru Поступила в редакцию 14.06.2005 г.

На основании изучения содержаний петрогенных оксидов, микроэлементов (методом ICP-MS) и изотопных отношений стронция в позднемиоценовых субщелочных и щелочных базальтоидах юга Дальнего Востока России, формировавшихся на заключительной стадии развития внутриплитного базальтового вулканизма, показаны вариации их основных геохимических и минералогических характеристик в различных тектономагматических террейнах. Определяющую роль в петрогенезисе изученных пород играла обогащенная и гетерогенная континентальная литосфера, в различной степени переработанная постаккреционными разновозрастными субдукционными процессами. Впервые получены геохимические доказательства существования пермской субдукции, связанной с погружением Солонкерской палеоокеанической плиты под Амурский микроконтинент.

Позднекайнозойские внутриплитные преимущественно основные по составу вулканические породы, в виде сравнительно небольших полей, достаточно широко распространены в пределах восточной окраины Евразии, от Японских островов на востоке до Монголии на западе. Наименее изучены они в пределах Дальнего Востока России. Опубликованные в последнее десятилетие петрологические работы (Есин и др., 1992; Мартынов, 1999; Сахно, 2001; Рассказов и др., 2003 и др.) касались главным образом наиболее широко распространенных толеитовых и субщелочных базальтов главной фазы вулканической активности. Щелочные и умеренно-щелочные базальты, завершающие разрез вулканического плато или формирующие обособленные, сравнительно небольшие моногенные вулканические постройки, оставались практически неизученными. Цель данной работы – восполнить этот пробел на основании новых данных, полученных при изучении позднекайнозойских вулканитов южной и северо-западной частей Приморья.

Кроме решения геолого-петрологических проблем, изучение позднекайнозойских щелочных и умеренно-щелочных базальтов представляет и определенный практический интерес, поскольку с ними пространственно ассоциируют россыпи сапфиров (Ананьев и др., 1998; Высоцкий и др., 2002; Баркар, 2004 и др.).

МЕТОДЫ ИССЛЕДОВАНИЯ

Выполненные исследования базируются на аналитическом изучении более 150 наименее измененных, согласно петрографическим исследованиям, образцов.

Состав минералов определяли на микрозонде Сатеbах в Институте вулканологии ДВО РАН (г. Петропавловск-Камчатский) и на микроанализаторе ЈХА-5а в ДВГИ ДВО РАН (г. Владивосток). Анализ осуществляли при ускоряющем напряжении 20 кВ и токе зонда около 50 нА. В качестве эталонов использовали химически проанализированные однородные по составу минералы (санидин – для Si, Na, K, Al; диопсид – для Са и Mg; оливин – для Fe; ильменит – для Ti и родонит – для Mn). Ошибка анализа не более 1.5– 2 отн. %.

Содержание петрогенных оксидов определяли традиционным химическим методом в аналитическом центре ДВГИ ДВО РАН (аналитики Л.В. Шкодюк, Г.И. Макарова, С.П. Баталова). Там же выполнен изотопный анализ кислорода силикатов. Подготовка образцов в последнем случае проведена по лазерной методике А.В. Игнатьева и Т.А. Веливецкой (2005). Измерение изотопных соотношений ¹⁸O/¹⁶O проведено на изотопном масс-спектрометре Finnigan MAT-252 с использованием двойной системы напуска. Воспроизводимость определения δ^{18} O образцов составляет ±0.1‰.

Определение концентраций микроэлементов методом ICP-MS, изотопных стронциевых отношений и K-Ar возрастов вулканических пород проводили в лаборатории изотопии и геохронологии Института земной коры СО РАН (г. Иркутск). Химическую подготовку проб для элементного и изотопного анализов осуществляли на основе бидистиллята глубинной воды оз. Байкал. В процессе пробоподготовки использовали двукратно очищенные на изотермических перегонках особо чистые кислоты. Плавиковую кислоту очищали в тефлоновых аппаратах, а воду, азотную и соляную кислоты – в кварцевых аппаратах. Измерения методом ICP-MS проводили в Иркутском Центре коллективного пользования на масс-спектрометре VG Plasmaquad PQ2+. Калибровку прибора осуществляли по международным стандартам BHVO-1, AGV-1 и BIR-1 и внутрилабораторному стандарту базанита U-94-5.

Для изотопного анализа стронция разложение проб осуществляли на воздухе в тефлоновой посуде смесью концентрированных плавиковой и азотной кислот. Стронций выделяли на хроматографических колонках с внутренним диаметром 8 мм, заполненных 5 см³ смолы Dowex 50 \times 8 крупностью 200-400 меш. В качестве элюента использовали 2N соляную кислоту. Изотопные отношения стронция измеряли на масс-спектрометре Finnigan МАТ-262 в Иркутском Центре колпользования. лективного Измерения K-Ar возрастов вулканических пород проводили на масс-спектрометре МИ-1201, усовершенствованном для одновременного измерения масс ³⁶Ar и ⁴⁰Ar методом изотопного разбавления. Разбавление осуществляли воздушным аргоном. Концентрацию калия определяли по трем навескам фотометрией пламени с погрешностью измерений, обычно не превышавшей 1.5%. Общая погрешность K-Ar возраста складывалась из инструментальных погрешностей измерений калия и радиогенного аргона.

ГЕОЛОГИЯ

Строение фундамента

Согласно современным представлениям территория юга российского Дальнего Востока – это коллаж разновозрастных аккретированных блоков. С позиций террейнового анализа (Ханчук

ПЕТРОЛОГИЯ том 15 № 6 2007

и др., 1995) на территории Приморья выделяются Ханкайский супертеррейн, Лаоелин-Гродековский составной террейн и Сихотэ-Алинская аккреционная система (рис. 1).

Наиболее древний Ханкайский супертеррейн включает в себя несколько террейнов, сформировавшихся в разных геодинамических условиях. Матвеевско-Нахимовский террейн представляет собой фрагмент континентальной окраины; Спасский – входил в состав додевонской аккреционной призмы; Вознесенский – часть кембрийской окраинно-континентальной вулканической дуги; Сергеевский – фрагмент палеозойско-мезозойской пассивной окраины, включенный в структуры юрской аккреционной призмы и испытавший вместе с ними цикл син- и постаккреционных преобразований.

Западнее Ханкайского супертеррейна располагается Лаоелин-Гродековский террейн, сложенный пермскими островодужными вулканоплутоническими комплексами.

Наиболее молодая Сихотэ-Алинская аккреционная система образовалась на рубеже раннего и позднего мела в результате причленения к восточной окраине Азиатского континента разнотипных по происхождению террейнов. Самаркинский террейн является фрагментом юрской аккреционной призмы; Кемский – фрагмент аптальбской островной дуги. Журавлевский турбидитовый бассейн образован в обстановке трансформной окраины, а Таухинский террейн рассматривается в качестве фрагмента неокомовской аккреционной призмы (Голозубов, Ханчук, 1995; Ханчук и др., 1995).

Постаккреционная вулканическая активность в пределах юга Дальнего Востока России связана с субдукцией в позднем мелу океанической плиты Кула. В это время в восточной части Сихотэ-Алинского литосферного блока сформировался Восточно-Сихотэ-Алинский вулканический пояс, сложенный вулканическими породами преимущественно кислого и среднего состава.

Кайнозойский, палеоген-раннемиоценовый, преимущественно базальтовый вулканизм, локализованный в пределах восточной части Сихотэ-Алинского литосферного блока и частично – в Лаоелин-Гродековском террейне, рассматривается как постсубдукционный, связанный с разрушением субдукционной пластины трансформными разломами, возникновением субдукционных "окон" (slab-window) и внедрением горячей астеносферной мантии в субконтинентальную литосферу (Ханчук и др., 1997; Мартынов, 1999; Мартынов и др., 2006).

В позднем миоцене, после небольшого перерыва, началось формирование небольших изолированных базальтовых плато, тесно ассоциирующих с депрессиями, выполненными миоценовыми осадоч-

Рис. 1. Схематическая структурно-тектоническая карта юга Дальнего Востока России (Ханчук и др., 1995). 1–3 – аккреционные системы: Ханкайская (1), Лаоелин-Гродековская (2), Сихотэ-Алинская (3); 4 – позднекайнозойские платобазальты; 5 – главные разломы (1 – Арсеневский, 2 – Центральный, 3 – Западно-Приморский); 6 – центры субщелочного и щелочного магматизма: 1 – вулкан Бабушка–Дедушка, 2 – вулкан Подгелбаночный, 3 – вулкан Буреломный, 4 – экструзия Стариков Ключ, 5 – вулкан Борисовский, 6 – шлаковый конус Слабинка (Хабэ), 7 – экструзия Тригопункт, 8 – силообразное тело в истоках реки Вторая Речка, 9 – экструзия Нежинка.

ными отложениями. Заключительный этап вулканизма завершается формированием мелких моногенных вулканов, трубок взрыва, субвулканических тел субщелочного и щелочного состава, являющихся предметом данного исследования.

Геологическая характеристика позднекайнозойских внутриплитных базальтов

Шкотовское вулканическое плато расположено в междуречье рек Партизанская–Арсеньевка и Арсеньевка–Артемовка и занимает значительную площадь (около 1500 км²). Фундаментом

для большей части плато служат породы Сергеевского террейна, для северо-западного участка – породы Вознесенского террейна, а юго-восточной части – породы Самаркинского террейна.

Сложено плато преимущественно покровами низко- и умеренно-калиевых базальтов и андезитобазальтов, часто переслаивающихся в нижней части разреза с прослоями и линзами туффитов, песков, глин, лингнитов (Берсенев, Денисов, 1971). По составу минералов-вкрапленников базальтоиды подразделяются на бронзит-плагиоклазовые и двупироксен-оливин-плагиоклазовые разновидности. Характерно, что смена одного петрографического типа на другой в пределах разреза происходит в большинстве случаев через ряд переходных петрографических разновидностей, появление которых вызвано вариациями количества оливина и пироксена в лавах. Возраст покровных образований, согласно выполненным K-Ar определениям, составляет 13.0 ± 0.7 млн. лет.

Выше по разрезу, как правило, залегают потоки высококалиевых базальтов, с варьирующим количеством темноцветных минералов (оливин, клинопироксен, ортопироксен) и мегакристов плагиоклаза. В отличие от пород нормальной щелочности их объемная доля в строении плато незначительна. К-Аг датированием возраст субщелочных базальтоидов оценивается в 9.4 ± 0.3 млн. лет. Суммарная мощность отдельных разрезов плато может достигать 200 м.

Помимо покровных образований в восточной части плато на водоразделе рек Партизанская и Арсеньевка ограниченно распространены небольшие самостоятельные вулканические аппараты (вулканы Подгелбаночный, Буреломный и др.) и отдельные экструзии (например, экструзия ключа Тигрового), прорывающие толеитовые покровы и сложенные преимущественно щелочными или субщелочными вулканитами. Согласно К-Аг датировкам геологический возраст щелочных пород Шкотовского плато составляет 10.9– 3.3 млн. лет (табл. 1).

Площадь расположенного к западу Шуфанского плато составляет около 1700 км². Фундаментом служат породы Вознесенского и отчасти Лаоелин-Гродековского террейнов. В центральной и северной частях плато в основании разрезов картируются отложения усть-суйфунской свиты, представленные галечниками, песками, туфоалевролитами и кислой пирокластикой. Нередко наблюдается переслаивание осадочных пород с потоками базальтов. Выше по разрезу залегают лавы низко- и умеренно-калиевых базальтов и андезитобазальтов, которые слагают подавляющую часть плато. Количество потоков в отдельных разрезах достигает 25, а их мощность колеблется от 3 до 20 м (Берсенев, Денисов, 1971). Воз-

ПЕТРОЛОГИЯ том 15 № 6 2007

раст пород варьирует в интервале от 13.3 до 8.2 млн. лет (табл. 1).

Субщелочные, реже щелочные оливиновые базальты, завершающие разрез Шуфанского плато, слагают небольшие, в различной степени эродированные вулканические аппараты центрального типа (вулканы Сенькина Шапка, Борисовский и др.), трубки взрыва, а также экструзивные и дайковые тела. Объемная доля этих пород в строении плато весьма низка. В совокупности они образуют узкую полосу субмеридионального северо-восточного направления, протягивающуюся на 60 км от среднего течения реки Грязная до реки Раздольная западнее г. Уссурийска (Сахно и др., 2004). Данные K-Ar датирования свидетельствуют о том, что образование субщелочных пород в пределах Шуфанского плато происходило во временном интервале 9.5-7.1 млн. лет (табл. 1).

