УДК [550.837:553.411] (571.65)

АНОМАЛИИ ПЕТРОМАГНИТНЫХ ПАРАМЕТРОВ, ОБУСЛОВЛЕННЫЕ СУЛЬФИДНОЙ МИНЕРАЛИЗАЦИЕЙ, И ПРОГНОЗ ОРУДЕНЕНИЯ В ЯНО-КОЛЫМСКОМ ЗОЛОТОНОСНОМ ПОЯСЕ

С.В. Ворошин, В.М. Шарафутдинов, Е.Э. Тюкова

Северо-восточный комплексный научно-исследовательский институт ДВО РАН, г. Магадан

В статье обсуждаются потенциальные возможности применения петромагнитных методов исследования для поисков и разведки оруденения в Яно-Колымском золотоносном поясе. Рассматриваются две группы магнитных аномалий, позволяющие проводить региональное и локальное прогнозирование. Региональный прогноз основывается на факте локализации золото-кварцевого оруденения над поверхностью пиритпирротинового перехода в терригенных породах и, следовательно, на резком изменении магнитных свойств пород. Возможности локального прогноза обусловлены увеличением петромагнитных характеристик в ближайших околорудных ореолах. Интерпретация этого явления только с точки зрения влияния палеотемпературных факторов на петромагнитные параметры противоречит минералогическим данным, поэтому для объяснения механизма возникновения околорудных магнитных аномалий использован принцип суперпозиции палеотемпературного и геохимического полей. Носителями аномальных магнитных свойств могут выступать сульфоарсениды кобальта, которые служат репером околорудных зон в золото-кварцевых и самих рудных тел в золото-редкометалльных месторождениях.

Ключевые слова: терригенные отложения, золотое оруденение, сульфиды, прогноз, петромагнитные методы, Яно-Колымский пояс.

введение

Яно-Колымский золотоносный пояс является крупнейшей металлогенической единицей на Северо-Востоке Азии и расположен в одноименной системе мезозойской складчатости (рис. 1). С начала 30-х годов в пределах пояса было добыто более 2500 т золота, в котором доля рудной составляющей не превышает 5% [9]. В настоящее время, в связи с истощением запасов россыпей, внимание геологов сосредоточено на развитии рудных объектов. Так как территория относится к числу хорошо изученных, то на первый план выдвигаются дистанционные методы поиска и разведки рудных тел, в частности - геофизические. Выбор оптимального комплекса геофизических методов для поисково-разведочных целей относится к числу актуальных проблем и для других поясов золотоносности, приуроченных к терригенным (турбидитным) отложениям.

Основу выработки прогнозно-поисковых критериев составляет реконструкция механизмов образования корреляционных связей между зонами аномальных значений петрофизических параметров и участками оруденения. Петроплотностные и петромагнитные характеристики горных пород относятся к наиболее часто измеряемым параметрам. Причем последние гораздо более чувствительны к внешним воздействиям. Например, нагрев породы до 150-200°С с последуюшим охлаждением до первоначальной температуры практически не оказывает влияния на плотностные характеристики породы, но приводит к значительному изменению ее магнитных свойств. Экспериментальные исследования влияния термального воздействия на магнитную восприимчивость (а) различных типов горных пород при температурах, соответствующих природному прогреву, свидетельствуют, что, начиная со 100°С, магнитная восприимчивость изменяется по различным закономерностям. Однако в интервале 275-325°С у всех типов пород наблюдается резкое увеличение магнитной восприимчивости с последующим её уменьшением при дальнейшем прогреве [6, 16]. Влияние даже небольшого нагрева горной породы на её остаточную намагниченность также велико, что экспериментально подтверждено в классических работах по петромагнетизму [11, 19]. С другой стороны, в природных условиях температура далеко не всегда выступает в качестве главной причины изменения петрофи-

Рис. 1. Схема расположения золотоносных поясов, приуроченных к терригенным толщам, на Северо-Востоке Азии. Показаны месторождения, данные по которым обсуждаются в статье.

зических параметров горных пород. При гидротермальных процессах взаимодействия типа «флюидпорода» также могут приводить к резкому изменению магнитных свойств пород. Таким образом, петромагнитные параметры являются оптимальной петрофизической характеристикой для реконструкции процессов преобразования вещества горных пород при гидротермальном рудообразовании, а образование магнитных аномалий можно с долей условности рассматривать как результат суперпозиции двух типов процессов - температурного и гидротермального (или палеотемпературного и геохимического полей).

Один из наиболее важных вкладов в природу магнитных аномалий в Яно-Колымском золотоносном поясе вносит пирротин [5]. Его формирование происходило как при температурном преобразовании пирита [3, 14], так и при кристаллизации из постмагматических гидротермальных растворов [15]. Оба эти процесса связаны с золоторудной минерализацией в регионе. Сульфидная составляющая вмещающих пород и руд наиболее интересна с точки зрения анализа связи магнитных аномалий и золотого оруденения. С этих позиций важно выявить минералы-носители магнитных свойств (сульфиды и сульфоарсениды), проанализировать условия их образования и связь с золотым оруденением, а также определить потенциальные возможности применения петромагнитных методов исследования для прогноза оруденения в Яно-Колымском золотоносном поясе.

МЕТОДЫ ПЕТРОМАГНИТНЫХ И МИНЕРАЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ

Магнитная восприимчивость и естественная остаточная намагниченность образцов горных пород определялись стандартными лабораторными методами [8]. По результатам лабораторного изучения выяснялась зависимость между магнитными характеристиками образца и его минеральным составом. Для диагностики ферромагнитных минералов использовался ряд методов, основанных на определении точки Кюри (Т.), то есть температуры перехода ферромагнитного материала в парамагнитное состояние. Наиболее удобный в практическом отношении - термомагнитный анализ, в частности - определение Т по изменению намагниченности насыщения I в процессе прогрева образца горной породы – І (Т). Полная намагниченность насыщения I_s – это намагниченность ферромагнитной фракции породы в поле насыщения. Величина І образца горной породы зависит от состава и концентрации ферромагнитных минералов [12]. Использование кривых $I_s(T)$ вместо $I_{rs}(T)$ (I_{rs} - максимально возможная величина остаточной намагниченности образца горной породы, созданная в поле магнитного насыщения) обусловлено тем, что вид кривой $I_s(T)$ определяется только составом ферромагнитной фракции и не зависит от структурных особенностей магнитных зерен (например, наличие двух групп зерен одного минерала, резко отличающихся друг от друга по размерам), в отличие от $I_{rs}(T)$ [11].

