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Noise and oscillatory zoning of minerals
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Fluid-Rock Interactions Group, Departments of Geology and Physics, University of Oslo, P.O. Box 1047 Blindern, N-0316 Oslo, Norway

(Received March8, 1999;accepted in revised form December16, 1999)

Abstract—Oscillatory mineral zonation is usually associated with crystal growth in an open system, either a
hydrothermal system or a melt after a period of magma mixing or degassing. Such systems may be driven
sufficiently far from thermodynamic equilibrium to produce autonomous patterns by geochemical self-
organization. The resulting zonation patterns will be the result of coupling between the generally nonlinear
crystal growth dynamics and the boundary conditions imposed by externally controlled fluctuations. We
examine the effects of noisy boundary conditions on four different crystal growth models. These are models
for plagioclase growth in magmatic systems (L’Heureux and Fowler, 1996), for carbonates in sedimentary
systems (Wang and Merino, 1992), for garnets in hydrothermal systems (Jamtveit, 1991), and for silicate
growth from a melt (Wang and Wu, 1995). The plagioclase model is sensitive to noise, even to low amplitude
noise, implying that an observed zonation pattern will be significantly affected by processes other than local
growth and transport processes. For the garnet model, fluctuations in the external environment may cause
synchronization, so that different crystals develop similar zonation patterns, even if the formation of zonation
patterns is a consequence of nonlinear local dynamics. This implies that similarity in intracrystalline zonation
does not necessarily imply that the zonation pattern was produced by changes in the external (environmental)
conditions. The formation of a zonation pattern may be a consequence of local nonlinearities in the growth
process, but the pattern details may be strongly affected by subtle changes in the external
environment. Copyright © 2000 Elsevier Science Ltd

1. INTRODUCTION

During recent decades, interest in pattern formation in geo-
logical systems has grown substantially. Both simple and com-
plex patterns may be created by spontaneous autonomous pro-
cesses reflecting the nonlinear dynamics of a system far from
equilibrium (e.g., Merino, 1984, 1987; Ortoleva, 1994;
Jamtveit and Meakin, 1999). However, geological materials
and systems are generally heterogeneous and subject to com-
plicated boundary conditions. Consequently, an observed pat-
tern may be a direct consequence of spatial and temporal
fluctuations in the environment in which it is formed. In gen-
eral, both internal autonomous processes and changing external
conditions will influence pattern formation, and the interplay
between these two types of processes may lead to surprising
results. Oscillatory intracrystalline mineral zonation or chemi-
cal banding within single crystals is an extensively studied
example of geological pattern formation (Shore and Fowler,
1996). Oscillatory zonation can also be produced in synthetic
samples (Putnis et al., 1992; Reeder et al., 1990). It may arise
in magmatic, metamorphic, and sedimentary settings, but it
almost invariably occurs in an open system, with a continuous
or discontinuous mass flux into or through the region in which
crystal growth takes place. Thus, the growing volume of liter-
ature discussing the origin of such zonation has elaborated on
external versus internal controls on the observed patterns. Be-
cause an open system is often characterized by both compli-
cated boundary conditions (due to phenomena such as varia-
tions in fluid flux and composition, magma mixing, and
degassing processes) and nonequilibrium states, the coupling of

external and internal processes needs to be analyzed. Neither
the growth dynamics nor the energetics of processes leading to
oscillatory zonation are understood in detail. Insight can be
gained by studying the sensitivity of existing crystal growth
models to noisy boundary conditions in various regions of their
parameter spaces. The nonlinear models that were the basis for
the work reported here were developed to gain insight into the
origins of oscillatory zoning of plagioclase in magmatic sys-
tems (L’Heureux and Fowler, 1996a), carbonates in sedimen-
tary systems (Wang and Merino, 1992), garnets in hydrother-
mal systems (Jamtveit, 1991), and silicate growth from a melt
(Wang and Wu, 1995). The motivation for this work was to
explore the effects on zonation patterns of fluctuations in the
composition of the fluids or melts from which minerals are
growing, with the objective of bridging the gap between pat-
terns produced by existing models and observed zoning pat-
terns. It turns out that for some models even low amplitude
noise at the boundaries may significantly affect the observed
zonation patterns in some regions of their parameter spaces.
This sensitivity to fluctuations in the boundary conditions may
also explain why observed zonation patterns can rarely be
explained or reproduced statistically by simple autonomous
deterministic models.

1.1. Self-Affine Noise

It has recently been shown that some oscillatory zoning
patterns can be described in terms of fractal geometry over
more than two decades of length scale (Halden and Hawthorne,
1993; Holten et al., 1997). A fractal is an object for which the
structure remains the same (or the statistical measures describ-
ing the structure remain unchanged) when it is examined on
different scales. In recent years, fractal geometry has been used
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to describe a wide range of phenomena in quantitative terms
(Mandelbrot, 1982; Meakin, 1998). A fractal that is invariant
under isotropic dilation or contraction is said to be self-similar.
A fractal that has different scaling properties in different direc-
tions is self-affine. A self-affine fractal must be magnified by
different amounts in different directions to “look the same.”
The Brownian processB(t) that describes the distance moved
after a timet by a particle undergoing Brownian motion from
its position at timet 5 0 is a familiar example of a self-affine
fractal. The Brownian process is (statistically) invariant to
transformations that change the time scale by a factor ofl and
simultaneously change the distance scale by a factor ofl1/2.
This scaling symmetry can be represented by the equation