Острогорское вулканическое плато располагается в междуречье рек Столбовая, Тучная, Доступная и Золомная, где его разрозненные фрагменты прослеживаются в виде узкой (до 5 км) полосы на 25 км в северо-восточном направлении. Фундаментом для Острогорского плато служат породы Матвеевско-Нахимовского террейна. В самом основании вулканического разреза картируются прослои галечников, песков, глин, конгломератов либо выветрелые алевролиты столбовской толщи. Выше залегают единичные маломощные потоки пикритов и пикритобазальтов, покровы оливиновых базальтов и трахитов. Значительный объем трахитов является характерной особенностью данного плато. Породы нормальной щелочности в пределах Острогорского плато отсутствуют. Наряду с лавами в строении плато принимают участие некки, экструзивные тела и дайки оливиновых базальтов, пикритобазальтов и трахитов. Выполненные нами К-Аг датировки (табл. 1) позволяют считать, что формирование плато происходило в интервале от 15 до 10.9 млн. лет. Одним из вулканических центров является сдвоенный вулкан Бабушка-Дедушка. В его центральной части картируются два некка, находящиеся друг от друга на расстоянии 500-600 м, сложенные ОЛИВИНОВЫМИ пикритами. K-Ar датированием возраст пикритов вулкана Дедушка оценивается 12 млн. лет, а вулкана Бабушка -4.78 млн. лет (Моисеенко, Сахно, 2000).

Вострецовская группа вулканов расположена между правым бортом реки Большая Уссурка в ее среднем течении и Марьевской депрессией в пределах Самаркинского террейна, вблизи границы с Матвеевско-Нахимовским террейном. В этой связи в строении фундамента принимают участие как сильно дислоцированные пермские, триасовые и юрские терригенные отложения, так и отдельные блоки протерозойских пород Ханкайской континентальной окраины.

ЧАЩИН и др.

Номер образца	Порода	Местоположение	<i>K</i> , %	$^{40}\text{Ar}_{p} \times 10^{-5},$ $^{HM^{3}/\Gamma}$	Воздуш- ный Ar, %	Возраст, млн. лет
		Шуфанское плато		1		
Ш-99-18	Андезитобазальт	Нижний пакет плато	0.551	28.53	92.4	13.3 ± 1.0
M-5196	Андезит	Вул. Круглопадочный	3.212	131.6	85.8	10.5 ± 0.6
Ш-99-13	Андезит	Вул. Барановский	2.587	82.79	85.7	8.2 ± 0.4
Ча-1539	Субщелочной базальт	Вул. Борисовский	2.55	-	-	9.5 ± 0.6
Ш-99-16	Субщелочной базальт	Экструзия Слабинка	1.430	39.8	80.6	7.1 ± 0.3
	I	Шкотовское плато		I	I	
Ш-99-9	Андезитобазальт	Левый Горбатый Ключ, средняя часть разреза	0.426	21.69	85.6	13.0 ± 0.7
Ш-99-1	Плагиофировый базальт	Там же, верхний поток	1.805	66.52	57.2	9.4 ± 0.3
Ш-01-172	Толеитовый базальт	Руч. Подгелбаночный	0.971	50.5	90.7	13.3 ± 1.1
Ш-01-175	Щелочной базальт	Вул. Подгелбаночный	2.95	125.8	74.4	10.9 ± 0.5
Ча-1620	Субщелочной базальт	Вул. Буреломный	1.480	43.176	84.1	7.5 ± 0.4
Ш-00-116	Щелочной базальт	Экструзия Старикова	2.175	28.15	90.6	3.3 ± 0.2
		вострецовская группа ву	<i>канов</i>	I	I	
Бу-1483	Толеитовый базальт	Руч. Филькин Ключ	0.680	31.02	90.6	11.7 ± 0.8
Бу-1481	Толеитовый базальт	Руч. Филькин Ключ	0.642	31.93	89.1	12.8 ± 0.2
Бу-1524	Щелочной пикритобазальт	Гора Лапина	2.375	96.9	68.1	10.5 ± 0.4
AB-0209	Субщелочной пикритобазальт	Вул. Конфетка	1.580	46.58	89.0	7.6 ± 0.5
		Острогорское плат	0		I	
ЧА-1487	Трахит	Руч. Большой Ключ	4.230	251.14	58.5	15.2 ± 0.6
27*	Трахит	Верхняя часть покрова	_	-	-	13.5 ± 1.5
3*	Экструзия трахитов		_	-	-	12.5 ± 1.0
26*	Базальт		_	-	-	15.0 ± 1.0
ЧА-1485	Щелочной пикрит	Руч. Большой Ключ	1.364	58.02	83.1	10.9 ± 0.6
17*	Щелочной пикрит	Вул. Дедушка	_	-	-	12.0 ± 0.1
ЧА-1372	Щелочной пикрит	Вул. Бабушка	3.533	65.71	55.0	4.78 ± 0.15

Таблица 1. К-Аг возраст позднекайнозойских вулканических пород юга Дальнего Востока России

Примечание. Определения выполнены в лаборатории изотопии и геохронологии Института земной коры СО РАН. Используются константы $\lambda_{\rm K} = 0.581 \times 10^{-10} \, {\rm rog}^{-1}$; $\lambda_{\beta} = 4.962 \times 10^{-10} \, {\rm rog}^{-1}$; ${}^{40}{\rm K} = 0.01167$ ат. % К. Концентрация калия – среднее трех измерений методом фотометрии пламени. * Анализы взяты из работы (Моисеенко, Сахно, 2000). Образец АВ-0209 любезно предоставлен А.В. Баркар.

Вострецовская группа вулканов включает около десятка мелких выходов щелочных пород (Щека, 1983; Высоцкий и др., 2002), слагающих эродированные вулканические постройки (вулканы Конфетка, Перевал и др.), а также реликты лавовых покровов и экструзивно-жерловых образований. В основании видимого разреза документируются либо неогеновые гравелиты, галечники, конгломераты, либо терригенно-кремнистые верхнепалеозойские отложения. Выше залегают лавовые потоки, варьирующие по составу от субщелочных оливиновых базальтов до щелочных пикритобазальтов. Экструзивные образования, фиксирующие центральные части вулканических построек, по составу близки к покровным фациям или в редких случаях сложены щелочными породами – анальцимитами. Породы нормальной и умеренной щелочности встречаются весьма редко и в петрологическом отношении изучены слабо. Согласно К-Аг датировкам, возраст лав нормальной щелочности среднего течения реки Большая Уссурка оценивается в 12.8– 11.5 млн. лет, а щелочных и субщелочных пикритобазальтов в 10.5–7.6 млн. лет.

ПЕТРОГРАФО-МИНЕРАЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА

Среди субщелочных базальтов завершающей фазы формирования Шкотовского плато по минеральному составу выделяются: мегаплагиофи-

624

ровые разности, с варьирующим количеством фенокристов плагиоклаза, ортопироксена, клинопироксена, и оливин-двупироксеновые, с редкими вкрапленниками плагиоклаза. Первый тип пород наиболее часто встречается в центральной части плато, где он слагает покровы и экструзивные тела. Оливин-двупироксеновые вулканиты встречаются, как правило, в виде небольших покровов венчающих разрез платобазальтов. В обеих разновидностях плагиоклаз является преобладающим минералом, изменяющимся по составу от андезина до лабрадора ($An_{44-58} Or_{1.8-4.2}$). Некоторые фенокристы обладают слабо выраженной прямой зональностью. Крупные кристаллы клинопироксена представлены низкокальциевым авгитом $(Wo_{36-41} En_{42-46} Fs_{15-19})$ с повышенной глиноземистостью (Al₂O₃ = 3-6 мас. %) и умеренной титанистостью (TiO₂ = 0.7-1.8 мас. %). Ортопироксены по составу отвечают бронзиту, реже гиперстену $(Wo_{3-4} En_{78-67} Fs_{18-29})$. Небольшие вкрапленники оливина из оливин-двупироксеновых вулканитов относятся к гиалосидериту (Fo₅₉₋₆₄). В основной массе присутствует плагиоклаз, клинопироксен $(Wo_{43-41} En_{40-38} Fs_{17-20})$, магнетит, а также мелкие зерна ильменита, оливина (Fo_{44-52}) и апатита.

Для субщелочных и щелочных базальтов моногенных вулканических построек Шкотовского плато (вулканы Подгелбаночный, Буреломный и др.) характерна массивная текстура, афировая и реже слабо порфировая структура. Парагенезис минералов-вкрапленников представлен оливином, пироксеном, реже плагиоклазом. Помимо вкрапленников в породах присутствуют мегакристы клинопироксена ($Wo_{49-48} En_{38-39} Fs_{13}$), калишпата ($An_{2-5} Or_{48-23}$), шпинели и иногда амфибола. Специфическая особенность рассматриваемых пород – отсутствие ортопироксена и наличие лерцолитовых включений.

Плагиоклаз в субщелочных базальтах встречается в виде редких вкрапленников и микролитов в основной массе. По составу он соответствует лабрадору или андезину ($An_{66-45} Or_{2-5}$). Отделькристаллы минерала имеют прямую ные зональность. Вкрапленники клинопироксена представлены высококальциевым авгитом (Wo₄₇₋₄₄ En₄₄ Fs_{12-9}) с умеренным содержанием TiO₂ (0.28-0.76 мас. %) и высоким – Na₂O (0.72–1.50 мас. %). Микрозондовое профилирование показало, что отдельные кристаллы имеют прямую зональность, выраженную в наличии каймы обрастания с более высоким содержанием FeO, TiO₂ и низким Na₂O относительно ядра кристалла. Мелкие зерна из основной массы относятся к титан-авгитам или салитам ($Wo_{50-48} En_{37-33} Fs_{19-14}$). Оливин фенокристов и в основной массе по составу отвечает гиалосидериту (Fo₆₇₋₆₃). Наряду с ними присутствуют и довольно крупные кристаллы хризолита (*Fo*₈₉₋₇₀). Некоторые кристаллы обнаруживают прямую зональность (Fo₈₄ в центральной части и Fo_{67} в краевой части). В основной массе также встречается санидин ($An_3 Or_{43}$), титаномагнетит и ильменит.

Вкрапленники оливина щелочных базальтов по составу отвечают хризолиту (*Fo*₇₁₋₇₉), а мелкие выделения в основной массе – гиалосидериту или хризолиту (Fo₅₉₋₇₂). Присутствуют также крупные кристаллы, в которых содержание форстеритового минала может достигать 89-86 мол. %. Иногда они окружены каймой более железистого оливина (*Fo*₆₃₋₇₀). Редкие вкрапленники и микролиты клинопироксена представлены титан-авгитом либо салитом ($Wo_{43-50} En_{34-41} Fs_{14-15}$) с высокими содержаниями TiO₂ (1.4–3.8 мас. %) и Al₂O₃ (3.7–7.2 мас. %). В некоторых кристаллах проявлена слабая зональность, связанная с обогащением краевых частей ферросилитовым компонентом, Al₂O₃, Na₂O и TiO₂ (табл. 2). В основной массе присутствуют микролиты плагиоклаза (Ап₆₀₋₃₈), редкие зерна калиево-натриевого полевого шпата ($An_5 Or_{50}$), а также кристаллы титаномагнетита.

Субщелочные базальтоиды Шуфанского плато в петрографическом отношении представляют собой массивные породы черного или серого цвета с порфировой, но чаще афировой структурой. Вкрапленники представлены лейстовидным или таблитчатым плагиоклазом, лабрадором $(An_{50-64} Or_{2-3})$, мелкими зернами оливина (Fo_{62-78}) и титан-авгита (*Wo*₄₂₋₄₄ *En*₄₁₋₄₃ *Fs*₁₃₋₁₆). Отдельные вкрапленники плагиоклаза и оливина обнаруживают прямую зональность. В фенокристах плагиоклаза от центральных частей к краевым зонам наблюдается увеличение содержания альбитовой составляющей (от 32-35 до 39-44 мол. % Аb). В оливине центральные части по составу отвечают хризолиту (*Fo*₇₁₋₇₆), а краевые гиалосидериту (Fo₆₄₋₆₇). В основной массе субщелочных базальтов, кроме микролитов плагиоклаза ($An_{48-51} Or_{2-7}$), титан-авгита, титаномагнетита и ильменита, присутствуют зерна калиево-натриевого полевого шпата (*An*₇₋₁₇ *Or*₂₈₋₅₁).