Измерения магнитной восприимчивости проводились на приборе KLY-2 из предварительно раздробленных проб. Намагниченности насыщения и точки Кюри определялись также по раздробленным пробам на приборе CBM-5 в интервале 20-800°C с напряженностью намагничивающего поля 410 Э. Остаточная намагниченность измерялась по кубическим образцам (методика трехосная) на рок-генераторе JR-4. Диагностика рудных минералов и изучение их соотношения друг с другом осуществлялись в полированных шлифах и гравиконцентратах раздробленных пород. Состав минералов определялся на микрорентгеноспектральном анализаторе "Сатеbax" и с помощью рентгеновской дифрактометрии. Условия измерений отражены в примечаниях к таблицам.

Комплексирование специализированных петромагнитных и минералогических исследований позволило определить минералы породы, ответственные за аномальное магнитное поле, и продвинуться в расшифровке его генезиса.

ТИПЫ ЗОЛОТОГО ОРУДЕНЕНИЯ И ЕГО СООТНОШЕНИЕ С АНОМАЛЕОБРАЗУЮЩИМИ ОБЪЕКТАМИ

Золотое оруденение в рассматриваемом регионе относится к двум главным типам: золото-кварцевому и золото-редкометалльному [18]. Выделение этих двух типов базируется на различиях в составе минеральных ассоциаций, присутствии в золото-редкометалльных месторождениях таких минералов, как касситерит, вольфрамит, молибденит, сульфиды, сульфотеллуриды и теллуриды висмута. Золото-кварцевые месторождения являются главным промышленным и россыпеобразующим типом в регионе. Золоторедкометалльные месторождения не имеют пока самостоятельного промышленного значения.

Пространственное размещение золото-кварцевых месторождений определяется локализацией большей части объектов в непосредственной близости от биотитовой изограды регионального прогрессивного метаморфизма над фронтом пирротинизации пирита в осадочных породах [3]. Это положение свойственно и другим металлогеническим провинциям с терригенными вмещающими породами [7]. Исключение составляют лишь те месторождения, в которых наблюдается метаморфизм самих рудных тел в результате продвижения фронта метаморфизма уже после формирования оруденения. В Яно-Колымском поясе к ним относятся Игуменовское, Клин, Восточное и ряд других. Пирротинизация пирита в осадочных породах и мобилизация флюидов и рудных компонентов золото-кварцевого оруденения следствия одного процесса, а именно - прогрессивного метаморфизма вмещающих пород. Преобразование пирита в пирротин обусловливает резкое увеличение магнитных характеристик вмещающих пород, следовательно, золото-кварцевая минерализация сконцентрирована над поверхностью скачкообразного изменения петромагнитных параметров.

Золото-редкометалльные местрождения связаны с гранитоидным магматизмом, поэтому даже если рудные тела локализуются в терригенных породах, то только в околоинтрузивных зонах, где под действием теплового поля произошла инверсия пирита в пирротин. Следовательно, наиболее вероятная область локализации золото-редкометалльной минерализации - ниже поверхности уменьшения магнитных характеристик в терригенных толщах.

Носителями аномальных магнитных свойств собственно рудных тел и околорудных ореолов могут служить, кроме пирротина, сульфоарсениды кобальта. Эти минералы непосредственно связаны с ранними стадиями золоторудного процесса [4], то есть представляют собой эффективный репер для поиска самих рудных тел. Кроме того, сульфоарсениды кобальта характерны как для золото-кварцевых, так и для золото-редкометалльных месторождений. Для золото-редкометалльных месторождений факт присутствия сульфоарсенидов кобальта в рудах известен давно. Они входят в состав ранней леллингит-арсенопиритовой ассоциации. Например, на месторождении Эргелях с арсенопиритом и леллингитом ассоциируют кобальтсодержащий леллингит, глаукодот и кобальтин [13]. Присутствие сульфоарсенидов кобальта в золото-кварцевых месторождениях не является широко известным фактом. Это связано, прежде всего, с условиями локализации этих минералов и сложностью их диагностики. Первые сведения о наличии кобальтина на золото-кварцевых месторождениях Яно-Колымского пояса были получены на Наталкинском месторождении [2, 20]. Проведенные нами поисковые исследования позволяют утверждать наличие сульфоарсенидов кобальта во всех золото-кварцевых месторождениях региона, хотя и в очень небольшом количестве относительно арсенопирита. Обычные условия локализации кобальтсодержащих фаз - это микрокристаллические включения в пирите во внешних зонах ореолов арсенопиритизации.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Для изучения состава и магнитных характеристик пирротина в зависимости от степени контактового метаморфизма был выбран Пионерский рудный узел [15]. Точки отбора проб показаны на рис. 2, результаты приведены в табл. 1. Четкой закономерности состава и модификаций минерала от геологической позиции нет, хотя можно говорить о тенденции увеличения железистой компоненты в пирротине по мере приближения к контакту с гранитоидами (или увеличении степени ороговикования). Отсутствие четкой зависимости может быть связано с неопределенностью положения контакта гранитоидов, так как мы фиксируем его только на поверхности, а положение и форма гранитоидов на глубине определены недостаточно точно. Пирротины моноклинной сингонии типичны для более удаленных от контакта проб или для внешних зон роговиков. Кроме того, моноклинной модификацией представлены пирротины, которые образовались за счет постмагматического гидротермального процесса, а не температурного метаморфизма. В частности, моноклинные пирротины характерны для гидротермальных образований в самих гранитоидах. Присутствие наряду с метаморфогенными наложенных гидротермальных постмагматических пирротинов может быть еще одной причиной нарушения закономерности расположения модификаций этого минерала в зависимости от расстояния до контакта с интрузиями.

Диапазоны изменения петромагнитных характеристик зеленосланцевоизмененных терригенных пород с пиритом и ороговикованных пирротинизированных турбидитов иллюстрируются на примере вмещающих толщ Штурмовского рудного узла, где золото-кварцевая минерализация распространена как в зонах роговиков, так и за их пределами, и практически отсутствуют постгранитные гидротермальные образования (табл. 2, рис. 3). Отчетливо видно, что пирротинизированные породы имеют значения остаточной намагниченности и магнитной восприимчивости, как минимум на порядок превышающие аналогичные показатели в менее метаморфизованных образованиях. В то же время, существуют области перекрытия между группами пород с пиритом и пирротином.

