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INTRODUCTION 

In general, montmorillonite and other dioctahedral 
2:1 layer silicates are characterized by dehydroxyla- 
tion temperatures between 500-700~ (e.g., Macken- 
zie, 1957; G~im and Kulbicki, 1961; Schultz, 1969; 
Guggenheim, 1990). Differences in dehydroxylation 
temperature are primarily related to the kind of  octa- 
hedrally coordinated cations present and their distri- 
bution and movement in dioctahedral 2:1 layer sili- 
cates (Drits et al., 1995), although the interlayer cation 
may have an effect also (e.g., Guggenheim and Koster 
van Groos, 1992). 

Trans-vacant  (tv) smectites and micas are charac- 
terized by dehydroxylation temperatures which are 
150-200~ lower than those for the same minerals 
consisting of cis-vacant  (cv) 2:1 layers. Most mont- 
morillonites consist of  a mixture of cv and tv 2:1 lay- 
ers and lose their hydroxyls in two steps near --550 
and -700~  (Drits et  al., 1995). Hence, the investi- 
gation of the structure of dehydroxylated montmoril- 
lonite is of great interest to understand the dehydrox- 
ylation process (e.g., Jonas, 1954; Heller et al., 1962; 
Drits et al., 1995). 

Dioctahedral 2:1 layer silicates are expected to pro- 
duce well defined dehydroxylates after heating for a 
short time at temperatures between 500-700~ and 
cooling under laboratory atmosphere (e.g., Grim and 
Bradley, 1948; Heller-Kallai and Rozenson, 1980; 
Drits et al., 1995). However, the heating rate (Hamil- 
ton, 1971) and duration of heating (Horv~ith, 1985) are 
important in determining if an anhydrous state is 
achieved. A slow heating rate lowers the apparent de- 

t Present address: Federal Institute for Geosciences and 
Natural Resources, Stilleweg 2, D-30655 Hannover, Germa- 
ny. 
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hydroxylation temperature, which is a well known but 
often neglected phenomenon. 

Emmerich et aL (1999) found that a completely de- 
hydroxylated state of montmorillonites that are hom- 
oionic and cis-vacant  was not attained after heating to 
700~ (heating rate 150 K h -l) for 20 h, because the 
dehydroxylated montmorillonites show a spontaneous 
rehydroxylation during cooling. The clays regained 
nearly 15% of the initial hydroxyls. 

In this study, the state of dehydroxylation is inves- 
tigated after heating a homoionic and cv montmoril- 
lonite at various temperatures for different times. 
Spontaneous rehydroxylation occurs under ambient 
conditions (at -24~ at a relative humidity (r.h.) of 
- 55%.  

MATERIALS AND METHODS 

The Ca2+-rich form of the <2-p~m fraction of a cv 
montmorillonite from Linden, Bavaria, was used in this 
study (Emmerich et al., 1999). It has a chemical formula 

of Ca0.185 [(Si3.95Alo.05)(All.nrFe0.1sMg0.38)O10(OH)2]. 
Samples of 55-60 mg of the homoionic clay were 

heated at a heating rate of 2.5 K min -1 in streaming 
dry air (3 L h -l) to 540 or 700~ The final tempera- 
ture was maintained for 0, 12, or 20 h. Thereafter, the 
samples were cooled and maintained at various periods 
for --<8 d in an atmosphere of - 5 5 %  r.h. over a satu- 
rated Mg(NO3)2 solution (Table 1). Subsequently, sam- 
pies were investigated in a Mettler thermobalance 
linked to a Balzers quadrupole mass spectrometer 
(MS) (Kahr et al., 1996) with a heating rate of 10 K 
rain -1 in the range from 30 to 1000~ This combi- 
nation makes it possible to register simultaneously se- 
lected masses of the evolved gases during thermal re- 
actions in the thermobalance (Emmerich et al., 1999). 
The mass loss between 350-1000~ was considered in 
determining the number of hydroxyl groups regained 
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Table 1. Experimental  data. 

Clays and Clay Minerals 

Sample 

Thermal treatment 

Time Time stored Thermal analysis 
maintained at --55% r.h. 