B~lt! ; l1/ 2B~t! (1)

or

l21/ 2B~lt! ; B~t!, (2)

where “[” means statistically equivalent to (all of the statisti-
cal measures used to characterize the Brownian process and the
rescaled Brownian processl–1/2B(lt) are the same). An impor-
tant example of a self-affine fractal is the surface of the Earth,
which can be described by the scaling relationship

^udh~lx!u& 5 lH^udh~ x!u&, (3)

wheredh(x) is the height difference between a pair of points on
the surface of the Earth that are separated by a horizontal
distance ofx. Most studies of the Earth’s topography indicate
that the exponentH has a value that is greater than 1/2 and
smaller than 1 (values close to 0.75 are the most commonly
reported). In a self-affine zoning pattern, the absolute magni-
tude of the composition difference (or the difference in some
quantity related to the composition)udyu between pairs of points
separated by a distancedx in thex-direction (the growth direc-
tion) scales on the average as^udyu& ; (dx)H (where ^. . .&
indicates an average). The exponent in this relationship and in
Eqn. (1) is called the Hurst exponent. A Hurst exponent (H)
greater than 0.5 indicates that the functiony(x) is persistent.
This means that an increase iny asx is increased is more likely
to be followed by an additional increase iny if x is increased
further than by a decrease iny. The correlations between the
increments iny (dy(x) 5 y(x 1 dx) –y(x)) are long ranged
(^dy(x0)dy(x0 1 x)& decays only as a power ofx). In the case of
a time record, an increasing trend in the past favors an increas-
ing trend in the future (and vice versa). IfH , 0.5, the record
is antipersistent, and an increasing trend in the past favors a
decreasing trend in the future. Many different methods have
been used to measure Hurst exponents. In the case of single-
valued functionsy(x), measurement of the dependence of the
width w(l) of the functiony(x) on the intervall in x over which
the width is measured is a common approach (Meakin, 1998).
The widthw(l) can be defined as

w~l ! 5 @^y2~ x!& l 2 Ky~ x!L l2#1/ 2, (4)

where^. . .&l denotes an average over all sections (x0 to x0 1 l)
of lengthl. If the functiony(x) is self-affine, the widthw scales
as

w~l ! , l H. (5)

Zoning patterns cannot be self-affine on arbitrarily long length
scales, because the concentration rangeDc of a particular
chemical component (the difference between maximum and
minimum concentration) is bounded. This implies that the
concentration profile might be self-affine on short length scales,
but on sufficiently long length scales, an effective Hurst expo-
nent close to zero will be measured. The crossover from the
short length scale self-affine behavior to the long length scale
nonfractal behavior can be described by the scaling form

w~l ! 5 l H f~l /l* !, (6)

where l* is the characteristic crossover length. The scaling
function f(x) is given by

f~ x! 5 H c9 x ,, 1
c9x2H x .. 1, (7)

where c9 . (l*) -H Dc is a constant (Holten et al., 1997).

1.2. Nonlinear Systems, Chaos, and Noise

Simple nonlinear systems may exhibit surprisingly complex
behavior. Extreme sensitivity to initial conditions is character-
istic of a wide variety of nonlinear systems (Lorenz, 1963;
Strogatz, 1994; Scott, 1991), and such systems are called cha-
otic. After an initial transient the system evolves toward a set of
points or an asymptotic trajectory called the attractor, which is
a fractal for chaotic systems. The attractor can be enclosed
inside a finite volume. Often a dynamical model is chaotic in
some regions of its parameter space, and periodic or stable in
other parts.

If x(0) is a point on the attractor at timet 5 0 andx(0)1d (0)
is a neighboring point separated initially by an infinitesimal
distancedx(0); (\dx(0)\3 0), then, in a wide range of numer-
ical studies of nonlinear systems, it is found that the separation
between the two points increases exponentially with increasing
time t. This exponential increase can be represented by

\dx(t)\ , \dx(0)\elt, (8)

where l is called the Lyapunov exponent (Strogatz, 1994)
(\. . .\ means scalar or absolute value). A positive Lyapunov
exponent means large sensitivity to noise, while a negative
exponent means low or no sensitivity. This equation is valid
only in an average sense and for a limited time, becausedx(t)
must be much smaller than the size of the attractor itself. In
general, there may be several different Lyapunov exponents
corresponding to different directions in the phase space. Usu-
ally, only the highest exponent is of interest, since it dominates
the overall behavior after a certain time. There has been little
research on Lyapunov exponents in systems described by one
or more partial differential equations. In particular, the condi-
tions under which Eqn. (8) is valid are not well understood.