Поведение петромагнитных параметров в сечении «вмещающие терригенные породы - околорудные метасоматиты - руды» было изучено вдоль профиля, пересекающего несколько рудных зон и межрудных интервалов в подземных горных выработках на горизонте 600 м (рассечки 33 и 34) Наталкинского месторождения, в пределах которого не устанавливается явных признаков контактового метаморфизма. Результаты измерений вместе с данными о содержании золота и кобальта приведены в таблице 3 и на рис. 4. На рисунке отражен самый выразительный интервал изменения магнитных свойств горных пород. Некоторое несоответствие между описанием проб для петромагнитного анализа и содержанием золота в таблице связано с тем, что в таблице использованы данные разведочного опробования, которое проводилось бороздами длиной 1 м, а петрофизические измерения проводились из небольших штуфных проб. Сами рудные тела никак не отражаются в величинах петромагнитных параметров, в то же время для их экзоконтактовых частей фиксируются резкие возрастания магнитных свойств пород. График поведения остаточной намагниченности и магнитной восприимчивости наглядно демонстрирует, что наибольшие значения этих параметров характерны для интервала содержаний золота от 0.3 до 1.0 г/т. Другими словами, положительные аномалии фиксируются в ближайших околорудных областях (рис. 5).

Фиксация кобальтовых минералов петромагнитными методами происходит в процессе измерения намагниченности насыщения при нагревании. Для ряда образцов было установлено, что после прогрева до 800°С они продолжали сохранять часть намагниченности насыщения. Такое поведение свидетельствует о том, что в этих образцах присутствует минерал с точкой Кюри (T_c) выше 800°С. Одним из немногих элементов с $T_c>800°$ С является кобальт ($T_c=1140°$ С), поэтому логично предположить, что именно сульфоарсениды кобальта ответственны за аномальное поведение образцов при нагревании.

Содержания кобальта в рудах и околорудных ореолах золото-кварцевых месторождений не имеют четкой зависимости от интенсивности минерализации (табл. 3). По-видимому, его вхождение в структуру сульфоарсенидов играет решающую роль для реализации в аномальных значениях петрофизических свойств пород. На месторождениях Омчакского рудного узла выборочно проанализированы кобальтсодержащие сульфоарсениды (табл. 4). Кроме преимущественно кобальтовых фаз для этой группы месторождений также характерны кобальтсодержащий арсенопирит (данаит) и кобальтистый герсдорфит. Причем отмечаются широкие вариации составов кобальт-никелевых минералов, как в пределах одного рудного тела, так и в пределах одного образца.

Для золото-редкометалльных месторождений повышенное содержание кобальта также отмечается в арсенопирите и леллингите, причем участки, обогащенные этим элементом, обычно локализуются в виде микровключений в пределах одного кристалла. Характерны широкие вариации в содержании кобальта в сульфоарсенидах в пределах одного и того же рудного тела. В качестве примера приводится со-

Рис. 2. Схема расположения точек опробования пирротиновой минерализации в Пионерском рудном узле. Номера проб соответствуют таблице 1.

№ обр.	Структурная модификация	Fe, ат.%	N _{Fe}	Характеристика	Расстояние до контакта с
11.1.42	Моноклинная	46,09	0,922	Пирротин в кварцевом прожилке в роговиках. Отвал штольни по рудному телу 2-3. Месторождение Итуменовское	Нет данных
11.1.39	Моноклинная + Гексагональная	46,25	0,925	Псевдоморфозы пирротина по пириту в роговиках. Отвал штольни по рудному телу 2-3. Месторождение Игуменовское.	Нет данных
11.9.1	Моноклинная	46,25	0,925	Пирротин в кварцевом прожилке в гранитоидах. Отвал штольни по рудному телу 4. Месторождение Игуменовское.	Нет данных
11.9.5	Моноклинная	46,25	0,925	Пирротин в кварцевом прожилке в гранитоидах. Отвал штольни по рудному телу 4. Месторождение Игуменовское.	Нет данных
11.7.12	Моноклинная	46,28	0,926	Сульфидно-кварцевая жила брекчиевого строения в роговиках. Отвал штольни по рудному телу 1. Месторождение Игуменовское.	Нет данных
11.9.49	Моноклинная	46,38	0,928	Кварцевая жила с пирротином, молибденитом, пиритом и халькопиритом в гранитоидах. Отвал штольни по рудному телу 4. Месторождение Игуменовское.	Нет данных
13.16.9	Моноклинная + Гексагональная	46,41	0,928	Окварцованная осадочная порода с вкрапленностью пирротина, арсенопирита, леллингита, золота и халькопирита. Месторождение Клин-Тенистое.	1100 м
11.7.1	Моноклинная	46,52	0,930	Кварцевая жила с пирротином, золотом, арсенопиритом, леллингитом, халькопиритом. Отвал штольни по рудному телу 1. Месторождение Игуменовское.	Нет данных
13.16.10	Моноклинная + Гексагональная	46,52	0,930	Ороговикованная кварцевая жила с пирротином. Месторождение Клин-Тенистое.	1100 м
13.16.14	Моноклинная + Гексагональная	46,52	0,930	Пирротин в эндоконтакте ороговикованной кварцевой жилы. Месторождение Клин-Тенистое.	1100 м
13.16.4	Гексагональная+ Моноклинная	46,69	0,934	Ороговикованная кварцевая жила с вкрапленностью пирротина. Месторожление Клин-Тенистое	1100 м
106/Ш-84	Моноклинная	46,81	0,936	Роговик с вкрапленностью пирротина. Руч.Клин.	1500 м
105/Ш-84	Моноклинная	46,82	0,936	Ороговикованная кварцевая жила с пирротином, пиритом, халькопиритом, арсенопиритом. Руч.Клин.	1200 м
158/B-84	Моноклинная	46,82	0,936	Птигматитовая кварцевая жила с пирротином, пиритом, халькопиритом, сфалеритом в неороговикованных породах. Руч.Боровой.	более 3000 м
153/B-84	Моноклинная	46,85	0,937	Ороговикованная кварцевая жила с пирротином, пиритом, арсенопиритом, халькопиритом, сфалеритом, галенитом. Руч.Боровой.	1500 м
154/B-84	Моноклинная + Гексагональная	46,89	0,938	Псевдоморфозы пирротина по пириту в роговиках. Руч.Боровой.	1500 м
19/Ш-84	Моноклинная + Гексагональная	46,92	0,938	Ороговикованная кварцевая жила с пирротином. Руч.Клин.	1000 м
13.16.8	Гексагональная	47,13	0,943	Псевдоморфозы пирротина по пириту в роговиках. Месторождение Клин-Тенистое.	1100 м
13.20.2	Гексагональная	47,43	0,949	Пирротин в роговиках. Месторождение Клин-Тенистое.	нет данных
6/B-84	Гексагональная	47,55	0,951	Псевдоморфозы пирротина по пириту в роговиках. Левобережье руч.Игуменовский.	100 м
5/B-84	Гексагональная	47,55	0,951	Псевдоморфозы пирротина по пириту в роговиках. Левобережье руч.Игуменовский.	700 м
8/B-84	Гексагональная	47,61	0,952	Псевдоморфозы пирротина по пириту в роговиках. Левобережье руч.Игуменовский.	100 м
56/4-B-84	Гексагональная	47,62	0,952	Пирротин в актинолитизированных роговиках. Отвал штольни по рудному телу 1. Месторождение Игуменовское.	Нет данных

Таблица 1. Структурная модификация и состав пирротинов из гранитоидов и зон ороговикования в Пионерском рудном узле (данные отсортированы по содержанию железа).