Heating Final at final at room Heating Heating 
rate temperature temperature temperature rate range 

[K min ~ i] [~ [h] [h] [K rain ~] [~ 

Regained 
OH groups 

[%1~ 

1 2.5 540 0 0 
2 2.5 540 0 8 
3 2.5 540 0 24.5 
4 2.5 540 0 49 
5 2.5 540 0 168 
6 2.5 540 12 0 
7 2.5 540 12 4 
8 2.5 540 12 24 
9 2.5 540 12 48.7 

10 2.5 540 12 174 
1l 2.5 540 20 0 
12 2.5 540 20 10.3 
13 2.5 540 20 24 
14 2.5 540 20 48 
15 2.5 540 20 168 
16 2.5 700 0 0 
17 2.5 700 0 12 
18 2.5 700 0 24.3 
19 2.5 700 0 48.4 
20 2.5 700 0 192 
21 2.5 700 12 0 
22 2.5 700 12 10 
23 2.5 700 12 23.3 
24 2.5 700 12 48 
25 2.5 700 12 168 
26 2.5 700 20 0 
27 2.5 700 20 10 
28 2.5 700 20 24 
29 2.5 700 20 48 
30 2.5 700 20 168 

10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  
10 30 -1000  

66.0 
80.7 
82.2 
81.8 
79.8 
22.0 
39.5 
n . d .  

42.1 
42.9 
18.5 
35.1 
n.d. 
37.1 
38.2 

5.0 
20.6 
23.0 
23.6 
25.8 

0.6 
12.0 
12.7 
13.8 
15.8 
0.7 

11.6 
12.3 
13.5 
15.9 

4.85 wt. % of  the initial formula unit is equal to 100% OH groups. 

i . . . .  

i } . . . .  i . . . .  t . . . .  i . . . .  [ . . . .  i [) 

e) 

v 

400 500 600 700 800 900 1000 
temperature (~ 

Figure 1. MS curves  o f  the evolved water-mass f ragment  
18 mass /charge  o f  the initial Ca2+-rich montmoril lonite heat- 
ed at a rate of  a) 10 K rain ~ and b) 2.5 K rain -1. MS curves  
of  the Ca2+-rich montmoril lonite  stored at - -55% r.h. for 8 
and 10.3 h, respectively, after heating at 540~ for c) 0 h 
(Table 1, sample 2) or d) 20 h (sample 12). MS curves  o f  the 
Ca2+-rich montmori l loni te  stored at - -55% r.h. for 192 and 
168 h, respectively, after heating at 700~ for e) 0 h (sample 
20) or f) 20 h (sample 25). 

a n d  t he  M S  c u r v e s  w e r e  u s e d  to  d e t e r m i n e  d e h y d r o x -  

y l a t i o n  t e m p e r a t u r e s .  

R E S U L T S  A N D  C O N C L U S I O N S  

In i t ia l ly ,  t he  m o n t m o r i l l o n i t e  lo s t  4 .85  -+ 0.1 wt .  % 

as  t he  r e s u l t  o f  d e h y d r o x y l a t i o n  b e t w e e n  3 5 0 - 1 0 0 0 ~  

T h i s  r e s u l t  is  i den t i c a l  to t he  t h e o r e t i c a l  O H  c o n t e n t  

o f  th i s  d i o c t a h e d r a l  s m e c t i t e .  T h e  p e a k  t e m p e r a t u r e  o f  

t he  d e h y d r o x y l a t i o n  p e a k  o f  t he  in i t ia l  c v  c l a y  (at  10 

K m i n  1) w a s  - - 6 7 0 ~  a n d  t he  t e m p e r a t u r e  o f  t he  re -  

t u rn  to b a s e l i n e  ( r e a c t i o n  c o m p l e t e d )  w a s  - - 7 8 0 ~  

( F i g u r e  1, t r ace  a). C o m p l e t e  d e h y d r o x y l a t i o n  w a s  n o t  

r e a c h e d  un t i l  - - 1 0 0 0 ~  T h e  p e a k  t e m p e r a t u r e  de -  

c r e a s e d  to - 6 2 5 ~  w i t h  a h e a t i n g  ra te  o f  2 .5  K m i n  -1 

a n d  t he  r e a c t i o n  w a s  n e a r l y  c o m p l e t e  at  - 7 5 0 ~  (F ig -  

u re  1, t r ace  b).  