Нередко совместно с вкрапленниками встречаются мегакристаллы титан-авгита (Wo_{37-43} En_{42-44} Fs_{15-18}), калишпата (An_{14-18} Or_{22-25}), шпинели. По составу мегакристаллы, фенокристы и микролиты калишпата близки между собой. Мегакристаллы титан-авгита, по сравнению с фенокристами, обогащены Al_2O_3 и обеднены СаО. Характерной особенностью субщелочных и щелочных пород построек Шуфанского плато является присутствие в них достаточно широкого спектра лерцолитовых, вебстеритовых и пироксенитовых включений.

Пикриты и пикритобазальты Острогорского плато и вулкана Бабушка–Дедушка независимо от их щелочности внешне однотипны. Это темносерые или черные породы, с порфировой либо

		Шкотовское плато																	
Компо-		Ча-	1865		Ча-	1432	-	Ча-1768			Ча-	1524				Ча-1	570a		
ненты	Cpx_{c}^{I}	Cpx_{c}^{I}	<i>Opx</i> ^I _c	Op x _c ^I	$Cpx_{\rm c}^{\rm II}$	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm c}^{\rm II}$	Cpx_{c}^{I}	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm c}^{\rm II}$	Cpx_{c}^{II}	Cpx _r ^{II}	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm r}^{\rm I}$	$Ol_{\rm c}^{\rm II}$	$Cpx_{\rm c}^{\rm III}$	Cp x _c ^I	<i>Cpx</i> _r ^I
SiO ₂	50.26	50.43	51.93	51.75	51.12	34.62	37.20	36.70	50.50	38.43	36.94	46.94	49.21	39.07	38.18	36.54	48.95	48.26	46.75
TiO ₂	1.15	1.08	0.42	0.56	1.1	0.00	0.04	0.15	1.50	0.00	0.00	3.65	2.73	0.00	0.00	0.00	1.22	2.17	3.01
Al_2O_3	4.48	4.33	4.05	3.31	1.56	0.00	0.00	0.00	3.26	0.00	0.00	5.31	3.52	0.00	0.00	0.00	7.01	4.67	7.67
Cr_2O_3	0.12	0.08	0.05	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
FeO	10.19	10.04	15.15	17.57	10.83	39.98	33.89	43.35	11.63	22.63	29.78	9.05	10.35	19.00	21.87	30.25	7.71	8.53	8.37
MnO	0.18	0.26	0.24	0.35	0.26	0.69	0.31	0.44	0.04	0.34	0.54	0.00	0.00	0.29	0.42	0.84	0.00	0.00	0.00
MgO	14.81	15.45	25.3	24.06	13.29	23.21	29.06	19.23	13.27	38.36	32.14	11.24	10.81	41.06	38.06	30.71	12.21	12.68	11.24
CaO	17.8	17.04	1.86	1.75	19.84	0.37	0.20	0.36	19.18	0.28	0.43	21.64	21.96	0.23	0.22	0.53	21.14	21.85	20.68
Na ₂ O	0.77	0.49	0.21	0.19	0.51	0.00	0.00	0.00	0.49	0.00	0.00	0.71	0.86	0.00	0.00	0.00	0.77	0.61	0.88
K_2O	0.02	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.16
Сумма	99.78	99.19	99.22	99.62	99.20	98.87	100.70	100.23	99.88	100.05	99.83	98.54	99.43	99.65	98.76	98.88	99.00	98.76	98.76
Fo						50.90	60.45	44.15		75.1	65.80			79.40	75.60	64.40			
Wo	39.70	37.20	3.90	3.70	42.50				41.05			49.40	49.10				48.30	49.20	48.60
En	46.00	46.90	73.60	70.1	41.70				39.51			35.70	33.60				38.80	39.80	36.70
Fs	14.3	16.00	22.50	26.20	15.80				19.43			14.90	17.30				12.90	11.00	14.70
									Шуф	анское і	плато								
Компо-			Ча-14	60/10							τ	Ia-1459/	/1				Ча-1475		
ненты	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm r}^{\rm I}$	$Cpx_{\rm c}^{\rm III}$	Cpx_{c}^{I}	Cp x_r^I	$Cpx_{\rm c}^{\rm II}$	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm r}^{\rm I}$	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm r}^{\rm I}$	$Cpx_{\rm c}^{\rm III}$	Cpx_{c}^{I}	Cpx_r ^I	Cpx_{c}^{II}	Cpx_{c}^{II}	$Cpx_{\rm c}^{\rm II}$	Cpx_{c}^{III}	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm c}^{\rm I}$
SiO ₂	38.99	37.51	48.33	50.70	49.96	48.15	38.24	36.67	38.78	37.79	48.24	48.85	50.47	50.29	49.89	49.37	48.72	39.94	40.93
TiO ₂	0.00	0.00	1.58	1.35	2.02	3.05	0.00	0.07	0.00	0.00	1.61	1.72	1.79	1.57	1.89	2.08	1.20	0.10	0.07
$Al_2 \tilde{O}_3$	0.00	0.00	8.86	4.80	3.90	4.69	0.00	0.07	0.00	0.00	7.92	5.24	2.92	3.32	3.06	3.19	7.73	0.45	0.67
Cr_2O_3	0.00	0.00	0.00	0.18	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.38	0.16	0.22	0.00	0.00	0.03	0.02	0.01
FeO	21.94	29.12	8.99	6.70	9.10	9.45	26.47	30.82	20.06	25.82	10.26	7.78	9.01	5.53	10.12	10.12	8.41	30.34	27.22
MnO	0.15	0.34	0.16	0.00	0.05	0.05	0.18	0.33	0.31	0.53	0.10	0.01	0.00	0.00	0.04	0.03	0.12	0.47	0.40
MgO	38.18	33.08	12.56	15.86	13.63	13.27	35.54	30.31	39.93	34.49	13.72	14.07	13.86	14.40	12.91	12.79	14.71	27.55	30.46
CaO	0.19	0.27	18.23	19.91	19.40	20.47	0.22	0.39	0.43	0.77	16.35	20.24	20.55	22.98	20.32	20.41	17.88	0.43	0.44
Na ₂ O	0.00	0.00	1.95	0.33	0.41	0.51	0.00	0.00	0.00	0.00	1.61	0.27	0.25	0.55	0.40	0.43	1.64	0.00	0.00
K ₂ O	0.01	0.00	0.01	0.03	0.06	0.12	0.00	0.11	0.01	0.00	0.00	0.01	0.02	0.00	0.04	0.08	0.00	0.00	0.00
Сумма	99.46	100.32	100.66	99.91	98.53	99.76	100.68	98.78	99.52	99.44	99.84	98.57	99.03	98.86	98.67	98.50	100.44	99.33	100.19
Fo	75.61	66.94					70.53	63.68	78.01	70.42								61.84	66.60
Wo			42.68	42.17	42.68	44.19					37.64	44.11	43.85	48.55	44.01	44.27	39.81		
En			40.91	46.74	41.70	39.87					43.93	42.66	41.14	42.33	38.89	38.60	45.57		
Fs			16.40	11.08	15.63	15.93					18.41	13.23	15.00	9.11	17.10	17.13	14.60		

ПЕТРОЛОГИЯ

том 15

Nº 6

2007

Таблица 2. Представительные микрозондовые анализы (мас. %) породообразующих минералов вулканитов позднекайнозойского возраста

ЧАЩИН и др.

ΠE									Вост	рецовс	кая груг	ппа вули	канов							
TPC	Компо-			Бу-1	538						Бу-1560)			Бу-1516			Бу-1543		
лог	ненты	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm r}^{\rm I}$	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm r}^{\rm I}$	Cpx_{c}^{I}	Cpx_{c}^{II}	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm r}^{\rm I}$	$Ol_{\rm c}^{\rm II}$	Cpx_{c}^{I}	Cpx_{c}^{I}	Cpx_{r}^{I}	$Cpx_{\rm c}^{\rm II}$	Cpx_{c}^{III}	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm r}^{\rm I}$	$Ol_{\rm c}^{\rm II}$	Cpx_{c}^{I}	Cpx_{r}^{I}
ЯΜ	SiO ₂	38.55	38.40	39.84	38.72	48.48	44.86	39.26	37.55	39.25	47.39	48.16	45.46	47.23	49.53	40.61	39.81	38.99	49.85	45.63
	TiO ₂	0.00	0.08	0.00	0.00	1.55	3.83	0.00	0.02	0.03	2.03	2.66	3.69	2.88	1.64	0.01	0.06	0.02	1.68	4.87
TC	$Al_2 \bar{O}_3$	0.00	0.44	0.00	0.00	5.20	7.24	0.00	0.00	0.00	6.81	4.92	6.83	5.11	7.04	0.00	0.31	0.00	7.53	7.35
М	Cr_2O_3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.57	0.00	0.00	0.00	0.28	0.00	0.12	0.00	0.09	0.00
15	FeO	25.75	26.57	17.07	24.84	11.28	7.83	18.67	26.94	19.63	7.25	7.95	8.68	7.87	7.22	12.95	17.24	18.19	6.66	7.37
	MnO	0.48	0.39	0.17	0.40	0.15	0.02	0.15	0.55	0.18	0.00	0.00	0.00	0.03	0.15	0.02	0.09	0.09	0.00	0.00
Ä	MgO	35.57	34.37	43.08	36.66	9.60	11.64	40.93	33.67	40.16	12.84	12.64	10.72	12.68	14.33	44.92	42.81	40.97	14.87	13.35
6	CaO	0.38	0.58	0.24	0.30	20.84	24.14	0.25	0.33	0.25	21.73	23.47	22.32	22.92	17.54	0.23	0.29	0.38	18.67	21.89
N	Na ₂ O	0.00	0.00	0.00	0.00	1.94	0.60	0.00	0.00	0.00	1.03	0.39	0.61	0.38	1.42	0.00	0.00	0.00	1.54	0.34
00	K ₂ O	0.03	0.13	0.02	0.03	0.03	0.04	0.00	0.01	0.01	0.02	0.00	0.00	0.03	0.01	0.02	0.02	0.02	0.00	0.02
7	Сумма	100.78	100.98	100.42	100.96	99.08	100.20	99.27	99.07	99.53	100.25	100.19	98.35	99.13	99.15	98.76	100.75	98.65	100.89	100.82
	Fo	71.12	69.74	81.82	72.45			79.62	69.02	78.48						86.08	81.57	80.06		
	Wo					48.45	51.98				48.03	49.67	50.71	49.09	40.67				41.90	47.37
	En					31.07	34.86				39.47	37.20	33.89	37.76	46.23				46.44	40.18
	Fs					20.48	13.16				12.50	13.13	15.40	13.15	13.09				11.67	12.45
										Остро	горское	е плато								
	Компо-			Ча-1	486						Ча-1485						Ча-1	373		
	ненты	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm c}^{\rm II}$	$Ol_{\rm r}^{\rm II}$	Cpx_{c}^{I}	Cpx_{r}^{I}	$Cpx_{\rm c}^{\rm II}$	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm r}^{\rm I}$	Cpx_{c}^{I}	Cpx_{c}^{I}	Cp x_c^I	$Ol_{\rm c}^{\rm I}$	$Ol_{\rm r}^{\rm I}$	$Ol_{\rm c}^{\rm II}$	$Cpx_{\rm c}^{\rm III}$	Cpx_{c}^{I}	$Cpx_{\rm c}^{\rm II}$
	SiO ₂	38.94	37.42	36.94	50.77	48.88	49.28	38.57	39.49	39.82	38.46	47.69	50.97	44.48	38.20	37.33	37.04	52.58	48.85	51.14
	TiO ₂	0.06	0.03	0.06	1.73	2.90	2.84	0.07	0.05	0.00	0.00	2.30	2.02	4.82	0.01	0.05	0.00	0.30	1.13	1.34
	$Al_2\tilde{O}_3$	0.10	0.00	0.00	2.76	4.85	4.40	0.09	0.10	0.00	0.00	6.99	3.91	8.00	0.00	0.00	0.00	2.33	6.03	2.51
	Cr_2O_3	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.09	0.87	0.23	0.13	0.00	0.00	0.00	0.06	0.00	0.28
	FeÕ	21.49	30.29	34.19	7.78	9.13	9.77	21.94	17.13	17.09	22.68	7.29	6.69	8.06	25.48	30.06	30.38	8.94	11.82	8.31
	MnO	0.53	0.38	0.57	0.00	0.02	0.03	0.38	0.19	0.10	0.31	0.15	0.12	0.14	0.15	0.22	0.29	0.24	0.09	0.00
	MgO	38.91	31.76	28.13	13.21	12.20	12.45	39.04	43.61	41.67	38.18	14.43	13.41	11.79	35.63	32.51	30.38	14.81	9.86	15.07
	CaO	0.21	0.25	0.41	22.82	21.13	21.54	0.18	0.26	0.21	0.31	19.20	20.76	21.85	0.21	0.33	0.37	20.02	18.91	19.59
	Na ₂ O	0.01	0.00	0.00	0.35	0.68	0.45	0.00	0.01	0.00	0.04	1.06	0.31	0.57	0.00	0.00	0.00	0.50	2.22	0.24
	K ₂ O	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
	Сумма	100.36	100.14	100.30	99.43	99.79	100.77	100.30	100.85	98.89	100.07	99.99	98.43	99.85	99.72	100.55	98.76	99.78	98.91	98.48
	Fo	76.33	65.14	59.45				76.02	81.95	81.29	75.01				71.13	65.84	63.04			
	Wo				48.28	46.72	46.33					42.70	46.53	49.05				42.05	45.18	41.64
	En				38.87	37.52	37.26					44.66	41.77	36.79				43.27	32.78	44.56
	Fs				12.85	15.75	16.41					12.63	11.68	14.16				14.67	22.04	13.80