№ обр.	Структурная модификация	Fe, ат.%	N _{Fe}	Характеристика	Расстояние до контакта с гранитоидами
117/B-84	Гексагональная	47,62	0,952	Псевдоморфозы пирротина по пириту в роговиках. Верховья руч.Клин.	900 м
72/B-84	Гексагональная	47,62	0,952	Выделения пирротина неправильной формы в роговиках. Месторождение Танкист.	около 100 м
151/B-84	Гексагональная	47,62	0,952	Псевдоморфозы пирротина по пириту в роговиках. Руч. Клин.	1000 м
22/B-84	Гексагональная	47,68	0,954	Выделения пирротина неправильной формы в роговиках. Левобережье руч.Клин.	100 м
219/B-84	Гексагональная	47,68	0,954	Вкрапленность пирротина в ороговикованных обломках в кварцевой жиле. Руч.Обратный.	300 м
14/B-84	Гексагональная	47,68	0,954	Псевдоморфозы пирротина по пириту в роговиках. Руч. Клин.	600 м
36/B-84	Гексагональная	47,75	0,955	Псевдоморфозы пирротина по пириту в роговиках. Водораздел руч. Клин-Тенистый.	250 м
130/B-84	Гексагональная	47,75	0,955	Псевдоморфозы пирротина по пириту в роговиках. Верховья руч.Звенящий.	100 м
119/B-84	Гексагональная	47,79	0,956	Псевдоморфозы пирротина по пириту в роговиках. Верховья руч.Клин.	около 10 м

Продолжение таблицы 1.

Примечание. Анализ выполнен на установке ДРОН-2,0, $\lambda Fe_{K\alpha}$, $\upsilon = 0,5^{\circ}/мин.$, аналитик Т.И. Махоркина, СВКНИИ.

Рис. 3. Диапазоны изменения магнитной восприимчивости (æ) и остаточной намагниченности (I_n) в метаморфизованных терригенных породах (турбидитах) с пиритом и пирротином в Штурмовском рудном узле.

Рис. 4. Графики изменения петромагнитных характеристик, а также содержаний золота и кобальта по сечению "вмещающие терригенные породы – околорудные метасоматиты – руды" в рассечках 33 и 34 горизонта 600 м Наталкинского месторождения. Расстояние в метрах соответствует второму столбцу таблицы 3.

Таблица 2. Петромагнитные характеристики юрских терригенных пород Штурмовского рудного узла в зависимости от типа метаморфизма и сульфидной минерализации.

№ обр.	I _n (10 ⁻⁶ СГСМ)	æ (10 ⁻⁶ СГСМ)	Преобладаю- щий сульфид	Тип метаморфизма
173A	12,9	43,8	Пирротин	Контактовый
173B	9,4	42,6	Пирротин	Контактовый
174A	51,3	63,9	Пирротин	Контактовый
174B	49,3	54,9	Пирротин	Контактовый
178A	251,4	148,6	Пирротин	Контактовый
178B	295,4	145,8	Пирротин	Контактовый
179A	7995,2	117,5	Пирротин	Контактовый
179B	1592,2	66,9	Пирротин	Контактовый
183A	26,9	34,4	Пирротин	Контактовый
183B	37,9	41,5	Пирротин	Контактовый
184A	168,6	174,4	Пирротин	Контактовый
184B	224,7	264,3	Пирротин	Контактовый
185A	116,4	32,4	Пирротин	Контактовый
185B	102,5	31	Пирротин	Контактовый
191A	63,6	101,9	Пирротин	Контактовый
191B	87,3	101,2	Пирротин	Контактовый
196A	1,4	31,6	Пирит	Зеленосланцевый
196B	1,3	33,8	Пирит	Зеленосланцевый
199A	49,9	44,7	Пирит	Зеленосланцевый
199B	17,6	102	Пирит	Зеленосланцевый
152A	0,8	25,8	Пирит	Зеленосланцевый
152B	0,5	24,2	Пирит	Зеленосланцевый
153A	8,7	23,5	Пирит	Зеленосланцевый
153B	3,5	25	Пирит	Зеленосланцевый
154A	39,3	26,9	Пирит	Зеленосланцевый
154B	40,7	21,6	Пирит	Зеленосланцевый
159A	2,1	38,2	Пирит	Зеленосланцевый
159B	1,1	35,6	Пирит	Зеленосланцевый
160A	1,8	12,2	Пирит	Зеленосланцевый
160B	1,5	10,5	Пирит	Зеленосланцевый
151A	0,4	25,6	Пирит	Зеленосланцевый
151B	0,2	24,2	Пирит	Зеленосланцевый
155A	4,1	16	Пирит	Зеленосланцевый
155B	3,6	16,5	Пирит	Зеленосланцевый
161A	0,7	25,5	Пирит	Зеленосланцевый
161B	0,6	25,6	Пирит	Зеленосланцевый
164A	0,2	14,4	Пирит	Зеленосланцевый
164B	15,2	16,4	Пирит	Зеленосланцевый
165A	5,6	25,4	Пирит	Зеленосланцевый
165B	6,7	25,3	Пирит	Зеленосланцевый
166A	2,8	14,6	Пирит	Зеленосланцевый
166B	6,5	14,2	Пирит	Зеленосланцевый
167A	1,1	22,7	Пирит	Зеленосланцевый
167B	1,3	22,1	Пирит	Зеленосланцевый

Примечание. Измерения выполнены Шарафутдиновой Л.В. на аппаратуре JR-4, КLY-2 в СВКНИИ ДВО РАН. став кобальтсодержащих арсенопирита и леллингита из жилы № 6 месторождения Школьное (табл. 5).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Рассмотрим два типа аномалий, связанных с сульфидной минерализацией и соответствующих региональным и локальным процессам формирования золотого оруденения.