Kantz (1994) has provided a reliable method for estimating
the maximum Lyapunov exponent. A variation of this method
was independently published by Rosenstein et al. (1993). The
maximum Lyapunov exponent can be determined by using
several trajectories or just one trajectory; here only one trajec-
tory is used. The method consists of finding all pointsx(ti) in a
time series that are within a distancee from the reference point
x(t) at time t. The distance between the pointsx(ti 1 *

t) and
x(t 1 *

t) is

1894 T. Holten, B. Jamveit, and P. Meakin



di~t,*t! 5 \x~ti 1 *t! 2 x~t 1 *t!\, (9)

where*
t is the time increment. The region in space containing

points within a distance less thane (the e-neighborhood) is
denotedUt and its volume isZ. Rearranging Eqn. (8), the
largest Lyapunov exponent can be estimated as

l 5
1
*t

1n
\x~ti 1 *t! 2 x~t 1 *t!\

\x~ti! 2 x~t!\
(10)

This procedure is repeated for each pointi [ Ut inside the
e-neighborhood and each pointx(t) 5 x (ndt) in the time series,
wheredt is the time step andn is a positive integer, and the
results are averaged. The effective largest Lyapunov exponent
is then given byl 5 dS(*t)/d*

t, where

S~*t! 5
1

N O
n51

N

1nS1

Z O
ieUt

di ~ndt,*t!D (11)

andN is the number of starting times, which should be as large
as possible. Often the initial transient is not used for estimating
l, so that the first sum in Eqn. (11) starts withn . 1.

Synchronization is an important aspect of the effects of noise
on dynamical systems. If two systems with different initial
statesA andB and the same internal dynamics, characterized by
one or more positive Lyapunov exponents, are subjected to the
same noise or perturbation they are said to be synchronized if
they converge toward and remain in the same state (Gutie´rrez
and Iglesias, 1998; Malescio, 1996; Pecora and Carroll, 1990).
A model can show synchronization in parts of the parameter
space, but not in other parts. The synchronization depends on
the amplitude of the noise. If the noise amplitude is too low, a
system that synchronizes with a high noise amplitude may
never synchronize. Pecora and Carroll (1990) were the first to
describe synchronization. They defined the “conditional Lya-
punov exponents” or sub-Lyapunov exponents, which are the
Lyapunov exponent for certain subsystems of chaotic systems.
According to Pecora and Carroll (1990) synchronization occurs
for the subsystem variables if the conditional Lyapunov expo-
nents (the Lyapunov exponents for the subsystem) are all
negative. However, some systems can become synchronized
even if one or more of the conditional Lyapunov exponents is
positive (Gutièrrez and Iglesias, 1998; Maritan and Banavar;
1994). A third variant of synchronization is phase synchroni-
zation (or phase locking). This can be defined as the appearance
of a certain relation between the phases of interacting systems
(or between the phase of a system and that of an external force),
while the amplitudes are, in general, not strongly influenced by
the interaction (Pikovsky et al., 1997). However, the notion of
phase and amplitude in chaotic systems is non-trivial. A fourth
variant of synchronization is partial synchronization (Hasler et
al., 1998). This term is used to describe systems in which only
some of the state variables synchronize and the others do not
synchronize with them.

2. RESULTS

In this section, the results of an investigation of the effects of
noise on four nonlinear models for oscillatory zoning are de-
scribed. Many phenomena associated with these models can
occur in systems other than those that they were developed to

represent. When a system is subjected to random noise, the
noise will be amplified or dampened, depending on the sign of
the Lyapunov exponent. The coupling between noise and non-
linearity leads to interesting phenomena such as sensitivity to
noise, noise-induced transitions, synchronization, desynchroni-
zation, and stochastic resonance.

2.1. Bounded Noise

Mineral zoning patterns are always bounded, because the
molar fractions must lie in the range 0 to 1, and the composi-
tions of the solutions or melts from which they grow are
bounded in a similar manner. In practice, the molar fractions
are often much more severely bounded. There are many ways
to construct a bounded self-affine fractal. One approach is to
scale the fractal after it has been generated. The second method
to create a bounded self-affine fractal is to randomly draw a
number from a Gaussian distribution with a zero mean and add
it to the current value,B. If the new value ofB lies outside of
the permissible limits, a new Gaussian random number is
generated and added toB until the new value ofB is within the
limits. This method was used throughout this article. If the
Gaussian increments are correlated, fractals withH Þ1⁄2 can be
obtained. An example of such bounded Brownian noise is
shown in Figure 1. Unless otherwise stated, this is the input
noise for all models in this article that contain noise. A third
method is analogous to the movement of a particle in a poten-
tial E (y). First, a noisy self-affine fractalB(t) without bounds
is created. The successive incrementsdy 5 dB 5 B (t 1
dt) – B(t) in this noise are then used to generate trial moves for
the particle. If the incrementdy moves the particle to a lower
potential, the step is always taken (t is increased bydt and
y(t 1 dt) 5 y(t) 1 dy) and if the increment is upwards in
potential, the step is taken with a probabilityp5exp((E1 2 E2)/
kT), whereE2 (E[y(t 1 dt)]) is the new potential value andE1

(E[y(t)]) is the old potential value,k is the Boltzmann constant,
and T is the temperature. Depending on the potential and the

Fig. 1. Bounded Brownian motion with a Hurst exponent of 0.5
generated using the second method described in the text. The curve
starts atB 5 0 and there are 16384 time steps.