Примечание. Обр. Ча-1865, Ча-1432, Ча-1768 – субщелочные базальты; Ча-1524, Ча-1570а – щелочные базальты; Ча-1570а, Ча-1459/1, Ча-1475 – субщелочные базальты; Бу-1538, Бу-1560, Бу-1543 – щелочные пикриты и пикритобазальты; Ча-1486 – субщелочной пикритобазальт; Ча-1485, Ча-1373 – щелочные пикриты. І – вкрапленники, II – микролиты основной массы, III – мегакристы; с – ядро, г – краевая зона кристалла.

афировой структурой и массивной текстурой. По преобладающему набору минералов-вкрапленников среди них выделяются оливиновые, оливинклинопироксеновые и очень редко клинопироксеновые разности. Последняя разновидность встречается только среди покровных образований плато. Плагиоклаз в виде вкрапленников характерен преимущественно для покровов пикритобазальтов. Своеобразие пород вулкана Бабушка-Дедушка заключается в присутствии единичных мегакристаллов калишпата, шпинели и крупных корродированных кристаллов авгита, а также лерцолитовых включений.

Ядра фенокристов оливина в пикритах и пикритобазальтах в большинстве случаев по составу соответствуют хризолиту (Fo_{71-81}), а краевые зоны и минералы основной массы – гиалосидериту (Fo_{63-65}). Вкрапленники и микролиты клинопироксена представлены салитом, реже диопсидом ($Wo_{47-50} En_{40-43} Fs_{9-14}$) либо переходными разностями между авгитом и салитом. Некоторые кристаллы зональны. Зональность связана с увеличением ферросилитового минала от центра к краю зерна (Fs_{11-13} и Fs_{13-16} соответственно). Редкие вкрапленники плагиоклаза отвечают лабрадору ($An_{63-59} Or_{3-5}$), а состав микролитов основной массы варьирует от лабрадора до андезина (An₄₅₋₅₅ Or₃₋₅). В основной массе присутствуют также мелкие зерна калишпата (An₃₋₅ Or₂₂₋₄₈) и титаномагнетита. В покровных образованиях иногда встречаются кристаллы ильменита.

Субщелочные и щелочные эффузивы различных вулканических построек Вострецовской группы петрографически не различаются и в дальнейшем описаны совместно. Это темно-серые или черные плотные породы с редкопорфировой и субафировой структурой, массивной, реже слабо пористой или кавернозной текстурой. Соотношение минералов-вкрапленников позволяет выделить среди пикритов, пикритобазальтов и базальтов оливиновые и оливин-клинопироксеновые разности. Плагиоклаз в виде вкрапленников практически не встречается. Из рудных минералов присутствует титаномагнетит и очень редко ильменит. Отдельные тела пикритов и пикритобазальтов обогащены цеолитами и анальцимом.

Оливин во всех петрографических разностях представлен кристаллами трех размерностей. Наиболее крупные зерна по составу соответствуют хризолиту (Fo_{86-89}). Такие кристаллы часто зональны. Зональность прямая (ядро Fo_{86} , край Fo_{82-66}). Состав ядер более мелких кристаллов и микролитов основной массы более железистый (Fo_{82-68}). В зональных кристаллах от центра к краю наблюдается падение содержания магния (82–80 мол. % Fo для центральных и 78–72 мол. % Fo для краевых зон). По особенностям состава пи-

роксены пикритов и пикритобазальтов можно разделить на две группы. Первую представляют наиболее крупные кристаллы авгита и салита (*Wo*₄₂₋₅₀ *En*₃₇₋₄₆ *Fs*₁₁₋₁₃), характерной особенностью которых является высокая концентрация TiO₂ (1.6–2 мас. %), Al₂O₃ (6–8 мас. %) и Na₂O (1– 1.5 мас. %). Близкий состав имеют встречающиеся в некоторых образцах крупные (до 1.5 см) мегакристаллы темно-зеленого авгита ($Wo_{41-45} En_{40-46}$ Fs_{12-13}) обогащенные Al₂O₃ (7–10 мас. %), Na₂O (1.3–2.2 мас. %) и TiO₂ (1.5–2 мас. %). Для клинопироксенов второй группы ($Wo_{47-52} En_{35-41} Fs_{12-13}$), встречающихся в виде мелких зерен и микролитов в основной массе, характерны повышенные содержания глинозема (5-8 мас. %), титана (3-6 мас. %) и низкие концентрации оксида натрия (0.4–0.6 мас. %). Мелкие вкрапленники и микролиты плагиоклаза представлены преимущественно лабрадором ($An_{51-65} Or_{2-6}$), иногда андезином $(An_{35-45}Or_{3-7})$ и калиево-натриевым полевым шпатом. Специфической чертой некоторых субщелочных и щелочных вулканитов Вострецовской группы вулканов является наличие крупных кристаллов анортоклаза ($An_{35-45} Or_{3-7}$), шпинели, иногда биотита и керсутита. Нередко присутствуют лерцолитовые и вебстеритовые включения.

ГЕОХИМИЯ

Петрогенные элементы

По содержанию щелочей проанализированные образцы позднекайнозойских вулканитов относятся к породам умеренной и повышенной щелочности, располагаясь на диаграмме SiO_2 —(Na₂O + K₂O) в полях пикритов, пикритобазальтов и базальтов (рис. 2).

Большинство субщелочных базальтов и пикритобазальтов позднекайнозойских вулканических полей Приморья по своим петрохимическим характеристикам относятся к низкоглиноземистым, реже умеренно-глиноземистым разностям (al = 0.45-0.99) калиево-натриевого ряда $(Na_2O/K_2O = 1.22-2.40)$ с умеренным коэффициентом агпаитности ($K_a = 0.42 - 0.57$). Исключением являются субщелочные мегаплагиофировые базальты Шкотовского плато и пикритобазальты Острогорского плато. Первые относятся к высокоглиноземистым разностям (al = 1.10-2.10) с довольно низкими значениями коэффициента агпаитности ($K_a = 0.37 - 0.46$), повышенными содержаниями SiO₂ (49–52 мас. %), Na₂O (3.60–4.21 мас. %) и пониженными – MgO (1.40-3.9 мас. %). Пикритобазальты Острогорского плато обладают более высокой агпантностью ($K_a = 0.50-0.60$), титанистостью (Ti₂O = 2.90-3.73 мас. %), кальциевостью (СаО = 7–10 мас. %) при низком содержании кремнезема (SiO₂ = 43-47 мас. %) и относятся к

Рис. 2. Диаграмма (Na₂O + K₂O)–SiO₂ для позднекайнозойских субщелочных и щелочных базальтоидов юга Дальнего Востока.

1, 2 – Шкотовское плато: 1 – субщелочные базальты, 2 – щелочные базальты; 3, 4 – Шуфанское плато: 3 – субщелочные базальты; 4 – щелочные базальты; 5, 6 – Острогорское плато: 5 – субщелочные покровы пикритов, пикритобазальтов, 6 – щелочные пикриты, пикритобазальты; 7, 8 – Вострецовская группа вулканов: 7 – субщелочные пикриты, пикритобазальты; 9–12 – пограничные линии между группами магматических пород (Классификация ..., 1981): 9 – границы разделения пород на группы по кремнезему, 10 – нижняя граница поля щелочных пород, содержащих фельдшпатоиды, 11 – нижняя граница поля бесфельдшпатоидных щелочных пород, содержащих щелочные пироксены и амфиболы, 12 – область субщелочных пород. Точечная линия – область распространеня химических составов магматических горных пород. Составы приведены к 100% с вычетом потерь при прокаливании.

низкоглиноземистому типу (al = 0.32-0.48). Отношение Na₂O/K₂O колеблется в пределах 2.38–3.80.

Δ

С ростом магнезиальности, в субщелочных породах Шкотовского и Шуфанского плато и Вострецовской группы вулканов падают содержания SiO_2 , Al_2O_3 и Na_2O . Для Ti_2O , CaO и P_2O_5 характерен значительный разброс значений, и какие-либо закономерности не прослеживаются. В субщелочных базальтах Острогорского плато с увеличением магнезиальности пород концентрации Al_2O_3 , Na_2O , CaO и K_2O заметно уменьшаются, тогда как содержания SiO_2 , Ti_2O , P_2O_5 остаются практически на одном уровне (рис. 3).

Щелочные породы Шкотовского и Острогорского плато, Вострецовской группы вулканов относятся к низко- и умеренно-глиноземистым раз-

ПЕТРОЛОГИЯ том 15 № 6 2007

ностям (al = 0.47–0.89) калиево-натриевого ряда (Na₂O/K₂O = 1.12–3.40) с повышенными значениями коэффициента агпаитности ($K_a = 0.40–0.73$). При этом пикриты и пикритобазальты Острогорского плато обогащены Ti₂O и CaO, а высокомагнезиальные разновидности вулкана Бабушка–Дедушка (пикриты) обладают самыми низкими содержаниями SiO₂ и высокими – P₂O₅ (рис. 3, табл. 3).

Щелочные лавы Шуфанского плато несколько различаются по своим петрохимическим характеристикам. По величине Na₂O/K₂O отношения (0.76–1.0) они относятся к калиевой серии, а по содержанию глинозема – к высокоглиноземистым (al = 1.2–1.44) образованиям. Для них также характерны высокие величины коэффициента аг-

Рис. 3. Вариации содержаний петрогенных элементов (мас. %) в зависимости от содержания MgO (мас. %) в позднекайнозойских субщелочных и щелочных базальтоидах юга Дальнего Востока. Условные обозначения см. на рис. 2.

