= ГЕОХИМИЯ =

УДК 552.13+552.16

ГЛИНОЗЕМ-ФТОРИСТЫЙ СФЕН (ТИТАНИТ) КАК ПОКАЗАТЕЛЬ ФТОРИСТОСТИ ФЛЮИДА

© 2012 г. О. И. Шарова, К. В. Чудненко, О. В. Авченко, З. Г. Бадрединов, А. С. Вах

Представлено академиком В.В. Ревердатто 27.04.2011 г.

Поступило 11.05.2011 г.

Сфен (титанит) – минерал с теоретической формулой (Ca, REE)(Ti, Al, Fe)SiO₄(O, OH, F) встречается в разнообразных геологических обстановках в магматических, метаморфических и метасоматических горных породах в широком спектре геохимических и РТ-условий. Структура сфена допускает различные катионные и анионные изоморфные замещения. Так, в позицию Са могут входить катионы Na⁺, Mn²⁺, Sr²⁺, Ba²⁺, REE³⁺, позиция Ті может заполняться катионами Mg²⁺. Fe²⁺, Fe³⁺, Al³⁺, Cr³⁺, Zr⁴⁺, Sn⁴⁺, V⁵⁺, Nb⁵⁺, Ta⁵⁺, a позиция Si – P⁵⁺ и 4H⁺. Анионный изоморфизм наблюдается в позиции О1, в которую могут входить F⁻, Cl⁻ и группа OH⁻. Главные изоморфные замещения характерны для Ті-позиции, в которую входят Al³⁺ и Fe³⁺, причем компенсация избыточной валентности происходит по двум схемам: Al, $Fe^{3+} + F^- = Ti^{4+} + O^{2-}$ и Al, $Fe^{3+} + OH^- =$ = Ti⁴⁺ + O²⁻. Первая схема изоморфизма описывается системой с конечными членами CaTiSiO₄O (собственно титанитом) и CaAlSiO₄F (гротитом). Замещение этого типа изоструктурно [1], а в экспериментах установлена полная смесимость компонентов CaTiSiO₄O и CaAlSiO₄F [2]. Второй тип изоморфизма описывается системой с конечными членами CaTiSiO₄O и CaAlSiO₄(OH). Компонент $CaAlSiO_4(OH)$ — вьюагнатит (vuagnatite) имеет другую структуру, чем титанит, что приводит к ограниченной смесимости этих компонентов [1]. Таким образом, в состав Al-F-сфена входят, главным образом, три минала – титанит, гротит и вьюагнатит, но концентрация вьюагнатита в сфене обычно невелика.

Сфены с высокими концентрациями Al и F были установлены впервые в высокобарных метаморфических породах, давление образования ко-

Дальневосточный геологический институт

Дальневосточного отделения

Российской Академии наук, Владивосток

торых оценивалось величиной до 30 кбар [3, 4]. Высокие давления доказаны присутствием в этих породах коэсита и алмаза. Это позволило предполагать, что богатые алюминием и фтором титаниты являются признаком проявлений высоких давлений в породах метаморфических комплексов. Однако впоследствии фтор-глиноземистые сфены были установлены в гранитоидах и фторсодержащих скарнах [5], в метаморфизованных осадках кремневой формации Сихотэ-Алиня (Приморье) [6] и в метасоматических рудоносных породах Березитового золото-полиметаллического месторождения Верхнего Приамурья [7]. Концентрации Al и F в сфене этих разнотипных низкобарных пород оказались сопоставимыми с концентрациями Al и F в данном минерале из метаморфических пород высокого давления. Это позволяет считать, что основным фактором, способствующим образованию Al–F-сфена в различных минеральных ассоциациях, является активность фтора минералообразующего флюида. В настоящей работе нами обосновывается возможность оценки фтористости флюида на основе разработанного авторами сфенового фториметра.