Образование региональных аномалий обусловлено метаморфическими реакциями преобразования пирита в пирротин. Сам по себе процесс пирит-пирротинового перехода в природных условиях не прост. Реакция фазового перехода сопровождается высвобождением серы, которая связывается в виде новообразованных сульфидов, преимущественно также в пирротине. Это явление впервые было зафиксировано в регионе П.И. Скорняковым [14]. Существование многочисленных модификаций пирротина приводит к различному вкладу каждой из них в аномальное магнитное поле. Фазовые взаимоотношения и кинетика химических превращений в системе Fe-S таковы, что состав и свойства пирротинов в породах в современных обстановках не отражают в полной мере условия их образования [10]. Несмотря на теоретически различные петромагнитные характеристики зон с различными структурными модификациями пирротина, задача прогноза оруденения сводится к реконструкции поверхности пирит-пирротинового перехода в терригенных породах и выявлению блоков вмещающих пород над ней. Использование данных аэромагнитной съемки для этой цели проблематично из-за того, что они отражают совокупную характеристику пород на глубине, а не только в поверхностном слое. Поэтому наиболее оптимальный путь решения этой задачи - измерение петромагнитных свойств не окисленных в поверхностных условиях образцов горных пород с последующим моделированием поверхности пирит-пирротинового перехода на глубину.

Методологические подходы к решению задач регионального прогноза золотого оруденения в зонах пирит-пирротинового перехода с помощью петромагнитных характеристик пород рассмотрены на примере других регионов с похожим составом рудовмещающих толщ [1, 7]. Применение данной методологии позволяет лишь ограничить блоки, потенциально благоприятные для золото-кварцевого оруденения, без детализации конкретного местоположения рудных тел.

Образование локальных аномалий связано с изменением петромагнитных характеристик пород при формировании собственно рудных тел. При интерпретации явления резкого возрастания значений петромагнитных параметров в околорудных ореолах необходимо помнить, что в процессе гидротермаль-

№ пробы	Расстояние от про-бы 1	In (10 ⁻⁶ CFCM)	æ(10 ⁻⁶ CΓCM)	І _ѕ нач. (усл. ед.)	І _s кон. (усл. ед.)	Is кон./ Is нач. (%)	Isa6c.(10 ⁻⁴ CTCM)	I _s 800°C/ Lafe (%)	Au (r/r)	Co (r/T)	Характеристика проб
1-1-1	0	43,2	25,3	2400	1370	57	532	0	0,3	10,0	Слоистые алевролиты с послойным линзовидным пиритом.
1-1-2	4	0,8	23,1	2400	1500	63	304	20	4,9	16,0	Слоистые алевролиты с послойным линзовидным пиритом и
		- 9 -	-)					-	,-	-) -	редкими арсенопирит-кварцевыми прожилками.
1-1-3	9	0,2	20,2	70	100	143	7	56	20,3	13,0	слои песчаников с сетчатым окварцевания среди слоистых алевропитов. Мошность 0.5 м
	12			2.10				-	• •		Окварцованные слоистые алевролиты с послойным
1-1-4	13	6,5	21,9	340	145	42	34	5	2,3	6,1	линзовидным пиритом. Сетчатые кварцевые прожилки.
1-1-5	19	15,2	26,5	600	400	67	78	44	0,4	23,0	Углеродисто-глинистые тектониты.
								0			Диамиктиты с мелкими линзами сульфидов (пирит и
1-1-6	27	26,1	33,6	/00	300	43	91	0	1,8	5,4	пирротин) и редкими волосовидными карбонат-кварцевыми
											прожилками. Лиамиктиты с сульфилами (пирит, пирротин) в виде
	2.4	10.0	01.0	2700	1200		2.42	10	15.0	6.0	дисперсной вкрапленности в цементе и более крупных
1-1-7	34	12,2	21,2	2700	1200	44	342	13	15,8	6,8	линзовидных выделений, приуроченных к крупным
											обломкам.
1 1 0	10	<i>.</i> -		2100	1.5.5.0	50	410	-			Диамиктиты с мелкими линзами сульфидов (пирит и
1-1-8	43	6,5	26,4	3100	1550	50	410	5	1,1	7,2	пирротин) и редкими волосовидными карбонат-кварцевыми
											прожилками. Лиамиктиты с мелкими линзами сульфилов (пирит и
1 1 0	- 1	01.0		4.400	2.520	0.0	500	-	0.6		пирротин) и редкими пирит-карбонат-кварцевыми
1-1-9	51	81,0	55,3	4400	3520	80	580	5	0,6	6,7	прожилками. Около прожилков - мелкая рассеянная
											вкрапленность арсенопирита.
	- 0					•	1.2.0	0			Окварцованные алевролиты с послойным линзовидным
1-1-10	59	12,1	36,7	1000	300	30	130	0	0,3	8,5	пиритом (±пирротин) и арсенопирит-карбонат-кварцевыми
1-1-11	61	0.3	18.2	1800	600	33	234	0	14.4	77	прожилками. Брекчиевилная кваршевая жила с арсенопиритом и пиритом
	01	0,5	10,2	1000	000	55	231	0	11,1	','	Окварцованные алевролиты с послойным линзовидным
1-1-12	65	23,7	17,2	1100	800	72	143	22	1,0	9,5	пиритом (±пирротин) и арсенопирит-карбонат-кварцевыми прожилками. Около прожилков – мелкий рассеянный арсенопирит.
											Окварцованные алевролиты с послойным линзовидными
1-1-13	67	196	323	3300	1800	55	418	0	0.5	10.0	пиритом и пирротином, рассечены сетчатыми арсенопирит-
1 1 10	01	19,0	J _ ,J	2200	1000	00		Ū	0,0	10,0	карбонат-кварцевыми прожилками. Около прожилков -
											мелкии рассеянный арсенопирит.
1-1-14	71	47,6	40,7	5840	4970	85	740	5	0,8	5,9	(пирит и пирротин)
											Окварцованные алевролиты с послойным линзовидными
1-1-15	77	9,7	26,3	2700	2100	78	342	12	1,8	6,6	пиритом и пирротином, рассечены редкими арсенопирит-
											карбонат-кварцевыми прожилками.
1 1 17	0.0	15.0	20.7	70	1.50	214	7	0	0.2	<i>с</i> л	Диамиктиты с послойными линзами сульфидов (пирит и
1-1-17	88	15,2	20,7	/0	150	214	7	0	0,2	6,4	пирротин) и редкими волосовидными карбонат-кварцевыми
											прожилками. Окварнованные адевродиты с послойным линзовилным
1-1-16	94	0,3	18,2	50	130	260	5	0	1,5	14,0	пиритом и арсенопирит-карбонат-кварцевыми прожилками.
1-1-18	98	0,1	14,6	50	210	420	5	0	0,3	26,0	Углеродисто-глинистые тектониты с пиритом.
											Диамиктиты с послойными линзами сульфидов (пирит и
1-1-19	110	10,4	34,6	3000	2100	70	380	0	0,3	7,9	пирротин) и редкими волосовидными сульфидно-карбонат-
											кварцевыми прожилками.
1-1-20	119	136,0	53,2	18000	10000	56	2286	0	0,2	9,6	диамиктиты с послоиными линзами пирротина и пиритом в
							·		. -		Сильно сульфилизированные лиамиктиты с послойными
1-1-21	129	424,5	97,3	24000	10000	42	3048	0	0,5	13,0	линзами пирротина и пирита.