Компо-	ЧА-1432	Ча-1438	Ча-1440	Ча-1444	Ча-1435	Ш-99-1	Ш-00-116	Ча-1620	Ш-01-175	Ш-01-177
ненты	1	2	3	4	5	6	7	8	9	10
		I			Шкотовс	кое плато				I
SiO ₂	48.59	47.76	45.94	47.51	48.7	49.7	45.3	46.9	46.79	47.55
TiO ₂	2.10	2.55	1.72	2.20	1.96	2.31	2.45	1.92	1.76	1.73
Al_2O_3	17.46	17.09	17.86	16.27	15.14	16.13	15.75	16.02	16.49	14.51
Fe ₂ O ₃	4.21	1.39	1.10	2.19	9.76	4.27	4.03	7.18	3.73	6.24
FeO	2.97	9.40	7.82	7.52	1.26	7.05	8.47	4.05	5.39	4.32
MnO	0.18	0.15	0.25	0.25	0.23	0.14	0.19	0.17	0.22	0.22
MgO	6.53	4.30	4.74	7.83	5.03	5.10	6.34	7.71	8.87	8.62
CaO	7.43	7.50	8.12	7.82	8.4	7.94	7.49	7.37	5.26	5.34
Na ₂ O	3.81	4.40	4.30	3.20	3.57	3.33	4.43	3.42	3.54	3.59
K ₂ O	1.69	2.40	2.32	2.42	2.43	2.26	2.71	2.35	2.54	2.53
P_2O_5	0.57	0.74	0.57	0.05	0.92	0.81	0.79	0.67	0.92	0.90
H_2O	0.78	1.46	0.36	0.16	0.18	0.09	0.33	0.67	1.14	1.31
П.п.п.	3.33	0.42	4.36	2.34	2.02	0.56	1.86	1.27	2.96	2.85
Сумма	99.65	99.56	99.46	99.76	99.6	99.69	100.14	99.71	99.61	99.71
Cr	15	5	-	210	_	160	-	177	-	_
Ni	42	30	-	150	-	91	-	152	-	-
Co	27	21	-	35	-	34	-	49	-	-
V	120	120	-	130	-	200	-	180	-	-
Rb	30	40	41	33	39	37	93	36	59	69
Ba	411	541	537	963	678	649	934	625	621	569
Sr	542	478	690	811	712	741	896	678	1188	1577
Nb	36.51	44.01	43.86	53.52	51.17	49.4	92.9	54	135.68	153.75
Hf	4.58	5.72	5.18	5.87	5.58	5.39	6.03	5.92	11.49	14.52
Zr	201	257	242	269	251	248	309	223	553	789
Y	26.95	34.17	27.58	30.61	34.41	34	30	24	36.34	38.28
U	0.64	0.83	0.89	0.52	0.83	0.84	1.67	1.16	2.74	3.81
La	23.89	30.58	31.70	38.22	48.03	44.8	53.3	37.86	100.24	108.06
Ce	47.85	59.93	62.57	74.95	80.44	87.3	95.1	75.20	184.73	227.80
Pr	5.55	7.09	7.15	8.73	10.35	9.5	10.2	8.19	22.48	22.47
Nd	27.52	34.62	33.35	41.33	48.42	42.7	44.0	32.49	75.55	81.10
Sm	6.61	8.10	7.58	8.60	9.44	8.0	8.0	6.99	12.48	12.65
Eu	2.13	2.49	2.26	2.64	2.95	2.5	2.4	2.27	3.75	3.60
Gd	6.54	7.65	6.98	7.83	8.74	7.7	7.6	6.91	10.06	9.5
Tb	0.97	1.14	1.01	1.09	1.27	1.09	1.03	0.97	1.49	1.62
Dy	5.20	6.03	5.15	5.72	6.27	5.69	5.29	5.51	7.72	7.04
Но	0.99	1.16	0.93	1.00	1.14	1.00	1.0	1.01	1.19	1.31
Er	2.54	3.01	2.38	2.58	2.88	2.54	2.51	2.58	3.50	3.59
Yb	2.00	2.39	1.81	2.06	2.17	1.99	2.18	2.41	2.60	2.90
Lu	0.28	0.34	0.28	0.26	0.3	0.27	0.33	0.31	0.36	0.43
Та	2.19	2.51	2.63	3.17	3.02	2.94	5.04	2.54	8.02	9.09
Th	2.66	3.33	3.77	4.03	4.07	4.10	7.89	4.95	11.78	14.81
Pb	1.67	2.58	3.54	3.03	3.04	3.00	5.00	2.70	-	_
Cs	0.15	0.30	0.66	0.13	0.17	0.18	1.13	0.50	0.75	1.01
Sc	17.45	18.71	14.98	24.09	19.18	19.55	17.4	21.20	14.94	15.91
⁸⁷ Sr/ ⁸⁶ Sr	-	_	-	_	_	0.70465	0.70394	_	0.70477	0.70462

Таблица 3. Содержание петрогенных оксидов (мас. %) и микроэлементов (ppm) в представительных образцах позднекайнозойских субщелочных и щелочных базальтов Приморья

Таблица 3. Продолжение

Компо-	ЧА-1460/11	M-5200	Ш-99-26	M-5160	Ча-1475	Ча-1473	M-5220	M-5138	Ча-1540	Ча-1534
ненты	11	12	13	14	15	16	17	18	19	20
					Шуфанск	ое плато				
SiO ₂	46.08	46.15	48.30	46.60	46.05	48.59	48.67	49.32	48.54	49.14
TiO ₂	1.71	1.93	2.14	1.97	1.88	2.50	2.01	1.72	2.29	2.10
Al_2O_3	13.92	14.54	14.59	14.90	14.16	14.72	14.01	16.70	15.32	14.51
Fe ₂ O ₃	8.36	4.49	1.78	2.18	7.47	6.62	3.36	1.75	10.61	5.23
FeO	2.49	8.10	10.25	8.00	3.44	5.35	9.15	6.44	1.69	6.41
MnO	0.25	0.18	0.15	0.34	0.28	0.16	0.21	0.15	0.16	0.16
MgO	8.53	10.48	7.45	8.93	9.40	7.62	8.85	5.26	6.26	8.08
CaO	9.07	8.26	8.94	8.00	9.18	8.45	7.67	6.15	7.09	6.62
Na ₂ O	2.62	2.95	2.81	3.40	3.69	2.89	2.78	3.55	3.81	3.41
K ₂ O	1.93	2.31	1.91	2.57	2.31	1.70	1.79	3.94	1.81	2.46
P_2O_5	0.50	0.57	0.61	0.86	0.41	0.62	0.44	1.09	0.73	0.69
H ₂ O	0.42	-	0.28	0.55	0.02	0.28	0.46	1.16	0.23	0.18
П.п.п.	3.75	-	0.40	1.70	1.33	0.31	0.86	2.31	1.19	0.71
Сумма	99.63	99.96	99.61	100.00	99.62	99.81	100.26	99.54	99.76	99.73
Cr	-	320	265	250	210	230	350	88	235	290
Ni	-	360	70	185	140	125	260	90	180	200
Co	-	60	21	60	37	44	60	27	43	52
V	-	260	150	130	130	150	170	120	140	130
Rb	50	40	46	33	40	37	32	97	19	69
Ba	796	913	612	786	668	966	699	1346	1214	1022
Sr	522	434	698	611	711	731	459	1443	842	770
Nb	30	24	46.2	42.6	43	43.6	30.11	113	67.50	59
Hf	3.20	2.95	4.07	4.16	4.14	4.69	3.35	7.64	5.11	4.73
Zr	132	109	189	173	183	187	124	372	231	215
Y	22.6	12.08	23.30	14.95	22.63	15.10	10.90	26.87	25.81	25.16
U	0.53	0.06	0.85	0.62	1.00	0.84	0.45	2.69	1.51	1.05
La	22.60	19.92	32.79	35.12	34.19	42.90	28.18	121.16	53.47	46.08
Ce	44.33	39.27	64.78	63.88	66.02	/5.46	50.44	208.86	94.18	81.42
Pr NJ	5.31 25.46	4.55	8.02	/.1/	7.50	8.32 27.92	5.98 29.91	18.43	11.05	10.30
INU Sm	23.40	25.10	51.49	54.52 6.09	55.05	37.83 7.86	20.01	10.49	43.93	40.25
SIII Eu	J.0J 1 72	5.04 1.72	0.55	0.98	0.00	7.80	J.87	10.01	0.20 2.70	7.05
Eu	1.75 5.41	5.56	2.09	2.10 6.53	2.11 5.78	2.32	1.93 5.70	9.22 9.33	2.70	2.09
Uu Тh	0.80	0.74	0.01	0.55	0.80	7.49	0.77	0.55	1.15	0.90
Dv	0.80 4 47	0.74 4 27	0.85 4 30	0.89	0.89	5 33	3.95	5 37	5 23	2.12 4.82
Dy Ho	4.47 0.70	4.27 0.69	4.50	4.73 0.74	0.79	0.87	0.65	0.88	0.95	4.62
Fr	2.05	1.75	2.04	1.81	2.07	0.87	0.05	2 22	2 40	2 10
Yh	1.66	1.75	1.62	1.01	1 59	1 46	0.89	1 55	1.53	1.52
Lu	0.24	0.16	0.23	0.17	0.23	0.21	0.02	0.21	0.22	0.27
Та	1.76	1.70	2.66	2.95	2.68	3.43	2 23	6.21	3 50	3.02
Th	2.86	-	4 05		4 52	-		14 80	7 26	5 97
Ph		0.82	3 64	1 35	3 13	9.26	1 30	4 75	5.93	6.82
Cs	0.38	0.18	0.53	0.22	1.68	0.40	0.29	0.77	0.35	1.31
Sc	22	17	25	19	23	21	15	10	21	20
⁸⁷ Sr/ ⁸⁶ Sr		_	0.70451	0.70434	_	-	0.70443	0.70450	-	0.70466

Таблица 3. Продолжение

Компо-	ЮС-5834	ЧА-1477	ЧА-1399	ЧА-1373*	ЧА-1375*	ЮС-4787	ЮС-6466	ЧА-1485	ЧА-1486	ЮС-4791
ненты	21	22	23	24	25	26	27	28	29	30
		Вулкан]	Бабушка–Д	Цедушка	•		Остр	огорское і	ілато	
SiO ₂	41.88	38.61	43.50	40.07	40.84	41.44	42.67	41.39	46.76	53.83
TiO ₂	2.98	1.90	1.60	2.88	2.42	3.50	2.55	2.85	2.91	0.21
Al_2O_3	11.84	11.05	11.71	9.55	9.94	13.63	13.80	15.90	17.25	19.28
Fe ₂ O ₃	сл.	1.14	3.80	5.99	6.40	7.86	8.96	1.38	1.21	4.41
FeO	8.88	7.48	6.72	7.43	5.79	4.61	2.72	9.76	7.85	2.34
MnO	0.33	0.21	0.13	0.28	0.26	0.18	0.18	0.19	0.16	0.20
MgO	13.83	18.75	14.09	15.01	15.73	9.71	10.08	13.92	5.94	0.97
CaO	10.65	8.83	8.36	9.60	8.90	10.05	9.62	8.98	8.70	2.60
Na ₂ O	1.56	4.81	3.27	2.98	4.30	2.68	3.33	2.87	4.15	5.70
K ₂ O	3.40	1.24	2.49	2.38	1.98	0.98	2.96	1.13	1.74	4.90
P_2O_5	1.21	1.43	0.82	0.89	1.06	0.80	0.82	0.67	0.71	0.16
H ₂ O	0.24	1.45	0.16	0.45	0.30	0.76	0.17	0.98	1.51	0.56
П.п.п.	2.73	2.84	2.77	1.99	1.60	3.33	1.82	0.44	0.81	4.43
Сумма	99.53	99.74	99.42	99.50	99.52	99.53	99.68	100.46	99.70	99.60
Cr	450	550	-	890	1600	-	190	320	140	-
Ni	300	1100	_	400	470	-	115	270	69	_
Co	60	45	-	47	41	-	36	38	21	-
V	130	150	_	100	95	-	110	150	160	_
Rb	44	88	36	62	43	45	55	51	33	143
Ba	542	700	304	721	545	452	593	407	562	16
Sr	1161	924	1081	1251	1411	882	911	875	907	77
Nb	122	85	91	-	-	81	99	59	64	140
Hf	7.72	8.56	8.45	5.7	5.9	7.24	6.71	6.56	7.33	17.71
Zr	358	309	315	_	_	339	340	319	347	1023
Y	31.41	18.21	16.97	29.9	30.6	30.70	30.91	19.39	24.01	28.72
U	2.63	5.36	4.24	3.2	4.9	1.25	1.89	1.25	1.47	5.98
La	84.97	100.97	89.93	98.2	118	35.91	52.40	35.07	42.59	63.22
Ce	166.23	158.64	181.38	166	190	83.24	111.39	74.15	72.62	115.61
Pr	17.26	16.59	15.92	16.6	19.2	8.62	10.20	8.95	11.49	8.95
Nd	68.96	69.88	68.14	64.9	/1.5	42.69	44.48	39.48	46.93	31.24
Sm	11.94	12.34	12.10	12.5	13.3	9.42	8.48	7.70	9.03	4./1
Eu	3.59	3.01	3.21	3.03	3.79	2.87	2.71	2.45	2.82	0.55
Ga	9.94	11.21	10.80	9.51	9.97	8.85	1.92	7.02	8.30	4.58
10 D	1.37	1.30	1.32	1.30	1.45	1.27	1.15	0.92	1.08	0.77
Dy LL-	0.52	/.54	1.55	0.50	0.05	0.07	5.05 1.02	4./1	J. /8	4.15
H0 En	1.12	1.19	1.15	1.12	1.14	1.09	1.05	0.85	1.15	0.88
El Vh	2.55	2.70	2.35	2.83	2.90	2.07	2.04	2.20	2.00	2.75
10	2.12	1.01	2.02	2.08	0.21	2.15	0.22	0.10	1.95	2.85
	- 6 1 1	0.28	0.20	0.29	0.51	0.28 5.40	0.52 6.71	0.19	5.22	12.09
1 a Th		11.98	9.43	10.9		5.40 1 21	0./1	4.93	5.52	12.08
111 Dh	6 5 6	20.02	1/22	10.8	14.9	4.54	1.12 5.47	4 20		12 54
	0.00	1 40	14.52	1.00	- 0.80	2.00	0.72	4.20		2 26
CS Sc	_	15 20	18.00	177	15 1	27.24	22.06	25.24	21.28	2.20
⁸⁷ Sr/ ⁸⁶ Sr	_	-	-		-	-	-	- 25.24	-	-