1895Noise and oscillatory zoning of minerals



temperature, different features are observed. The most simple
procedure is to use a simple quadraticE(y) 5 A(y 2 y0)

2 or
quartic E(y) 5 A(y 2 y0)

4 potential. This procedure can be
used to obtain concentration recordsc(t) with bounded fluctu-
ations, by using a concentration potentialE(c). More complex
potentials can be used to obtain a more realistic representation
of the concentration fluctuations in natural systems. For exam-
ple, potentials with two minima, like the dimensionless poten-
tial

E~c! 5
~4c 2 2!4

4
2

~4c 2 2!2

2
, (12)

where c is the concentration, can be used. This potential is
plotted in Figure 2b. It has minima at (1⁄4, 2 1⁄4) and (3⁄4, 2 1⁄4)
and a local maximum at (1⁄2, 0). If the temperature is low, the
output signal will fluctuate about one of the minima. At inter-
mediate temperatures, the output signal will fluctuate about one
minimum and then jump to the other minimum, from time to
time. At high temperatures, only the quartic part of the potential
will influence the concentration fluctuations. An example of
such noise-induced transitions is shown in Figure 2c. The
output function fluctuates about the two minima. In this exam-
ple, the fluctuations are quite large. The potential has the effect
of limiting the effective concentration rangeDc. At all temper-
atures, the noise generated by this procedure will be similar to
the input noise (with the same Hurst exponent) on small time
scales. However, there will be a crossover from the short time
scale unbounded noise to the long time scale bounded noise
with a Hurst exponent of 0. In the case of complex potentials,
the crossover may be complex and may extend over a number
of decades (depending on the temperature). Under these cir-
cumstances, the dependence of the width (rms amplitude fluc-
tuations) of the noise on the interval over which it is measured
may exhibit an approximate power law behavior that might be

incorrectly interpreted as an intermediate self-affine scaling
regime. This method of generating bounded noise may be used
as a model for the external concentration fluctuations (the
noise) during crystal growth.

2.2. Noise Signals With Periodic Components

A question that is important in the interpretation of log-log
plots is how periodic components superimposed on a self-affine
function affect the interpretation. It is likely that many natural
zonation patterns consist of both periodic components and
noise without any distinct frequencies (like fractal noise). Fig-
ure 3a shows the width functionw(l) obtained by analyzing a
periodic component added to a Brownian process noise signal.
At time scales below the period of the periodic component, the
effective Hurst exponent is increased. At longer time scales, the
effective Hurst exponent is decreased. Even a small periodic
component has a significant effect on the effective Hurst ex-
ponent. The crossover occurs over a range of time scales that
include the period of the periodic component,tp. If tp is small,
most of the observed part of the curve will have an artificially
lowered effective Hurst exponent.

2.3 Plagioclase Growth Model

The most convincing indication of autonomously produced
oscillatory zonation is probably shown by plagioclase, since the
composition within a single grain can change significantly over
micrometer scales (Pearce and Kolisnik, 1990). Models for
plagioclase growth have been reviewed by Pearce (1994).
L’Heureux (1993) and L’Heureux and Fowler (1994) studied a
model for plagioclase growth that is based on isothermal crys-
tallization from a melt in an open system. The growth equation
is

Fig. 2. (a) Brownian noise. (b) The potentialE in Eqn. 12 as a function of compositionc. (c) The concentrationc as a
function of timet generated using the method described in the text with the increments used to generate part (a), the potential
shown in part (b) andkT5 0.1. In this example, 20000 time steps (increments) were used.
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­c

­t
5 D

­2c

­ x2 1 V
­c

­ x
2 G~c 2 ĉ!. (13)

In this model, the solute partitioning law is

cs~t! 5 Kc~0,t!, (14)

and the boundary equations arec(b, t) 5 ĉ, where ĉ is the
constant concentration at the end of the diffusion layer and

D
­c

­ x
ux50 1 @c~0,t! 2 cs~t!#V 5 0. (15)

In these equations,c 5 c(x, t) is the concentration (molar
fraction of anorthite) at a distancex from the crystal interface
at timet, cs is the concentration inside the solid,V is the growth
velocity, K is the partition coefficient,D is the diffusion con-
stant in the melt (the diffusion coefficient is assumed to be zero
in the solid) andG is the input flow rate per unit volume. Here,
c(b,t) is the concentration at the boundary layer, far from the
solid-fluid interface. The initial condition isc(x,0)5ci. The
K 5 1.5 andK 5 0.55 cases were studied. A nonoscillatory
solution was found forK 5 1.5, and an oscillatory solution was
found forK 5 0.55. A value of 0.55 is realistic for the partition
coefficientK for An33 (33% anorthite) andK 5 1.5 is realistic
for An50 if the plagioclase grows from a typical basaltic melt.
The growth velocityV(c(0, t), T) was estimated (L’Heureux,
1993) by fitting the laboratory measurements of Kirkpatrick et
al. (1979) to the Calvert-Uhlmann growth model (Calvert and
Uhlmann, 1972). In some parts of the parameter space, the
oscillatory solution was found to be chaotic. All parameters in
the model can be estimated from experimental and geological
data (L’Heureux and Fowler, 1994). In more recent studies
(L’Heureux and Fowler, 1996a,b; L’Heureux, 1997) the growth
equation was changed to

­c

­t
5 D

­2c

­ x2 1 V
­c

­ x
, (16)

to represent growth in a closed system, and the solute parti-
tioning law

cs~t! 5
KDBc~0,t!