Сфеновый фториметр можно предложить, используя следующее стехиометрическое соотношение:

$$CaAl_{2}Si_{2}O_{8} + CaTiOSiO_{4} + 2HF =$$

_{анортит} _{сфен} _{флюид}
= 2CaAlFSiO_{4} + TiO_{2} + SiO_{2} + H_{2}O. (1)

Аl-F-сфен рутил кварц флюид Реакцию (1) можно записать через константу

равновесия и стандартную энергию Гиббса,

$$(v\Delta Z_0)P, T = -RT\ln K_{p_1}, \qquad (2)$$

в которой константа равновесия K_{p_1} дается следующим выражением:

$$K_{p_1} = \frac{(a_{alf})^2 a_{rt} a_Q a_{H_2 O}}{a_{an} a_{sf} (a_{HF})^2}.$$
 (3)

В выражениях (2), (3) ΔZ_0 – величина стандартной энергии Гиббса реакции (1), постоянная для данных *PT*-условий, a_{alf} , a_{rt} , a_Q , a_{H_2O} , a_{an} , a_{sf} , a_{HF} – активности компонента CaAlFSiO₄, рутила,

Институт геохимии им. А.П. Виноградова Сибирского отделения Российской Академии наук,

Иркутск

кварца, воды, анортита, титанита и HF в соответствующих минеральных твердых и водных растворах, v – стехиометрические коэффициенты реакции (1), R – газовая постоянная, T – температура, K.

Активность чистых фаз можно принять равной единице, поэтому выражение (3) можно упростить:

$$K_{p_1} = \frac{(a_{alf})^2 a_{H_2O}}{a_{sf} a_{ap} (a_{HF})^2}.$$
 (4)

Из выражения (4) видно, что при постоянной активности анортита, при данных РТ-условиях активность компонента CaAlFSiO₄ в твердом растворе сфена связана с активностью HF в водном растворе. Так, увеличение (уменьшение) активности HF в водном флюиде должно приводить к сопряженному увеличению (уменьшению) активности CaAlFSiO₄ в твердом растворе сфена. Таким образом, парагенезис рутил-кварц-плагиоклаз-Al-F-сфен может служить фториметром для количественной оценки фтористости водного флюида. Другим парагенезисом для оценки активности HF в водном флюиде может быть равновесие ильменит-сфен-плагиоклазкварц, поскольку между компонентами этих фаз можно написать следующее стехиометрическое соотношение:

$$0.5Fe_{2}O_{3} + CaTiOSiO_{4} + 2HF +$$

ильменит сфен флюид
+ CaAl_{2}Si_{2}O_{8} = 2CaAlFSiO_{4} + FeTiO_{3} +
анортит Al-F-сфен ильменит
+ SiO_{2} + H_{2}O + 0.25O_{2}. (5)
кварц флюид

Однако оценка активности фтора по равновесию (5) значительно менее удобна, чем по (1), поскольку для этого фториметра требуются определение потенциала кислорода и оценка активности гематитового минала в ильмените, помимо определения активности фаз, указанных в формуле (4).

Для оценки фтористости флюида по составу Al—F-сфена в присутствии плагиоклаза, рутила и кварца (уравнение (1)) мы выполнили термодинамические расчеты на основе модели, построенной на программном комплексе "Селектор-С". Модель состояла из двух резервуаров. В первый резервуар поместили HF, H₂O и углерод. Во второй плагиоклаз, состоящий из двух миналов – альбита и анортита, сфен в виде минала CaTiOSiO₄ и кварц. В первом резервуаре формировался фтористый флюид, который затем поступал во второй резервуар, где устанавливалось равновесие фтористого флюида и газовой фазы с образующимися в процессе реакции Al-F-сфеном, плагиоклазом определенного состава, рутилом и кварцем. Изменение мольных количеств HF, альбита и анортита в условиях постановки задачи в первом и втором

Рис. 1. Зависимость валовой фтористости водного флюида от концентрации минала CaAlFSiO₄ в твердом растворе сфена в равновесии сфен-плагиоклазрутил-кварц-флюид при 550°С и давлении 3500 бар. Каждая кривая рассчитана при постоянном содержании анортитовой молекулы (номер) в составе плагиоклаза: $I - N \ge 60, 2 - N \ge 30, 3 - N \ge 15$.

резервуарах давало возможность получить в решении фиксированный состав плагиоклаза при различной фтористости флюида и равновесный с этим флюидом и плагиоклазом Al–F-сфен.