Таблица 3. Окончание

Компо-	Бу-1478	Бу-1479	БУ-1512	БУ-1511	БУ-1521	БУ-1524	БУ-1560	БУ-1543	БУ-1555
ненты	31	32	33	34	35	36	37	38	39
		•		Вострецов	ская группа	а вулканов			
SiO ₂	50.00	48.47	44.00	44.08	44.63	44.14	44.35	40.61	42.65
TiO ₂	1.75	2.17	1.74	1.89	2.26	1.99	2.20	2.95	2.78
Al_2O_3	14.17	13.59	13.42	13.27	11.74	12.50	12.47	13.79	14.88
Fe ₂ O ₃	2.17	3.53	2.05	4.38	4.48	4.05	2.20	8.33	5.59
FeO	8.78	7.78	6.87	6.40	6.00	8.46	6.86	5.04	6.40
MnO	0.17	0.18	0.21	0.19	0.20	0.22	0.21	0.25	0.21
MgO	8.88	9.18	7.63	13.30	11.14	13.59	11.15	7.37	8.50
CaO	8.67	8.62	8.23	7.60	8.94	8.16	8.53	8.96	7.87
Na_2O	3.09	2.79	6.72	4.15	4.89	3.30	5.04	4.35	4.99
K ₂ O	1.03	0.91	3.58	1.45	1.86	1.89	1.51	2.43	1.16
P_2O_5	0.26	0.30	0.50	0.78	0.64	0.79	0.84	1.21	1.10
H_2O	0.10	1.33	0.84	0.50	0.67	0.45	0.14	1.14	0.67
П.п.п.	0.82	1.11	4.06	1.83	2.43	0.66	4.07	3.29	2.84
Сумма	99.89	99.95	99.85	99.82	99.88	100.18	99.57	99.72	99.67
Cr	200	250	94	320	260	450	140	150	_
Ni	170	200	75	200	160	210	120	150	—
Co	42	59	32	39	48	53	33	45	—
V	115	110	91	100	115	100	100	110	-
Rb	16	171	51	44	41	69 570	37	68	43
Ва	218	1/1	534	455	4//	570	556	865	1088
Sr	257	288	1163	849	/41	808	933	801	554
	15.30	21.64	84.93	38.85	56.20	/5.32	98.79	5.40	119.94
ПI 7-	5.01	5.24 125	0.19	4.55	4.94	3.80	7.55	3.49	270
Zľ V	110	123	21.00	214	210	207	21.24	257	378 34.04
I II	0.10	22.30	21.09	1 28	10.24	17.03	21.34	10.91	24.94 2.70
La	9.01	10.85	69 54	44.02	36.30	54.93	63 56	40.61	67.56
Ce	20.56	22.84	129.75	81.48	65.82	98.08	111 93	72.83	117 78
Pr	20.50	3 18	11 59	7 36	7 10	9.25	11.25	7 73	13 52
Nd	12.13	13 33	50.25	32 31	32.12	39.13	50.53	34 47	53.84
Sm	3.30	3.84	9.14	6.07	6.42	7.81	9.71	7.35	10.39
Eu	1.22	1.37	2.69	1.95	2.16	2.33	2.98	2.37	3.31
Gd	4.21	4.09	8.71	6.17	7.06	7.40	9.49	7.61	8.93
Tb	0.64	0.85	1.13	0.84	0.93	1.01	1.20	0.98	1.28
Dy	3.64	4.17	5.84	4.40	5.29	5.58	6.74	5.47	6.77
Но	0.68	0.77	1.01	0.75	0.90	0.95	1.08	0.92	1.18
Er	1.70	2.09	2.70	1.91	2.17	2.42	2.73	2.30	3.06
Yb	1.24	1.78	2.07	1.59	1.46	1.97	1.90	1.66	2.21
Lu	0.16	0.24	0.29	0.19	0.21	0.26	0.24	0.21	0.30
Та	0.90	1.19	6.62	4.38	4.11	5.93	8.22	5.56	6.81
Th	-	1.75	_	—	-	—	-	—	10.39
Pb	0.73	2.01	12.70	1.83	0.97	4.10	2.70	1.41	6.78
Cs	0.75	0.44	0.90	0.85	0.57	0.76	0.79	0.77	0.96
Sc	20.80	25.24	12.23	16.38	18.99	16.45	15.40	21.02	20.90
°'Sr/°°Sr	—	0.70451	—	0.70408	0.70431	—	_	0.70431	0.70423

Примечание. 1–10 – Шкотовское плато: 1–6 – покровы субщелочных базальтов среднего течения ручья Левый Горбатый Ключ, 7 – базальт экструзии Стариков Ключ, 8 – базальт вулкана Буреломный, 9–10 – базальты вулкана Подгелбаночный; 11–20 – Шуфанское плато: 11–13 – базальты экструзии Слабинка, 14–16 – базальты экструзии Тригопункт, правый борт реки Малая Борисовка, 17 – базальты экструзивного тела в левом борту реки Нежинка, 18 – базальт силообразного тела в истоках реки Вторая Речка, 19–20 – базальты вулкана Борисовский; 21–25 – пикриты вулкана Бабушка–Дедушка; 26–31 – Острогорское плато: 26–29 – покровы пикритов, пикритобазальтов бассейна ручья Большой Ключ, 30 – трахит, там же; 31–39 – Вострецовская группа вулканов: 31–32 – покровы толеитовых базальтов бассейна ручья Филькин Ключ, 33–39 – щелочные пикриты, пикритобазальты. * Анализы взяты из работы (Моисеенко, Сахно, 2000).

Рис. 4. Вариации содержаний когерентных микроэлементов (ppm) в зависимости от содержания MgO (мас. %) в позднекайнозойских субщелочных и щелочных базальтоидах юга Дальнего Востока. Условные обозначения см. на рис. 2.

паитности ($K_a = 0.59-0.71$), низкие содержания MgO, CaO и повышенные SiO₂, Al₂O₃ и K₂O.

С ростом концентрации MgO, в щелочных породах всех описываемых вулканических полей падают концентрации Al_2O_3 , Na_2O , CaO, Ti_2O и увеличиваются – P_2O_5 (рис. 3, табл. 3). Определенная особенность характерна для вулканитов Вострецовской группы вулканов, в которых с ростом магнезиальности содержание фосфора падает, а кальция увеличивается.

Микроэлементы

Субщелочные базальты позднекайнозойских вулканических полей отличаются широкими вариациями содержаний когерентных элементов (Ni, Co, Cr, V). Концентрации Ni колеблются от 42 до 418 ppm, Cr – 15–430 ppm, Co – 21–65 ppm, V – 90–200 ppm. С ростом содержания MgO в породах увеличиваются содержания Ni, Co, Cr, тогда как концентрация V практически не меняется. Исключение составляют только пикритобазальты Вострецовской группы вулканов, для которых ха-

ПЕТРОЛОГИЯ том 15 № 6 2007

рактерны низкие содержания ванадия (рис. 4, табл. 3) и, соответственно, высокие отношения Ti/V (120–146). Наиболее низкие содержания Ni и Cr типичны для мегаплагиофировых базальтов Шкотовского плато. Последние также отличают низкие отношения Ni/Co (1.3–2.8) и Cr/V (0.13–0.80).

Характерной особенностью субщелочных вулканитов Шуфанского и Шкотовского плато является несколько повышенное содержание крупноионных литофильных элементов (Rb и Ва), подвижных в водном флюиде, и некоторый дефицит высокозарядных элементов (Th, U и Hf). Это отражено в появлении на нормализованных многокомпонентных диаграммах максимума Ва и минимумов Th и U (рис. 5), наиболее отчетливо проявленных для субщелочных пород Шуфанского плато. Следует добавить, что субщелочные базальты Шкотовского и Шуфанского плато практически не различаются между собой по концентрации таких некогерентных элементов, как Zr, Nb, U, Sr, Hf и Cs, тогда как лавы Острогорского плато имеют несколько повышенные содержа-

Рис. 6. Вариации содержаний некогерентных микроэлементов (ppm) в зависимости от содержания MgO (мас. %) в позднекайнозойских субщелочных и щелочных базальтоидах юга Дальнего Востока. Условные обозначения см. на рис. 2.

ния Zr, Sr, Nb и Hf. C увеличением магнезиальности пород содержания Sr, Zr, Nb и Hf в субщелочных базальтах Шуфанского плато заметно падают, в то время как в пределах Шкотовского и Острогорского плато такая закономерность не проявлена (рис. 5, 6; табл. 3).

Распределение редкоземельных элементов (REE) в субщелочных вулканитах Шкотовского, Шуфанского и Острогорского плато характеризуется высокой степенью фракционирования легких элементов по отношению к тяжелым (La/Yb = = 18–22, 11–35 и 22 соответственно) и отсутствием Еи-минимума. Последнее указывает на незначительную роль процессов фракционирования плагиоклаза в эволюции первичных расплавов. Величина La/Sm отношения, отражающая соотношения легких и средних лантаноидов, составляет для субщелочных базальтов Шуфанского плато – 3.90-6.50, Шкотовского плато – 3.41-5.41 и Острогорского плато – 4.71. Субщелочным лавам Шуфанского плато свойственны существенные вариации содержаний REE (Σ TR + Y = 120–260 ppm).

Наиболее обогащенными в отношении стабильных изотопов являются субщелочные базальты Шуфанского плато ($\delta^{18}O = 6.1-6.4\%$). В породах Острогорского плато величина $\delta^{18}O$ составляет 6.2‰. Несколько ниже значения $\delta^{18}O$ в субщелочных вулканитах Шкотовского плато (5.4–6.0‰). ⁸⁷Sr/⁸⁶Sr отношение в субщелочных базальтах Шуфанского и Шкотовского плато колеблется в интервале 0.70434–0.70466.

В щелочных породах вулканических полей Приморья концентрации Ni, Co, Cr изменяются в широких пределах, проявляя при этом хорошо выраженную зависимость от содержания магния. В наиболее магнезиальных лавах Острогорского плато (вулкана Бабушка–Дедушка) содержания Ni достигают 300–500 ppm, Cr – 450–1000 ppm, Co – 40–80 ppm. Этим породам также свойственны более высокие отношения Ni/Co (5–12) и Cr/V (1.70– 11.88).

Концентрация V в щелочных базальтах Шкотовского плато (130-175 ppm) заметно выше, чем в соответствующих породах Шуфанского плато (96-120 ррт) и Вострецовской группы вулканов (80-120 ppm), поэтому наиболее высокие величины Ti/V свойственны пикритам и пикритобазальтам Вострецовской группы вулканов (120-230), а наименее низкие – базальтам Шкотовского плато (76-83). С увеличением концентрации MgO в щелочных базальтах Шкотовского плато отмечается падение содержания ванадия, тогда как в лавах Вострецовской группы вулканов такая зависимость не наблюдается. В породах Острогорского плато содержание ванадия составляет 100-190 ррт и отрицательно коррелирует с содержанием магния. Им также присущи высокие отношения Ti/V (90-170).

Концентрации Rb и Ba в щелочных базальтах Шуфанского плато заметно выше, по сравнению с аналогичными породами трех других вулканических полей (рис. 6), при близких содержаниях Zr, Yb, Hf. B пределах Шкотовского плато встречаются щелочные базальты (вулкана Подгелбаночный), которые имеют повышенные концентрации Zr, Yb, Hf по отношению ко всем остальным проанализированным образцам. Кроме того, содержания Sr и Nb в них значительно выше, чем в щелочных породах Острогорского плато и Вострецовской группы вулканов, но близки к таковым в щелочных базальтах Шуфанского плато.