Таблица 3. Петромагнитные параметры и данные о содержании золота и кобальта в пробах из сечения в крест рудных зон на горизонте 600 м Наталкинского месторождения.

Примечание: Измерения магнитной восприимчивости и остаточной намагниченности выполнены Шарафутдиновой Л.В. на приборах KLY-2 и JR-4; термомагнитные параметры проанализированы Габаловым О.С. на CBM-5. Содержание золота приводится по данным разведочного опробования рудника им.Матросова; анализ кобальта выполнен количественным спектральным анализом ЭКСА. Все анализы произведены в СВКНИИ ДВО РАН.

Рис. 5. График изменения магнитной восприимчивости и остаточной намагниченности в пробах Наталкинского месторождения в зависимости от содержания золота. Содержания золота по оси X отсортированы от низких значений к высоким.

Табл. 4.	Содержание	кобальта	И	никеля	в	сульфоарсенидах
Омчакско	ого рудного уз.	ла.				

№ образца	Co	Ni	Fe	As	S	Сумма	Структурная формула
2695/B-86	28,8	3,1	4,6	42,2	20,0	98,6	$Co_{0,81}Ni_{0,09}Fe_{0,14}As_{0,93}S_{1,03}$
2695/B-86	27,8	3,0	5,0	42,0	20,3	98,0	Co _{0,78} Ni _{0,09} Fe _{0,15} As _{0,93} S _{1,05}
2695/B-86	28,6	3,0	4,5	42,5	19,7	98,3	$Co_{0,81}Ni_{0,09}Fe_{0,13}As_{0,95}S_{1,03}$
701/Ш-86	23,5	6,3	5,8	41,5	21,2	98,3	Co _{0,66} Ni _{0,18} Fe _{0,17} As _{0,91} S _{1,09}
1-1-7	30,6	1,5	3,9	49,9	19,6	99,5	$Co_{0.82}Ni_{0.04}Fe_{0.11}As_{1.06}S_{0.97}$
1-1-7	1,9	28,4	5,3	43,4	19,8	98,8	Co _{0,05} Ni _{0,80} Fe _{0,16} As _{0,96} S _{1,02}
1-1-7	9,2	15,0	10,0	43,8	20,7	98,7	Co _{0,26} Ni _{0,42} Fe _{0,29} As _{0,95} S _{1,05}
1-1-7	13,6	11,5	10,2	42,1	22,2	99,6	$Co_{0,37}Ni_{0,31}Fe_{0,29}As_{0,9}S_{1,12}$
1-1-7	18,0	9,4	8,0	44,0	20,0	99,4	$Co_{0.5}Ni_{0.26}Fe_{0.24}As_{0.97}S_{1.03}$
1-1-21	29,6	1,8	4,2	43,8	20,3	99,7	Co _{0,82} Ni _{0,05} Fe _{0,12} As _{0,96} S _{1,04}
1-1-21	32,6	1,4	3,8	42,3	19,8	99,9	Co _{0,91} Ni _{0,04} Fe _{0,11} As _{0,93} S _{1,01}
1-1-21	5,4	-	28,7	46,7	18,3	99,1	Co _{0.15} Fe _{0.86} As _{1.04} S _{0.95}
1-1-21	4,1	-	30,4	46,6	18,9	100,0	$Co_{0.11}Fe_{0.89}As_{1.01}S_{0.98}$
1-1-21	3,9	-	30,0	46,5	19,3	99,7	$Co_{0,11}Fe_{0,88}As_{1,02}S_{0,99}$

Анализ выполнен на микрозонде "Camebax". Условия съемки:напряжение 20 kV, ток пучка 10 нА, время интегрирования сигнала 5 с., аналитические линии Ка, (мышьяк–Lа). Аналитики Г.А. Меркулов и М.И. Парфенов, СВКНИИ ДВО РАН.

№ образца	Co	Ni	Fe	As	S	Сумма	Структурная формула
2498/B-86	1,1	-	31,8	49,5	17,3	99,7	$Co_{0.03}Fe_{0.95}As_{1.11}S_{0.90}$
2500/B-86	1,8	0,1	31,1	49,9	17,6	100,5	$Co_{0,05}Fe_{0,93}As_{1,11}S_{0,90}$
2502/B-86	4,0	0,7	28,3	47,4	17,5	97,9	Co _{0,11} Ni _{0,02} Fe _{0,86} As _{1,07} S _{0,92}
2502/B-86	2,0	0,3	31,0	50,2	17,3	100,5	Co _{0,06} Fe _{0,92} As _{1,11} S _{0,89}
2506/B-86	1,6	-	31,2	49,1	18,2	100,1	Co _{0,04} Fe _{0,93} As _{1,09} S _{0,94}
2517/B-86	7,0	0,5	25,6	48,3	17,7	99,2	Co _{0,20} Ni _{0,03} Fe _{0,77} As _{1,08} S _{0,92}
2539/B-86	0,8	-	32,9	46,9	18,7	99,3	$Co_{0.02}Fe_{0.97}As_{1.04}S_{0.96}$
2498/B-86	2,4	-	25,7	70,7	1,5	100,3	Co _{0,08} Fe _{0,92} As _{1,90} S _{0,09}
2517/B-86	12,1	1,0	14,4	71,7	0,8	100,1	$Co_{0,42}Ni_{0,03}Fe_{0,53}As_{1,96}S_{0,05}$
2539/B-86	3,9	0,5	23,2	70,7	1,2	99,4	Co _{0,13} Fe _{0,85} As _{1,94} S _{0,08}

Табл. 5. Содержание кобальта и никеля в арсенопирите и леллингите жилы №6 месторождения Школьное.