Термодинамическая система, рассчитываемая "Селектором-С", состояла из 57 компонентов, слагающих возможные минералы, водный электролит и газовую фазу. В состав газовой фазы входило восемь компонентов: CO_2 , CO, F_2 , HF, H_2 , СН₄, О₂, Н₂О. Твердые фазы включали в себя флюорит, кальцит, полиморфы Al₂SiO₅, альбит, анортит, кварц, компоненты сфена – CaAlFSiO₄ и CaTiOSiO₄, рутил, волластонит, цоизит, клиноцоизит, гроссуляр, парагонит, пренит, каолинит, графит. В состав водного раствора электролита входило 30 компонентов: нейтральные частицы – H₂O, SiO₂, O₂, NaOH, NaHSiO₃, NaF, CH₄, HF, H₂, $HAlO_2$, CaCO₃, CO₂, CO и ионы – Al(OH)⁺², Al⁺³, AlO⁺, AlO⁻₂, CO⁻²₃, Ca(HCO₃)⁺, Ca⁺², CaF⁺, CaOH⁺, $\mathrm{F}^{-},\mathrm{HCO}_{3}^{-},\mathrm{HF}_{2}^{-},\mathrm{HSiO}_{3}^{-},\mathrm{Na}^{+},\mathrm{SiF}_{6}^{-2},\mathrm{OH}^{-},\mathrm{H}^{+}.$

Термодинамические свойства газовых компонентов и твердых фаз рассчитывали по базам данных [8–10]. Термодинамические свойства компонентов водного раствора учитывали по базе данных, встроенной в "Селектор-С" (a_Sprons.tdb). Активность ионов и нейтральных соединений в водном электролите рассчитывали по модифицированному уравнению Дебая—Хюккеля. Активность компонента CaAlFSiO₄ учитывали по MMмодели [2], а анортита по модели Даркена [11]. Как показали расчеты, в состав жидкой фазы, равновесной с Al—F-сфеном, плагиоклазом и рутилом, входили в значимых концентрациях следующие соединения (в порядке убывания): CO₂, CH₄,

Рис. 2. Корреляция оценок фтористости флюида, рассчитанных по "Селектору-С" (*F*₁) и уравнению (6) (*F*₂). Треугольниками отмечены образцы месторождения Березитовое, ромбами – срединного хребта Камчатки, квадратом – порода из восточного домена ДССО (см. табл. 1).

СО, SiO₂, HCO₃, H₂, F⁻, HF, HSiO₃, Na⁺, NaF, NaHSiO₃, CaF⁺, AlO₂. В качестве показателя фтористости флюида была выбрана его валовая фтористость, представляющая собой сумму концентраций F⁻, HF, NaF и CaF⁺ в пересчете на фтор-ион.

На графике (рис. 1) хорошо видно закономерное возрастание концентрации CaAlFSiO₄ в твердом растворе сфена в равновесии с плагиоклазом постоянного состава, рутилом и кварцем в зависимости от валовой фтористости флюида. Величина рН фторсодержащего флюида до реакции его с компонентами второго резервуара составляла 2-2.5, а после реакции - 6.5-7. В решении фиксировались незначительные количества газовой фазы, состоящей главным образом из H₂O, СН₄, Н₂, СО₂ и следов НF. По серии задач, сформированных и рассчитанных на "Селекторе-С" по вышеописанной методике, можно вывести уравнение, с помощью которого оценивается фтористость флюида в парагенезисе рутил-кварц-плагиоклаз-глинозем-фтористый сфен при данных Ри Т. Задачи рассчитывали в диапазоне температур 450-700°С и давления от 3 до 7 кбар. Состав плагиоклаза изменялся в пределах от 15 до 70% анортитовой молекулы, а мольная доля фтор-глиноземистого минала в сфене – в пределах от 0.1 до 0.4. Обработку полученных данных проводили с помощью регрессионного анализа методом наименьших квадратов на основе алгоритма Левенберга-Марквардта [12]. Всего было обработано 613 задач. Уравнение выглядит следующим образом:

$$F = X_{al} (-14306.5 - 69.2370N_{an} + + 29.37417t + 20965.93X_{al} - (6) - 3.51030X_{al}P + 0.001855tP),$$