С ростом содержания MgO отмечается падение концентраций Rb и Ba, тогда как зависимость содержаний Zr, Yb, Hf и Nb от магнезиальности пород проявлена недостаточно отчетливо. Следует также добавить, что содержание MgO в щелочных базальтах Шуфанского плато варьирует в узких пределах (4.49–5.26 мас. %), и поэтому корреляция между содержаниями микроэлементов и MgO отсутствует.

Магнезиальные пикриты Острогорского плато (вулкана Бабушка–Дедушка) по сравнению с остальными изученными вулканитами обогащены U, Th и Cs.

Для всех разновидностей щелочных образований Шуфанского, Шкотовского и Острогорского плато, а также Вострецовской группы вулканов характерны высокие содержания REE (ΣTR + Y = = 327–474 ppm, 412–463 ppm, 185–471 ppm и 184– 325 ppm соответственно) с преобладанием легких лантаноидов над тяжелыми (La/Yb = 58.7–78.6, 37–39, 17–56 и 25–33 соответственно). Отношение La/Sm варьирует в довольно широком интервале от 3.81 до 11.42, причем наиболее высокие значения La/Sm характерны для щелочных базальтов Шуфанского плато (8.95–11.42). Европиевая аномалия в изученных образцах не проявлена.

Наиболее низкие значения δ^{18} О характерны для щелочных базальтов Шкотовского плато (5.6–5.7‰), а наиболее высокие – для Острогорского плато и Вострецовской группы вулканов (5.8–6.0 и 5.7–6.2‰ соответственно).

В щелочных лавах Вострецовской группы вулканов отношение ⁸⁷Sr/⁸⁶Sr меняется в интервале 0.70408–0.70431, что несколько выше, чем в базальтах экструзии Старикова (0.70394), но ниже, чем в аналогичных породах Острогорского (0.70456–0.70468) (Моисеенко, Сахно, 2000) Шкотовского (0.70462–0.70477) и Шуфанского (0.70450) плато.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В отличие от океанических областей, состав континентальной литосферы и астеносферы и их вклад в происхождение континентальных внутри-

плитных базальтов остается дискуссионным. Близкие к обогащенной мантии изотопные и микроэлементные характеристики континентальных вулканитов (Turner, Hawkesworth, 1995) и значительная вариабельность состава выносимых ими ксенолитов (Harte, 1983; Menzies, 1983; Nixon, 1987) позволяют многим исследователям предполагать определяющий вклад в магмогенезис обогащенной и гетерогенной субконтинентальной литосферы (Hawkeswoth et al., 1983; Menzies et al., 1983; Brandshow et al., 1993; Turner, Hawkesworth, 1995 и др.). Данные, полученные нами в результате исследования позднекайнозойских внутриплитных базальтов Приморья, подтверждают этот вывод.

Коровая контаминация

В ряде работ (Carlon et al., 1981; Mahoney et al., 1982 и др.) высказывается предположение о значительном преобразовании первичных магм континентальных обстановок коровыми процессами. Однако, по мнению большинства исследователей (Zhou, Armstrong, 1982; Basu et al., 1991; Poucler et al., 1995; Мартынов и др., 2002), роль коровой контаминации в генезисе позднекайнозойских субщелочных и щелочных базальтов Китая, Кореи и Приморья несущественна. Полученные нами данные в целом подтверждают этот вывод. По величинам Ce/Pb, Nb/U и K/Nb практически все проанализированные образцы близки к океаническим базальтам (табл. 4). Вариации концентраций стронция, его изотопного состава, а также данные по изотопному составу кислорода указывают на низкую роль корового компонента в происхождении рассматриваемых пород (рис. 7, 8).

Роль гетерогенной литосферной мантии в магмогенезисе

При незначительном влиянии коровой контаминации на состав первичных мантийных магм и гомогенном характере конвективной континентальной астеносферы, определяющий вклад в латеральную гетерогенность составов субщелочных и щелочных базальтов юга Дальнего Востока России должна вносить континентальная литосферная мантия.

Проблема гетерогенности литосферной мантии южной части Дальнего Востока России впервые была рассмотрена в (Ionov et al., 1995). На основании исследования ограниченного числа перидотитовых ксенолитов в щелочных вулканитах авторы сделали заключение о существовании в пределах южной части Дальнего Востока России двух литосферных блоков - обогащенного на севере и деплетированного на юге. В работе (Мартынов и др., 2002) на основании изучения преимущественно толеитовых базальтов, преобладающих в

ПЕТРОЛОГИЯ том 15 № 6 2007

Рис. 7. Соотношение 1/⁸⁶Sr-(⁸⁷Sr/⁸⁶Sr) в позднекайнозойских субщелочных и щелочных базальтоидах юга Дальнего Востока России.

Условные обозначения см. на рис. 2.

Рис. 8. Теоретическая двухкомпонентная кривая смешения в системе $\delta^{18}O^{-87}Sr/^{86}Sr$.

Цифры на линиях – отношения концентраций стронция в мантии к концентрациям стронция в коровом контаминанте или во флюиде по (Taylor, 1980; James, 1981; Покровский, 2000).

Условные обозначения см. на рис. 2.

позднекайнозойских вулканических разрезах плато, также делается вывод о гетерогенном строении литосферы юга Дальнего Востока России. Было выделено три основных литосферных блока – наиболее древний Ханкайский, с мощной и обогащенной литосферой; Сихотэ-Алинский, близкий по составу к примитивной мантии, значительно переработанной позднемеловыми субдук-

	Породы	Ti/V	Ce/Pb	Ba/Sr	Ba/Nb	Ba/La	Zr/Nb	Th/Yb	Nb/Th	Nb/U	Rb/Cs	La/Lu	La/Yb	
							Шкотон	вское плат	°O					
1	Субщелочные базальты	93–127	15.7–29.1	0.77-1.18	12–18	14–18	4.9–5.5	1.4–2.1	11.6–12.6	49.3–61.7	204–252	85–160	12.7–22.1	
2	Щелочные базальты экструзии Стариков Ключ	69–84	19.0	0.91–1.04	10–11	17.52	3.3–3.7	3.6	11.77	55.62	82.12	131–161	24.4	
3	Щелочные базальты вул. Подгелбаноч- ный	76–83	23.3–28.5	0.36–0.52	3.7–4.5	5.2–6.2	5.1–5.8	4.5–5.1	10.4–11.5	40.4–42.5	68.6–78.5	251–278	37.2–38.5	
			Шуфанское плато											
4	Субщелочные базальты экструзии Слабинка	45–83	22.2–39.3	1.3–2.1	25–37	31.1–45.8	4.3–4.5	1.5–1.7	10.5–10.6	48.1–57.7	131–200	79–133	11.2–17.3	
5	Субщелочные базальты	85–100	8.4–64	0.9–1.5	13–23	18.7–24.7	3.3–4.3	2.5–4.7	9.3–11.4	42.9–68.7	52.6–154.1	148–243	21.5–34.9	
6	Щелочные базальты	86–113	41.7	0.93	12.0	11.12	3.3–4.8	9.5	7.6	41.8	125.9	577	78.16	
							Острого	рское пла	то					
7	Пикриты, пикрито- базальты	103–139	5.1–31.3	0.46-0.65	5.5–8.8	11.3–13.2	3.4–5.4	2.0-3.2	13.9–18.6	43.4–64.5	46.5–102.8	128–184	16.8–23.6	
8	Пикриты, пикрито- базальты вул. Бабушка–Дедушка	71–137	5.3–25.3	0.28–0.75	3.3-8.2	3.4–7.3	2.9–3.6	4.9–6.7	11.75	15.8–46.5	33.1–62.6	346–386	40.0–55.7	
						Вост	рецовска	я группа в	улканов					
9	Щелочные базальты	115–220	10.2–67.8	0.45-1.96	5.6–13.1	7.6–16.1	3.1–3.5	4.7	11.54	33.2–46.8	44.3–90.9	173–264	24.4-33.5	
					Оке	еанические	базальть	и по (Sun,	McDonough	n, 1989)				
10	N-MORB	—	25	0.07	2.7	2.5	31.8	0.04	20	50	80	5.49	0.81	
11	HIMU-тип OIB	—	29–38	-	_	-	-	_	10–17	43–48	100	_	-	
12	EM-тип OIB	—	14.5–31	-	_	-	-	—	6.3–11.5	40-43	70–90	-	-	

Таблица 4. Межэлементные отношения в субщелочных и щелочных позднекайнозойских базальтоидах юга Дальнего Востока России

640

Примечание. 1 – покровы в бассейне р. Левый Горбатый Ключ; 5 – неки, экструзивные тела в бассейне рек Малая Борисовка, Вторая Речка; 6 – силл в бассейне реки Нежинка; 7 – покровы в верховье рек Золомная и Вилюйка; 9 – экструзивные тела и некки, правый борт среднего течения реки Большая Уссурка. ционными процессами, и Южно-Приморский, деплетированный сравнительно молодыми геологическими событиями.

Чтобы исключить влияние кристаллизационного фракционирования, нами для оценки гетерогенности источников щелочных и субщелочных базальтов были использованы соотношения реперных некогерентных элементов и стабильные изотопы.

Позднекайнозойские щелочные и субщелочные базальты в пределах различных тектономагматических террейнов юга Дальнего Востока России по характеру распределения некогерентных элементов и положению на дискриминационных диаграммах (рис. 9, 10) относятся к породам внутриплитных геохимических серий. Их общей особенностью являются геохимические признаки (высокие значения отношений легких лантаноидов к тяжелым) присутствия реститового граната в магматическом источнике, что косвенно подтверждается находками акцессорного граната в умеренно-щелочных базальтах некоторых вулканов Вознесенского (Моисеенко, Сахно, 2000) и Самаркинского террейнов (устное сообщение С.В. Высоцкого). Обогащенный характер мантийного источника подтверждают также величины отношений Nb/Pb (9-58), Nb/Th (8-11), Ce/Pb (8-42), близкие к таковым в базальтах ЕМІ-типа (Sun, McDonough, 1989).

Наряду с общими характеристиками, существуют определенные различия составов щелочных базальтов в пределах различных тектономагматических террейнов. Например, вариации Се/Үb отношения (рис. 11) дают основание предполагать различное содержание граната, а следовательно, и степени обогащенности магматического субстрата. Так, при близкой магнезиальности, щелочные вулканиты Самаркинского и Матвеевско-Нахимовского террейнов (Острогорское плато и Вострецовская группа вулканов) отличаются устойчиво более низкими концентрациями Zr, Sm, Nb, Hf, Ce Lu и Yb от расположенных южнее однотипных пород Сергеевского, Вознесенского и Лаоелин-Гродековского террейнов (Шуфанское и Шкотовское плато). Можно предполагать и существование мантийной гетерогенности более мелкого масштаба. Локальная мантийная гетерогенность в пределах Матвеевско-Нахимовского террейна отмечалась, например, в работе (Сахно, 2001) на основании изучения щелочных базальтов моногенных построек, а также комплексного исследования шпинелевых перидотитовых включений щелочных базальтов палеовулканов Свиягино, Медвежий и других (Приходько и др., 1997).

В пределах территории юга Дальнего Востока России широко проявлен магматизм, связанный с постаккреционными разновозрастными субдукционными процессами. О значительной роли этих

Рис. 9. Классификационная диаграмма Th-Hf-Ta (Wood, 1980) для позднекайнозойских субщелочных и щелочных базальтоидов юга Дальнего Востока. Поля базальтов: А – срединно-океанических хребтов; В – срединно-океанических хребтов и внутриплитных обстановок; С – внутриплитных обстановок; D – островных дуг и активных континентальных окраин. Условные обозначения см. на рис. 2.

процессов в метасоматической переработке мантийного вещества свидетельствуют некоторые петрологические особенности позднекайнозойских щелочных и субщелочных базальтов. Вулканиты, распространенные в южной части рассматриваемой территории, в пределах Вознесенского и Сергеевского террейнов, характеризуются относительным обогащением крупноионными литофильными элементами (Rb, Ba), а в некоторых случаях и слабой деплетированностью в отношении Nb, Ta и Th (рис. 5). Такие геохимические признаки, типичные для субдукционных эффузивов, дают основание предполагать вовлечение в петрогенезис позднекайнозойских внутриплитных базальтов мантийного вещества, метасоматически переработанного предшествующими субдукционными процессами. Этот вывод подтверждают признаки сравнительно высокой окисленности этих пород, включая низкие значения Ti/V (53-120) и значительное количество титаномагнетита.