A 1 ~KD 2 1!c~0,t!
(17)

derived by Lasaga (1982) was used, whereKD is the partition
coefficient andA andB are constants. Eqn. 13 is similar to Eqn.
16 because a very small value was chosen forG in the earlier
work of L’Heureux and Fowler. The qualitative behavior of this
model is the same as that of the earlier plagioclase model. The
model can generate steady state, periodic and chaotic patterns,
depending on the parameters. The steady state melt concentra-
tion at the interface isc0 5 ĉA/(KD B 2 (KD 2 1)ĉ). A period
doubling route to chaos was observed in the more refined
model (L’Heureux and Fowler, 1996a,b; L’Heureux, 1997) but
not in the version of L’Heureux (1993) and L’Heureux and
Fowler (1994). A Hopf bifurcation characterizes the transition
from steady state to oscillatory solutions in both versions of the
model. In the work of L’Heureux (1997), the effects of cooling
on crystallization were studied.

Noise was added to this model (Eqns. 16 and 17) by replac-
ing the fixed concentration boundary condition byĉ(t) 5 ĉ(0)
1 aB(t), where a is the amplitude of the noise andB(t) is
Brownian motion limited between21 and 1. The main reason
for using Brownian noise as an input, instead of white noise, is
that in the case of Brownian noise, the concentration differ-
ences are small in the limit of a small time difference. Figure 4a
shows results from two simulations with the same parameters,
one with zero noise and the other with a noise amplitude of
a 5 0.01. The integration method was the same as that used by

Fig. 3. (a) The effect of adding a periodic component to a noise
signal with a Hurst exponent of 0.5. The width (Eqn. 4) was measured.
R is the ratio of the peak-to-peak amplitudes of the periodic signal to
the noise, andtp 5 100 is the period of the periodic component. The
insert (b) shows the resulting pattern generated usingR5 0.1.

Fig. 4. (a) The solid composition cs as a function of dimensionless
distance from the core,L 5 V0*0

t V (t9)dt9/D, for the plagioclase model,
whereV05V(c0, T) is the steady state velocity. The dashed curve was
generated using the parameters that were used to obtain Figure 3a in
L’Heureux and Fowler (1996b),T51600 K,KD50.34,ci50.5, andĉ 5
0.3. The solid curve was generated using the same parameters, except
that the molar fraction of anorthite at the end of the diffusion layer is
equal to 0.31 0.01B(t), whereB(t) is Brownian noise limited between
21 and 1 (Fig. 1). The time step was 0.01. (b) The widthw as a
function of scaled timet for the pattern shown in (a) with noise. The
fit between22.0 , log10 (t) , 0.5 givesH 5 0.85.
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L’Heureux (1993) and by L’Heureux and Fowler in subsequent
articles. In this model, small amounts of noise can lead to large
changes in the zoning pattern. Figure 4b, shows the width (Eqn.
4) calculated for the pattern with noise (the width functionw(l)
for the pattern without noise was almost the same). The range
over which apparent power law scaling was found is not large
enough to establish fractal concentration profiles. If white noise
is used instead of Brownian noise, the resulting pattern is very
irregular on small scales. The Lyapunov exponentl was mea-
sured (Fig. 5b) for the zoning pattern in Figure 5a by using Eqn.
11. A value ofl 5 0.95 6 0.10 was measured by averaging
over thee values (neighborhood sizes) 0.0001, 0.001 and 0.01.
This high value of the exponent shows that, with these param-
eters, the plagioclase model is very sensitive to noise. Using
interference imaging techniques, Pearce and Kolisnik (1990)
showed that plagioclase zoning is often discontinuous. This
suggests that plagioclase growth is a highly non-linear phenom-
enon if the discontinuities are not caused by dissolution. Sim-
ulations were run with a variety of parameters, and synchroni-
zation was not found.

2.4 Calcite Model

Wang and Merino (1992) proposed a model for oscillatory
zoning in calcite, based on growth inhibition by cations such as
Mn21, Fe21 and Zn21 (Meyer, 1984). Depending on the values
of the parameters, the patterns are periodic with a constant
amplitude, periodic with decreasing amplitude or the solutions
of the equations evolve monotonically toward a stable form
corresponding to constant concentration profiles. The patterns
are never chaotic. The precipitation of calcite is governed by
the chemical reaction

Ca21 1 HCO3
23 CaCO3(calcite)1 H1.

The forward reaction rateR of this chemical reaction is
R 5 kcCa21

0 z cHCO3
2

0 , whereci
0 is the concentration of species

i next to the crystal surface andk is a constant. When calcite
grows, H1 is released and accumulates at the surface if the
reaction rate is fast compared with the diffusion rate. The
attachment of species to the crystal surface may accelerate or
inhibit the rate of mineral growth or dissolution (Helgeson et
al., 1984). The surface charge of calcite depends on the pH.
The reaction scheme coupled with diffusive transport leads
to a feedback mechanism that can produce oscillatory zon-
ing. The dimensionless concentrationsu andv are defined as

u 5 cCa21
0 /cCa21

` (18)

and

v 5 ~cH2CO3

0 2 cH2CO3

` !/cH2CO3

` , (19)

where c` is the concentration outside the boundary layer. The
reaction rate constantk was assumed to be a quadratic function
of the scaled H1 concentration, defined asz 5 (cH1