где *F* – фтористость флюида в миллиграммах на литр, $N_{\rm an}$ – номер плагиоклаза, P – давление (бар), *t* – температура (°С), *X*_{al} – мольная доля фтор-глиноземистого минала в сфене. Она вычисляется из кристаллохимической формулы сфена, рассчитанной по методике [1], и равна формульному количеству фтора, т.е. $X_{\rm al} = F(\phi.e. \ {\rm B}$ кристаллохимической формуле). При этом сумма формульного количества алюминия и трехвалентного железа в кристаллохимической формуле сфена должна быть больше или равна формульному количеству фтора. Предложенный подход в определении мольной доли фтор-глиноземистого минала в сфене позволяет избежать ошибок, связанных с присутствием вьюагантитового минала в сфене и возможным завышением количества фтора в сфене при микрозондовом анализе. Эффективность оценки точности уравнения (6) методом наименьших квадратов (квадрат отклонений исходных и расчетных значений) составляет 91%, коэффициент корреляции между расчетом по "Селектору-С" и уравнению – 96%. Корреляция между оценками фтористости флюида (F_1) по "Селектору-С" и (F_2) по уравнению (6) хорошо видна на рис. 2. Уравнение (6) применимо для интервала температур 500-700°С, при более низких температурах оно может давать отрицательные значения фтористости флюида. В табл. 1 в качестве примера приводятся оценки фтористости флюида в метаморфических породах Камчатки,

Образец	<i>Р</i> , бар	<i>T</i> , °C	X _{al}	N _{an}	F_1 , мг/кг	F_2 , мг/кг
	Месторождение Березитовое	480	0.42	90	424	136
1374	3500					
1306	3500	500	0.32	30	716	1385
	Срединный хребет Камчатки	550	0.179	30	690	912
818-A	4000					
817-И	4000	550	0.146	89.8	276	106
820-Д	4000	550	0.193	16.3	1108	1185
	Восточный домен ДССО	650	0.075	15.6	945	1103
2132	10000					

Таблица 1. Состав минералов, *РТ*-параметры и валовая фтористость флюида в метасоматитах Березитового месторождения [7], метаморфических породах Камчатки [14] и восточного домена ДССО [13]

Примечание. F₁ – расчет по "Селектору-С", F₂ – расчет по уравнению (6).

метасоматитах Березитового месторождения и восточного домена Джугджуро-Становой складчатой области (ДССО), выполненные по "Селектору-С" и уравнению (6). Таким образом, минеральные парагенезисы, содержащие фтор-глиноземистый сфен, могут служить показателем величины фтористости водного и водно-углекислого флюида.

Работа выполнена при поддержке интеграционного проекта № 09-II-СУ-08-003.

СПИСОК ЛИТЕРАТУРЫ

- Oberti R., Smith D.C., Rossi G., Caucia F. // Europ. J. Miner. 1991. V. 3. P. 777–792.
- Troitzsch U., Ellis D.J. // Contribs Mineral. and Petrol. 2002. V. 142. № 5. P. 543–563.
- 3. *Franz G., Spear F.* // Chem. Geol. 1985. V. 50. № 1/3. P. 33–46.
- 4. Sobolev N.V., Shatsky V.S. // Nature. 1990. V. 343. P. 742–746.
- Enami M., Susuki K., Liou J.G., Bird D.K. // Europ. J. Miner. 1993. V. 5. P. 219–231.

- 6. Перевозникова Е.В., Мирошниченко Н.В. // Тихоокеан. геология. 2009. Т. 28. № 3. С. 101–105.
- 7. Вах А.С., Авченко О.В., Карабцов А.А., Степанов В.А. // ДАН. 2009. Т. 428. № 3. С. 353–357.
- 8. Berman R.G. // J. Petrology. 1988. V. 29. P. 445-522.
- 9. *Robie R.A., Hemingway B.S.* Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures // US Geol. Surv. Bull. 1995. V. 2131. 461 p.
- Holland T.J.B., Powell R. // J. Metamorph. Geol. 1998.
 V. 16. № 3. P. 309–343.
- Holland T.J.B., Powell R. // Amer. Miner. 1992. V. 77. P. 53–61.
- More J.J. The Levenberg–Marquardt Algorithm: Implementation and Theory // Lect. Notes Math. 1977. V. 630. P. 105–116.
- Александров И.А. Метаморфические породы амфиболитовой фации Джугджуро-Становой складчатой области. Владивосток: Дальнаука, 2010. 211 с.
- 14. Тарарин И.А., Бадрединов З.Г., Чубаров В.М., Шарова О.И. // ДАН. 2011. Т. 438. № 6. С. 809–812.