Закономерное уменьшение с запада на восток от Шуфанского к Шкотовскому плато Ba/La отношения в базальтах (рис. 12) свидетельствует о преобладающей роли субдукции восточного направления. Такое направление в пределах юга Дальнего Востока имело только погружение Солонкерской палеоокеанической плиты под Амурский микроконтинент в пермское время. Следы пермской субдукции трассируются фрагментами вулканических поясов и аккреционных призм, иногда с офиолитами, в Корее (пояс Чхонжин) и в

Рис. 10. Вариации отношений Th/Yb–Ta/Yb (Pearce, 1983) в позднекайнозойских субщелочных и щелочных базальтоидах юга Дальнего Востока.

IA и ACM – поля базальтов островных дуг и активных континентальных окраин соответственно. DMS – деплетированная мантия; EMS – обогащенная мантия; MORB – поле базальтов срединно-океанических хребтов. Векторами показано влияние следующих факторов: субдукционных компонентов (s), внутриплитного обогащения литофильными элементами (w), коровой контаминации (c) и фракционной кристаллизации (f). Условные обозначения см. на рис. 2.

Расчетные тренды плавления порций гранатового перидотита, содержащего 2.5 и 4% граната, – из работы (Brandshaw et al., 1993). Цифры вдоль кривых – процент плавления. Условные обозначения см. на рис. 2.

Рис. 12. Вариации величины Ва/La в позднекайнозойских субщелочных и щелочных базальтоидах юга Дальнего Востока в зависимости от их расположения относительно побережья Японского моря. Условные обозначения см. на рис. 2.

Юго-Западной Японии (пояс Сангун) (Парфенов и др., 2003; Khanchuk, 2001). Полученные нами данные можно рассматривать как первое геохимическое подтверждение существования пермской субдукции.

Ва/La отношение в субщелочных и щелочных базальтах северной части Приморья закономерно падает с востока на запад от Совгаванского к Острогорскому плато (рис. 12), свидетельствуя о метасоматической переработке мантии процессами, связанными с позднемеловой тихоокеанской субдукцией. Из изученных нами пород только субщелочные и щелочные базальты Вострецовской группы вулканов, расположенные на расстоянии ~90 км от побережья Японского моря, характеризуются относительно повышенными Ва/La отношениями (рис. 12). В рядом расположенных базальтах Острогорского плато признаки влияния субдукционного компонента отсутствуют. Низкую степень переработки мантийного вещества Матвеевско-Нахимовского и Самаркинского террейнов косвенно подтверждают признаки относительно восстановительных условий кристаллизации позднекайнозойских лав, а именно высокие отношения Ti/V (100–230) и наличие ильменита.

выводы

Таким образом, полученные нами данные указывают на то, что определяющую роль в петрогенезисе позднекайнозойских внутриплитных базальтов юга Дальнего востока России играла обогащенная и гетерогенная континентальная литосфера, в различной степени переработанная разновозрастными субдукционными процессами. Впервые получены геохимические доказательства существования пермской субдукции, связанной с погружением Солонкерской палеоокеанической плиты под Амурский микроконтинент.

Благодарности. Авторы признательны рецензенту члену-корреспонденту РАН А.В. Соболеву (ГЕОХИ РАН) за обсуждение, замечания и рекомендации, позволившие значительно улучшить качество рукописи.

Работа выполнена при финансовой поддержке ДВО РАН (гранты №№ 06-III-А-08-322 и 06-III-А-08-318).

СПИСОК ЛИТЕРАТУРЫ

Ананьев С.А., Ананьева Т.А., Гаранин В.К., Кудрявцева Г.П. Благородные корунды и цирконы из россыпей Приморья // Зап. ВМО. 1998. № 4. С. 120–124.

Баркар А.В. Минеральные ассоциации сапфироносных россыпей Приморья в связи с проблемой коренного источника сапфиров: Автореф. дисс. ... канд. геол.мин. наук. Владивосток, 2004. 21 с.

Берсенев Е.Д., Денисов Е.П. Неогеновые базальтоиды Приморья и Сихотэ-Алиня // Петрология неоген-четвертичных базальтоидов северо-западного сектора Тихоокеанского подвижного пояса. М.: Недра, 1971. С. 48–61. Высоцкий С.В., Щека С.А., Нечаев В.П. и др. Первая находка сапфиров в кайнозойских щелочно-базальтовых вулканах Приморья // Докл. АН. 2002. Т. 387. № 6. С. 806–810.

Голозубов В.В., Ханчук А.И. Таухинский и Журавлевский террейны (Южный Сихотэ-Алинь) – фрагменты раннемеловой азиатской окраины // Тихоокеан. геология. 1995. Т. 14. № 2. С. 13–25.

Есин С.В., Прусевич А.А., Кутолин В.А. Позднекайнозойский вулканизм и глубинное строение Восточного Сихотэ-Алиня. Новосибирск: Наука, 1992. 158 с.

Игнатьев А.В., Веливецкая Т.А. Лазерная методика подготовки проб для анализа стабильных изотопов // Тез. докл. Всероссийской конференции "Масс-спектрометрия и ее прикладные проблемы". Москва, 2005. С. 1.

Классификация и номенклатура магматических горных пород. М.: Недра, 1981. 160 с.

Мартынов Ю.А. Геохимия базальтов активных континентальных окраин и зрелых островных дуг на приме-

ре Северо-Западной Пацифики. Владивосток: Дальнаука, 1999. 215 с.

Мартынов Ю.А., Чащин А.А., Рассказов С.В., Саранина Е.В. Позднемиоцен-плиоценовый базальтовый вулканизм юга Дальнего Востока России как индикатор гетерогенности литосферной мантии в зоне перехода континент–океан // Петрология. 2002. Т. 10. № 2. С. 189–209.

Мартынов Ю.А., Ли Д.У., Голозубов В.В., Рассказов С.В. Геохимия и особенности формирования позднемеловых–миоценовых базальтов юга Корейского полуострова // Геохимия. 2006. № 6. С. 1–13.

Моисеенко В.Г., Сахно В.Г. Плюмовый вулканизм и минерагения Амурской мегаструктуры. Благовещенскна-Амуре: АмурКНИИ, 2000. 160 с.

Парфенов Л.М., Берзин Н.А., Ханчук А.И. и др. Модель формирования орогенных поясов центральной и северо-восточной Азии // Тихоокеан. геология. 2003. Т. 22. № 6. С. 7–41.

Покровский Б.Г. Коровая контаминация мантийных магм по данным изотопной геохимии // Труды ГИН. 2000. Вып. 535. 225 с.

Приходько В.С., Землянухин В.Н., Чубаров В.М. Состав и строение верхней мантии под Ханкайским массивом (по результатам изучения глубинных ксенолитов) // Тихоокеан. геология. 1997. Т. 16. № 4. С. 88–94. Рассказов С.В., Саранина Е.В., Мартынов Ю.А. и др. Развитие позднекайнозойского магматизма активной континентальной окраины Южного Приморья // Тихо-

океан. геология. 2003. Т. 22. № 1. С. 92–109. Сахно В.Г. Позднемезозойско-кайнозойский континентальный вулканизм востока Азии. Владивосток:

Дальнаука, 2001. 336 с. Сахно В.Г., Максимов С.О., Попов В.К., Сандимиро-

ва Г.П. Лейцитовые базаниты и калиевые шонкиниты Угловской впадины (Южное Приморье) // Докл. АН. 2004. Т. 399. № 6. С. 818–824.

Ханчук А.И., Раткин В.В., Рязанцева М.Д. и др. Геология и полезные ископаемые Приморского края: очерк. Владивосток: Дальнаука, 1995. 65 с.

Ханчук А.И., Голозубов В.В., Мартынов Ю.А., Симаненко В.П. Раннемеловая и палеогеновая трансформные континентальные окраины (калифорнийский тип) Дальнего Востока России // Тектоника Азии. М.: ГЕОС, 1997. С. 240–243.

Щека С.А. Базит-гипербазитовые интрузии и включения в эффузивах Дальнего Востока. М.: Наука, 1983. 167 с.

Basu A.R., Junwen W., Wankang H. Major element, REE and Pb, Nd and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China: implications for their origin from suboceanic-type mantle reservoirs // Earth Planet. Sci. Lett. 1991. V. 105. P. 149–169.

Brandshaw T.K., Hawkesworth C.J., Gallagher K. Basaltic volcanism in the Southern Basin and Range: no role for a mantle plume // Earth Planet. Sci. Lett. 1993. V. 116. P. 45–62.

Carlson R.W., Lugmair G.W., Macdougall J.D. Colombia River volcanism: the question of mantle heterogeneity or crustal contamination // Geochim. Cosmochim. Acta. 1981. V. 45. P. 2483–2499.

Harte B. Mantle peridotites and processes – the kimberlite samples // Continental basalts and mantle xenoliths. Eds. Hawkesworth C.J., Norry M.J. Nantwich: Shiva, 1983. P. 46–91.

Hawkesworth C.J., Erlank A.J., Marsh M.A. et al. Evolution of the continental lithosphere: evidence from volcanics and

xenoliths in Southern Africa // Continental basalts and mantle xenoliths. Eds. Hawkesworth C.J., Norry M.J. Nantwich: Shiva, 1983. P. 111–138.

Ionov D.A., Prikhod'ko V.S., O'Reylly S.Y. Peridotite xenoliths in ankali basalts from the Sikhote-Aline, southeastern Siberia, Russia: trace-element signatures of mantle beneath a convergent continental margin // Chemical Geology. 1995. V. 120. P. 275–294.

James D.E. The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination // Ann. Rev. Earth Planet. Sci. Lett. 1981. V. 9. P. 311–344.

Jochum K.P., Arndt N.T., Hofmann A.W. Nb-Th-La in komatiites and basalts // Earth Planet. Sci. Lett. 1991. V. 107. P. 272–289.

Khanchuk A.I. Pre-Neogene tectonics of the Sea-of-Japan region: a view from the Russian side // Earth Science. 2001. V. 55. № 5. P. 275–291.

Mahoney J.J., Macdougall J.D., Lugmair G.W. et al. Origin of the Deccan Trap flows at Mahavaleshwar inferred from Nd and Sr isotopic and chemical evidence // Earth Planet. Sci. Lett. 1982. V. 60. P. 47–60.

Menzies M.A. Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatic activity // Continental basalts and mantle xenoliths. Eds. Hawkesworth C.J., Norry M.J. Nantwich: Shiva, 1983. P. 92–110.

Menzies M.A., Leeman W.R., Hawkesworth C.J. Isotope geochemistry of Cenozoic volcanic rocks reveals mantle heterogeneity below western U.S.A. // Nature. 1983. V. 303. P. 205–209.

Nixon P.H. Mantle xenoliths. Chichester: Wiley, 1987. 844 p.

Pearce J.A., Parkinson I.J. Trace element model for mantle melting: application to volcanic arc petrogenesis // Magmatic Processes and Plate Tectonics. Geol. Soc. Spec. Public. 1993. № 76. P. 373–403.

Pearce J.A. Role of the sub-continental lithosphere in magma genesis at active continental margins // Continental basalts and mantle xenoliths. Eds. Hawkesworth C.J., Norry M.J. Nantwich: Shiva, 1983. P. 230–249.

Poucler A., Lee J., Vidal P. et al. Cretaceous to Cenozoic volcanism in South Korea and in the Sea of Japan: magmatic constraints on the opening of the back-arc basin // Volcanism Associated with Extension at Consuming Plate Margin. Geol. Soc. Spec. Publ. 1995. № 81. P. 169–191.

Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implication for mantel composition and processes // Magmatism in the oceanic basins. Eds. Saunders A.D., Norry M.J. Geol. Soc. Spec. Public. 1989. № 42. P. 313–345.

Taylor H.P., Jr. The effect of assimilation of rocks by magmas: ${}^{18}\text{O}/{}^{16}\text{O}$ and ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ systematics in igneous rocks // Earth Planet. Sci. Lett. 1980. V. 47. No 2. P. 243–254.

Turner S., Hawkesworth C. The nature of the sub-continental mantle: constraints from the major-element composition of continental flood basalts // Chemical Geology. 1995. V. 120. P. 295–314.

Wood D.A. The application of Th-Hf-Ta diagram to problem of tectonomagmatic classification and to establish the nature of crustal contamination of basaltic lavas of the British Titiry volcanic province // Earth Planet. Sci. Lett. 1980. V. 50. P. 11–30.

Zhou X., Armstrong R.L. Cenozoic volcanic rocks of eastern China-cecular and geographic trends in chemistry and strontium composition // Earth Planet. Sci. Lett. 1982. V. 58. P. 301–329.