0 2 cH1

` )/cH1

` :

k 5 a~1 1 b1z 1 b2z
2!, (20)

wherea, b1 andb2 are reaction rate constants. The equations

du

dt
5 1 2 u 2 l~1 1 b1v 1 b2v

2!u (21)

and

u
dv

dt
5 2 v 1 gl~1 1 b1v 1 b2v

2!u, (22)

were used to describe the chemical kinetics and material trans-
port processes, the detail of the derivation can be found in
Wang and Merino (1992). In these equations,

l 5
acHCO3

2
` L

DCa21
, (23)

u 5
DCa21

DH2CO3

, (24)

g 5
DCa21cCa21

`

DH2CO3cH2CO3

` , (25)

andt 5 t/T is the dimensionless time, whereT 5 L /(2DCa21)
(L is the width of the diffusion layer),c is the concentration,
andD is the diffusivity. Figure 6 shows some patterns gener-
ated by this model. The fourth order Runge-Kutta integration
method was used to obtain numerical solutions for this model
as well as for the garnet and Wang and Wu models described
later in this article. The time step was fixed and equal to the
time increment in the noise signal. The parameteru was varied,
but all the other parameters were kept constant. Depending on
the value selected foru, oscillations with constant amplitude
and oscillations with decreasing amplitude were found. Bryxina
and Sheplev (1997) found the steady states of this model, and
located the boundaries between the different regions. None of
the parameters, except the diffusivities andL, are known ex-

Fig. 5. (a) The solid composition cs as function of dimensionless time
t obtained from the plagioclase model. The parameters areT51600 K,
ci 5 0.5, ĉ 5 0.3, andKD 5 0.31. This is the same figure as Figure 3b
in L’Heureux (1996b), except that the abscissa ist instead of length.
(b) Calculation of the Lyapunov exponentl. S(*t) was calculated using
Eqn. 11 for a simulation with the parameters used to obtain part (a).
The effective Lyapunov exponent is the slope of the curve. The 250,
t , 2500 region (not shown in (a)) was used to calculateS(*t). The
initial neighborhood sizese were 0.0001, 0.001, and 0.01, respectively.
The time step was 53 1023.
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perimentally. This makes meaningful comparison between sim-
ulations and geological samples difficult.

2.4.1. Adding noise

There are several ways to introduce noise to this model, but
probably the best way is to add fluctuations to the calcium ion
concentration at the end of the diffusion layer. This was done
by changingcCa21

` to

cCa21
` ~t! 5 c9Ca21 1 aB~t!. (26)

wherec9Ca21 is a constant,a is the amplitude of the noise and
B(t) is Brownian noise limited between21 and 1, starting with
B(0) 5 0. By inserting Eqn. 26 into Wang and Merino’s (1992)
original equations, the equation

dc0

dt
5 c` 2 c0 2 l~1 1 b1v 1 b2v

2!c0 2
dc`

dt
(27)

is obtained. BecausecCa21
` is included in the expression forg

(Eqn. 25), Eqn. 22 must be changed to

u
dv

dt
5 2 v 1 g9l~1 1 b1v 1 b2v

2!c0, (28)

where

g9 5
DCa21

DH2CO3cH2CO3

` . (29)

Figure 7 shows some of the effects of noise on this model. As
the amplitudea of the noise is increased, the period of oscil-
lation increases, and the patterns have a more “noisy” appear-
ance. The amplitude of oscillation remains approximately con-
stant asa is increased from 0 to 0.3. Figure 8 shows the power
spectra (Press et al., 1992) of three of the patterns in Figure 7.
The power spectrum of the perfectly periodic pattern (a 5 0.0)
has a large peak at the frequency of oscillation, and at higher
harmonics (integer multipliers of the frequency of oscillation).
The peaks of the perfectly periodic pattern have a finite width,
because of finite size effects, and longer simulations lead to
sharper peaks. Asa increases, the peaks becomes broader and
eventually disappear. This is a general effect of adding noise to
a model that generates periodic or quasi-periodic patterns when
there is no noise. If two systems start with different values of
cCa219 , but the other parameters are the same and they are
subjected to the same noise, they never synchronize.

Fig. 6. The effect of changing the parameteru in the calcite model.
The curves show the scaled concentration (u) of Ca21 as a function of
the scaled timet. The other parameters areg 5 2, l 5 0.01, b1 5 0
andb2 5 80. These parameters were used by Wang and Merino (1992)
to generate Figure 6a in their paper, except that in our simulations
g 5 2 is constant. Whenu is increased, the amplitude of the oscillation
at first increases, but does not decay with time. Whenu . 0.17 the
amplitude decreases with increasing time.