рудообразования ного изменение магнитных свойств вмещающих пород происходит как за счет температурных преобразований, так и за счет реакций типа «флюид-порода». Примером только палеотемпературного воздействия может служить система «интрузив-вмещающая порода» [17]. На контакте этих двух сред значения остаточной намагниченности и магнитной восприимчивости низкие, затем, по мере удаления от контакта, они растут и достигают максимума на расстоянии 1,5-2,5×h (где h мощность интрузивного тела), а на дистанции 3-4×h величины петромагнитных параметров становятся почти равными фоновым значениям вмещающих пород. Аналогичный характер распределения петромагнитных свойств установлен в экзоконтакте рудных жил на Иультинском месторождении [6] и при лабораторных экспериментах [16]. Объяснение такого поведения петромагнитных параметров основано на явлении термоостаточной намагниченности пород при температурах 200-300°С и новообразовании ферромагнитных минералов, в частности пирротина, за счет пирита [17]. Различия в составе и структурных модификациях пирротинов напрямую обусловливают изменение петромагнитных параметров пород: вблизи контактов наиболее характерен гексагональный немагнитный, а на удалении - моноклинный магнитный пирротин (табл. 1).

Формально достаточно только палеотемпературного воздействия, чтобы получить наблюдаемые закономерности изменения петромагнитных характеристик пород около рудных тел. Тем не менее, интерпретация единственно с точки зрения влияния палеотемпературных факторов для случаев с гидротермальными жилами не годится из-за противоречия с минералогическими данными. Для околорудных метасоматитов и самих жил типичен пирит, а не пирротин, что связано скорее всего с влиянием окислительно-восстановительных условий, в частности истощением буфера $C_{opr.}$ -CO₂ при фильтрации растворов через вмещающие породы и преобладанием углекислоты во флюиде. Поэтому одной из причин уменьшеАнализ выполнен на микрозонде "Camebax". Условия съемки:напряжение 25 kV, ток пучка 10 нА, время интегрирования сигнала 5 с., аналитические линии для всех элементов Ка. Аналитик Г.А.Меркулов, СВКНИИ ДВО РАН.

ния остаточной намагниченности и магнитной восприимчивости в рудных телах можно считать окисление пирротина до пирита во вмещающих породах под влиянием рудного флюида [21].

Таким образом, причиной изменения магнитных свойств в процессе гидротермального рудообразования является суперпозиция палеотемпературных и геохимических полей. В экзоконтактовой зоне главным фактором выступают тепловые поля, а в зоне интенсивной фильтрации растворов - химические процессы при флюидно-породном взаимодействии. При такой интерпретации получают логичное объяснение М-образный характер петромагнитных аномалий для жильных рудных зон (интервал 45-80 м, рис. 4) и понижение петромагнитных параметров в зонах рудных прожилков (интервалы 41-43 м; 63-66 м, 76-77 м и 94-95 м, рис. 4) - на этих участках в связи с малым объемом теплоносителя влияние тепловых полей сводится к минимуму и преобладающим фактором выступает эндогенное окисление пирротина до пирита.

Возможное объяснение локализации кобальтовых сульфоарсенидов в виде микровключений в пирите во внешних зонах ореолов арсенопиритизации сводится к следующему. Формирование арсенопирита в околорудных метасоматитах происходит за счет компонентов пирита при привносе мышьяка [4]. При продвижении фронта мышьяксодержащих растворов, в его внешних зонах при низких значениях отношения флюид/порода, первыми вступают в реакцию кобальт и никель и кристаллизуются именно сульфоарсениды этих металлов. И только лишь после поступления избыточного количества мышьяксодержащих растворов (за счет железа вмещающих пород) формируется арсенопирит.

Теоретически намагниченность насыщения после прогрева до 800°С (I_{800°}C/I₈абс., %) должна коррелироваться с содержанием кобальта. В действительности наблюдается слабая положительная корреляция, что может объясняться формами локализа-

ции кобальта в породах. При невысоких содержаниях кобальта в целом, ясно, что доля рассеянной его формы (не входящей в структуру минералов) будет достаточно велика. Другими словами, не весь кобальт, определенный спектральным анализом, входит в состав сульфоарсенидов, следовательно возможны различные формы поведения намагниченности насыщения после прогрева до 800°С, напрямую не связанные с содержанием кобальта. Тем не менее, термомагнитный параметр $I_{s^{800^\circ C}/I_s a b c}$. может служить индикатором наличия кобальта, входящего в структуру минералов, и опосредованно, учитывая положение сульфоарсенидов кобальта в рудных телах, являться поисковым признаком для оруденения.

Совместный анализ результатов петро- и термомагнитных исследований [17] позволяет оценить величину палеотемпературного воздействия на вмещающие породы в следующих интервалах (табл. 3, рис. 4): 0-47 м - от 100 до 200°С, 47-82 м - от 200 до 350°С, 82-104 м - меньше 100°С, 104-129 м - от 100 до 200°С. Понятно, что выделение интервалов носит условный характер, так как расстояние между отдельными точками опробования достигало 11 м (см. табл. 3) и многие гидротермально минерализованные участки были просто пропущены.

ЗАКЛЮЧЕНИЕ

Сульфидная составляющая пород и руд имеет решающее значение при формировании магнитных аномалий в Яно-Колымском золотоносном поясе. В то же время, образование и преобразование сульфидов тесно взаимосвязаны с собственно золоторудными процессами. Это, а также существование огромного количества разномасштабных магнитометрических данных на рассматриваемую территорию создают реальную перспективу использования аномальных магнитных свойств горных пород для прогнозирования месторождений золота в терригенных толщах.

Для регионального прогноза большое значение имеет пространственная локализация поверхности пирит-пирротинового перехода в терригенных породах. Теоретически петромагнитный метод должен быть одним из наиболее продуктивных для реконструкции этой поверхности в силу большой разницы в магнитных свойствах между пиритом и пирротином. На практике осложняющим фактором выступает слабая устойчивость сульфидов и особенно пирротина в поверхностных условиях, что приводит к потере первичных свойств горных пород. Поэтому отбор образцов для петромагнитных исследований необходимо проводить в пределах искусственных обнажений, горных выработок или по керну скважин и сопровождать их минералогическим изучением. Непосредственное использование данных аэромагнитных и наземных съемок для определения петромагнитных параметров имеет значительную долю неопределенности из-за того, что отражает суммарные магнитные свойства некоторого объема пород, а не поверхностного слоя. Комплексирование уже существующих данных с дополнительными измерениями и данными геологического картирования позволяет с высокой степенью достоверности выделять площади пород, находящиеся над поверхностью пирит-пирротинового перехода.