A f t e r  h e a t i n g  t he  s a m p l e  to 7 0 0 ~  at  a r a t e  o f  2 .5  

K m i n  1, 4 - 6 %  o f  t he  in i t ia l  h y d r o x y l s  r e m a i n e d  in  

t he  s t ruc tu re .  T h e s e  O H  g r o u p s  w e r e  n o t  r e l e a s e d  un t i l  

t h e  c l a y  w a s  h e a t e d  for  1 . 5 - 2  h at 7 0 0 ~  H e a t i n g  fo r  

12 o r  20  h at  7 0 0 ~  p r o d u c e d  a t rue  a n h y d r o u s  m o n t -  

m o r i l l o n i t e  s t ruc tu re .  
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Figure 2. Regained hydroxyl groups for Ca2*-rich mont- 
morillonite after heating to 700~ and maintaining at 700~ 
for -o- 0 h (Table 1, samples 16-20), -~- 12 h (samples 21-  
25), or -~  20 h (samples 26-30) and after storing at - 5 5 %  
r.h. for --<192 h in a desiccator. 

Figure 3. Regained hydroxyl groups for Ca2+-rich mont- 
morillonite after heating to 540~ and maintaining at 540~ 
for -e- 0 h (Table 1, samples 1-5), -m- 12 h (samples 6-10), 
or -~  20 h (samples 11-15) and after storing at - 5 5 %  r.h. 
for --<174 h in a desiccator. 

Up take  of  O H  groups  under  55% r.h. was  obse rved  
wi th in  48 h after  dehydroxy la t ion  (Figure 2). There-  
after, the  pe rcen tage  of  rega ined  hydroxy l  groups  ap- 
p roached  - -26 for  those  samples  tha t  were  subsequen t -  
ly r e m o v e d  f rom the furnace  af ter  hea t ing  to 700~ 
In  contrast ,  for  those  samples  m a i n t a i n e d  at 700~ for  
12 or 20 h the  r ega ined  hydroxy l  groups  approached  
~ 1 5  (Table 1). Th e  low dehydroxy la t ion  tempera ture  
of  < 5 0 0 ~  o f  these  r ehydroxy la ted  samples  (Figure  1, 
t race e and  t race f) m ay  indicate  tha t  res tora t ion  of  
hydroxyl  groups  occurs  first at the  edges  of  the  de- 
hydroxy la t ed  layers.  

I f  hea t ing  was t e rmina ted  at 540~ samples  re ta ined  
6 5 - 6 7 %  of the  hydroxy l  groups.  Presumably ,  the  pro- 
v ided  t h e n n a i  energy  was  not  suff icient ly h igh  to re- 
m o v e  all the O H  groups.  However ,  1 7 - 1 9 %  of  the 
hydroxy l  groups  r ema ined  in the  s t ructure  even  after  
hea t ing  the samples  for  20 h at  540~ 

Rehydroxy la t ion  unde r  55% r.h. was  near ly  com-  
plete  wi th in  10 h for  samples  hea t ed  to 540~ and  
ma in t a ined  for  12 or 20 h at this  tempera ture .  For  sam- 
pies  immedia t e ly  coo led  af ter  hea t ing  to 540~ 82% 
of  the ini t ial  hydroxyl  groups  were  rega ined  (Figure  
3). In contrast ,  samples  ma in ta ined  for  12 or 20 h at 
540~ r ega ined  on ly  42  and  38%, respec t ive ly  (Table 
1). Note,  tha t  the  peak  t empera tu re  of  the  h igh - t em-  
pera ture  dehydroxy la t ion  peak  occurs  at ~690~  an  
increase  of  - 3 0 ~  after  r ehydroxy la t ion  (Figure 1, 
t race d). Rehydroxy la t ion  wi th  s t eam at 200~ also 
increases  the subsequen t  dehydroxy la t ion  tempera ture  
and  enhances  the  hydroxy l -wa te r  uptake  to - -90% 
( E m m e r i c h  et al., 1999). 

The  resul ts  of  this  s tudy show that  hea t ing  rate and  
dura t ion  of  hea t ing  are impor t an t  to prepare  dehydrox-  
ylated cv  montmor i l lon i t e s .  Hea t ing  a cv  mon tmor i l -  
loni te  wi th  a rate fas ter  than 150~ h - '  to 700~ and  
main ta in ing  the  sample  at 700~ for < 1 2  h is no t  suf- 
f icient  to r e m o v e  all O H  groups.  In addi t ion  dehy-  
d roxyla ted  and  also par t ly  dehydroxy la t ed  samples  

mus t  be  coo led  and  s tored under  an  iner t  a tmosphe re  
to p reven t  r ehydroxy la t ion  unde r  a m b i e n t  condi t ions .  
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