Fig. 7. The effect of noise on the Wang and Merino calcite growth model. The curves show the concentrationc0 of Ca21

as a function of the scaled timet. The noise amplitudea was increased from 0 to 0.6. The other parameters wereg 5 2,
b1 5 70, b2 5 100, u 5 0.1, l 5 0.01, andcCa219 5 1.0. These parameters were used in Figure 2 of Wang and Merino
(1992).
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2.5. Garnet Model

Jamtveit (1991) presented a model for oscillatory zoning of
grossular-andradite (grandite) garnets and found oscillatory and
chaotic solutions. The model is based on an observed miscibil-
ity gap in grandite garnets. A symmetric potentialG of the form

G~u! 5 u4/4 2 u2/ 2 (30)

was used to describe the excess free energy of mixing. Here,u
is a dimensionless composition variable. The minima of the
potential are atu 5 61. The force acting on the system in the
potential field is the gradient ofG(u),

ü 5 2 ¹G~u!. (31)

Inserting Eqn. 30 into Eqn. 31 gives

ü 2 u 1 u3 5 0. (32)

A dissipative term and periodic forcing of the system were
added, leading to the equation

ü 1 su̇ 2 u 1 u3 5 gcos~wt!, (33)

wheres is a constant controlling the degree of dissipation in
the system. There is no transport in the model, since there are
no spatial variables. This equation is similar to the Duffing
equation, one of the most common models of nonlinear oscil-
latory systems. The general Duffing equation (Zeni and Gallas,
1995) is

ẍ 1 aẋ 1 ax 1 bx2 1 x3 5 bf~t!, (34)

wheref(t) is a periodic function driving the system, anda, a, b,
andb are parameters. The solutions to Eqns. 33 and 34 can be
chaotic, depending on the parameters. A minimum criteria for
chaos (Guckenheimer and Holmes, 1983) is thatg . (4s cosh
(pv/2)/3=2pv). If v 5 1, this equation reduces tog .
0.753s. Figure 9 shows the Lyapunov exponent,l, (Eqn. 8),
calculated by using the method described by Kantz (1994)
(Eqn. 11), as a function ofs andl. Whenl . 0, there is chaos.

A bifurcation can be seen in this plot. The Lyapunov exponent
is an irregular function,l(s,g), of s andg. A similar plot was
shown by Zeni and Gallas (1995) for the equationẍ 1 aẋ 1 x3

5 bcos(t), and it was found that windows of periodicity appear
in a quite organized way between regions in whichl(a,b) is an
irregular function ofa andb. Lansbury et al. (1992) studied the
phase portrait of Eqn. 33, focusing on the loss of stability of
motion confined to a single well. Two distinct bifurcation
scenarios were described in which the basin boundaries of the
attractor are fractal.

Noise can be added by changing Eqn. 33 to

ü 1 su̇ 2 u 1 u3 5 aB~t! 1 gcos~vt! (35)

Figure 10a shows synchronization in the solutions of Eqn. 35.
There are two curves that lie (almost) exactly on top of each
other, after a certain time, if Brownian noise with an amplitude
of 0.10 was added. One curve starts atu50, and the other at
u 5 1. Figure 10b shows the start of the synchronization. At a
later stage, shown in Fig. 10c, the two patterns are no longer
synchronized, although the difference between the patterns in
Figure 11b was less than 10210. Finally, the patterns (almost)
synchronize in Figure 10d. The patterns are nearly synchro-
nized when the value ofu corresponds to regions near the
minima of the potential wells, and are desynchronized in be-
tween. Desynchronization can also occur in other dynamical
systems (Pecora, 1998; Heagy et al., 1995). Leung (1998)
examined the time needed for synchronization of the solutions
of two coupled van der Pol oscillators. A kind of phase tran-
sition at which the transient dynamics changed qualitatively as
the coupling constant was varied, was discovered. In addition
to the asymptotic synchronization, a transient synchronization
that occurs only momentarily was found. The influence of noise
on the system depends on the location in phase space for the
Duffing equation with Gaussian white noise (Jaeger and Kantz,
1997).

Stochastic resonance is the amplification of a weak signal by
noise in a nonlinear system (Gammaitoni et al., 1998). Stochas-
tic resonance can probably occur in oscillatory zoned crystals,
because the required three basic ingredients for producing
stochastic resonance often are present. These three ingredients
are (1) an energetic activation barrier, (2) a weak coherent input
(for instance, a periodic signal), and (3) a source of noise that
is inherent to the system, or that is superimposed on the
coherent input. There are however exceptions to the second
requirement, since stochastic resonance also can occur in au-
tonomous systems. An example of autonomous stochastic res-
onance is noise-induced firing of neurons without external
forcing (Longtin, 1997). The regions of synchronization (Fig.
10b,d) are examples of stochastic resonance, the periodic signal
is here amplified by noise. Gammaitoni et al. (1998) found that
if Gaussian noise instead of Brownian noise is added to Eqn. 33
the behavior is similar to that shown in Figure 2c.

Nearby crystals may not experience exactly the same noise.
For example, local noise may be superimposed on the noise
originating far away from the crystal, or the effects of the noise
originating far away may be propagated to the growing crystal
in different ways, because of heterogeneities in the environ-
ment. Simulations were run with the same Brownian noise, and
a different Gaussian noise signal (all with the same amplitude)

Fig. 8. The power spectra of three patterns in Figure 7, witha 5 0,
0.1, and 0.6 respectively.
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were added. The synchronization behavior was not sensitive to
small amplitude Gaussian noise. For instance, a simulation with
Gaussian noise with a standard deviation of 0.03 superimposed
on the simulation in Figure 10 (s 5 0.30,g 5 0.30,v 5 1 and
a 5 0.10) gave patterns that differed less than 0.001 inu(t). In
the regions of synchronization, there are oscillations that have
the same frequency and approximately the same phase as the
cos(vt) term, but with amplitudes that vary somewhat with time
t. When the Brownian noise has low values, the system fluc-
tuates symmetrically about21, and when the Brownian noise
has high values, it fluctuates about11, because the system is
constantly driven away fromu 5 0. Because the Gaussian
noise has an average of zero, it has only a minor effect and does
not prevent the system from being kept in synchronization with
the cos(vt) term, as long as the Brownian term has either low
or high values. Increasing the amplitude of the Gaussian noise
leads to larger differences in the amplitudes of oscillations, but
the two signals still have the same phase in the regions of
synchronization. Finally, when the amplitude of the Gaussian
noise is very large (above 0.4) the synchronization is destroyed.