Локальное прогнозирование с помощью петромагнитных критериев до сих пор практически не использовалось, что обусловлено отсутствием явных минералов-реперов оруденения, обладающих аномальными магнитными свойствами. Проведенные исследования показали неоднородность магнитных свойств горных пород в пределах интервалов «вмещающие породы - околорудные метасоматиты руды». Максимальные значения практически всех петромагнитных характеристик свойственны ближайшим околорудным областям. Хотя подобное поведение наблюдается и в сечениях «вмещающие породы - роговики - интрузивные образования», механизмы генезиса аномалий разные. Если при внедрении интрузий изменение магнитных свойств пород происходит главным образом за счет температурного воздействия, то в случаях с гидротермальной минерализацией действует механизм суперпозиции палеотемпературных и геохимических полей. Носителями аномальных магнитных свойств могут выступать сульфоарсениды кобальта, которые служат репером околорудных зон в золото-кварцевых месторождениях и самих рудных тел - в золото-редкометалльных. Сдерживающим фактором использования этих минералов для прогнозирования оруденения служит высокая трудоемкость лабораторных исследований.

Несмотря на указанные ограничения, петромагнитные критерии относятся к числу наиболее действенных для прогноза золотого оруденения, и их совершенствование возможно на базе новых методик обработки и интерпретации первичных данных.

ЛИТЕРАТУРА

- 1. Алексеева А.К. К оценке золотоносносности разрезов черносланцевых формаций // Разведка и охрана недр. 1993. № 5. С. 13-16.
- Ворошин С.В., Еремин Р.А., Тюкова Е.Э., Шахтыров В.Г. Новые материалы по структуре и минералогии Омчакского узла // Геохимия и минералогия рудных месторождений Северо-Востока СССР. Магадан: СВКНИИ ДВО АН СССР, 1989. С. 67-86.
- Ворошин С.В., Акинин В.В., Махоркина Т.И. Преобразование пирита в пирротин при метаморфизме терригенных пород верхоянского комплекса (Северо-Восток России): приложение к генезису золоторудных место-

рождений // Докл. РАН. 1993. Т. 330, № 6. С. 733-735.

- Ворошин С.В., Еремин Н.И. Сульфидные минеральные ассоциации золоторудных месторождений Верхне-Колымского региона (Северо-Восток России) // Вестн. Моск. ун-та. Сер. 4. Геология. 1995. № 2. С. 60-74.
- Измайлов Л.И. Пирротиновая минерализация металлоносных зон бассейна р.Колымы. Новосибирск: Наука, 1976. 118 с.
- Измайлов Л.И., Шарафутдинов В.М., Габалов О.С. Петромагнитная зональность вмещающих пород Иультинского штока // Сейсмологические и петрофизические исследования на Северо-Востоке России. Магадан: СВКНИИ ДВО РАН, 1992. С. 157-176.
- Кременецкий А.А., Лапидус А.В., Скрябин В.Ю. Геолого-геохимические методы глубинного прогноза полезных ископаемых (по данным сверхглубокого бурения). М.: Наука, 1990. 223 с.
- Магниторазведка: Справочник геофизика / Никитский В.Е., Глебовский Ю.С., Васюточкин Н.Г. и др. М.: Недра, 1980. 367 с.
- 9. Недра Магаданской области 1995. Магадан: СВКНИИ ДВО РАН, 1996. 100 с.
- 10.Новиков Г.В., Егоров В.К., Соколов Ю.А. Пирротины: (Кристаллическая и магнитная структура, фазовые превращения). М.: Наука, 1988. 184 с.
- Петрова Г.Н. Лабораторные методы при палеомагнитных исследованиях // Геомагнитные исследования. № 19. М.: Сов. радио, 1977. С. 40-49.
- 12.Печерский Д.М. Петромагнетизм и палеомагнетизм. М.: Наука, 1985. 134 с.

Поступила в редакцию 31 января 2000 г.

- 13. Рожков И.С., Гринберг Г.А., Гамянин Г.Н. и др. Позднемезозойский магматизм и золотое оруденение Верхне-Индигирского района. М.: Наука, 1971. 238 с.
- 14.Скорняков П.И. Псевдоморфозы пирита по пирротину // Колыма. 1947. № 2. С. 26-29.
- 15.Тюкова Е.Э. Минералого-геохимические особенности месторождений Пионерского рудного узла (Северо-Восток СССР). Магадан: СВКНИИ ДВО АН СССР, 1989. Ч. 1. 60 с. Ч. 2. 38 с.
- 16.Шарафутдинов В.М. Отражение палеотемпературных полей интрузивного массива в петромагнитных параметрах экзоконтактовой зоны // Сейсмологические и петрофизические исследования на Северо-Востоке России. Магадан: СВКНИИ ДВО РАН, 1992. С.177-207.
- 17.Шарафутдинов В.М. Реконструкция палеотемпературных полей, их отражение в петромагнитных параметрах и связь с пирротиновой минерализацией // Наука на Северо-Востоке России. Магадан: СВНЦ ДВО РАН, 1999. С. 100-119.
- 18.Шило Н.А., Сидоров А.А., Найбородин В.И., Гончаров В.И. Золоторудные формации Северо-Востока СССР // Докл. АН СССР. 1969. Т. 188, № 4. С. 901-904.
- 19.Шолпо Л.Е. Использование магнетизма горных пород для решения геологических задач. Л.:Недра, 1977. 184 с.
- 20.Eremin R.A., Voroshin S.V., Sidorov V.A., Shakhtyrov V.G., Pristavko V.A., Gashtold V.V. Geology and genesis of the Natalka gold deposit, Northeast Russia // International Geology Review. 1994. V. 36. P 1113-1138.
- 21.Hall A.J. Pyrite-pyrhotine redox reactions in nature // Miner. Mag. 1986. V. 50. P. 223-229.

Рекомендована к печати В.Г. Моисеенко

Anomalies of petromagnetic parameters conditioned by sulfide mineralization established by mineralization forecasting in the Yana-Kolyma gold-bearing belt

S.V.Voroshin, V.M. Sharafutdinov, Ye.E. Tyukova

The authors of this article discuss an opportunity for the use of petromagnetic methods for searching and exploration of lode deposits in the Yana-Kolyma gold belt. Two groups of magnetic anomalies are examined allowing regional and local geologic predictions. The regional prediction is based on establishing Au quartz occurrence above the pyrite-to-pyrrhotite alteration in terrigenous rocks, the result of which is a sharp change in magnetic properties of rocks. The local prediction is based on a drastic growth of petromagnetic characters in wallrock aureoles. An exclusive interpretation of this phenomenon from the viewpoint of palaeotemperature factors affecting petromagnetic parameters contradicts mineralogical data; therefore, the authors use the principle of superposition of palaeotemperature and geochemical fields to explain the formation mechanism of wallrock magnetic anomalies. Cobalt sulphoarsenides may have anomalous magnetic properties and mark wallrock areas in Au quartz deposits and ore bodies in gold-rare metal deposits.