2.6. The Wang and Wu Model

Wang and Wu (1995) presented a simple, nonequilibrium
nonlinear dynamic model to describe solid solution growth in a
melt. They derived the equation

f 5 1/~~1 1 ~b/XS!!~1 2 XS!exp~ 2 W/RT!~1 2 2f !!, (36)

for the mole fractionf of a component in the solid as a function
of the mole fractionXS of the same component in the fluid
phase, whereW is the total interchange energy,R is the gas
constant,T is the temperature andb 5 kB/kA, with kA andkB

representing the overall crystallization rate constants of com-
ponents A and B. This equation is based on a solution model
with an interchange energyW and no excess entropy. If
W/RT, 22, f is a multi-valued function ofXS. The model is
completed by a mass–balance equation. The growth equation
with zero diffusion constant is

dXS/dt 5 ~X` 2 f !V, (37)

whereV is the dimensionless velocity,t is the dimensionless
time andX` is the starting concentration. Only the unrealistic
zero and infinite diffusion coefficient cases were treated by
Wang and Wu (1995). The model always leads to periodic
patterns with a constant amplitude ifW/RT, 22.

One way of investigating the effects of adding noise to this
model is to replace the constant mole fractionXS by a fluctu-
ating functionXS(t) and examine the outputf(t) from Eqn. 36.
Figure 11a shows the input noiseXS(t), limited between 0 and
1, and Figure 11b shows the outputf(t). There are large jumps
in the composition record,f(t), whenever the inputXS reaches
certain threshold values. This behavior is analogous to that

Fig. 9. The Lyapunov exponentl as a function ofs andg whenv 5 1 for the garnet model (the simplified Duffing
equation). The method described by Kantz (1994) was used to measurel.
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shown in Figure 2. We believe that such noise-induced transi-
tions are common during the growth of strongly non-ideal solid
solution minerals in open systems subject to a noisy environ-
ment. Large compositional jumps may correspond to sudden
events like fracturing and associated fluid flow in a hydrother-
mal system, or sudden decompression of a magmatic system
(Holten et al., 1997).

Noise can also be added by letting

X` 5 X0 1 aB~t!, (38)

whereX0 is the new starting concentration,a is the amplitude
of the noise andB(t) is Brownian motion limited between –1
and 1. Figure 12 shows a pattern obtained by integrating Eqns.
36 and 37 and patterns generated using added noise (Eqn. 38)
with amplitudes ofa 5 0.1 and a 5 0.5. The pattern with
a 5 0.1 is similar to thea 5 0 curve, except that the period of
oscillation fluctuates by up to 10%. The pattern with maximum
noise a 5 0.5 (to avoid negative concentrations) is heavily
distorted. This model does not show synchronization since it is
not chaotic.

Fig. 10. This figure shows synchronization in the garnet model. The parameters weres 5 0.30,g 5 0.30,v 5 1, and
a 5 0.10. One curve was started withu 5 0 (dashed line) and the other withu 5 1 (solid line). (a) A large part of the
zonation pattern in which parts (b), (c), and (d) are included. (b) A detailed plot of a part in which the two curves are (almost)
synchronized. (c) A later stage, in which the two patterns are no longer synchronized. Part (d) shows that at a still later stage,
the two patterns are (almost) synchronized again. In (b) and (d) the two curves lie on top of each other so that only one curve
can be seen.

Fig. 11. The effect of noise on Wang and Wu’s equation (Wang and
Wu, 1995) for the solid compositionf as a function of the fluid
compositionXs (Eqn. 36). (a) The curseXs(t) used as an input. (b) The
compositionf(t) calculated using Eqn. 36 (for every time step, the
concentrationf was calculated fromXs using Eqn. 36.

Fig. 12. Results from adding noise to the Wang and Wu model, using
Eqn. 38. The curve witha 5 0 corresponds to Figure 5 in Wang and
Wu (1995) with parametersb 5 2, W/RT5 23, andV 5 1. The other
two curves were obtained using the same parameters except that
a 5 0.1 and 0.5 respectively.
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3. DISCUSSION

Recent work has shown that oscillatory intracrystalline zo-
nation is more common than hitherto thought in a variety of
geological systems. It is likely that despite the influence of the
external environment, some of the observed pattern arise be-
cause of nonlinear processes associated with the crystal growth
itself. This is particularly the case for oscillatory zoned mag-
matic crystals for which the lack of intracrystalline correlations
in the zonation patterns argue for a self-organized origin of the
patterns. In such systems attempts to infer the growth mecha-
nism from the observed zonation pattern has turned out to be a
nontrivial task, and the situation is even more complicated for
hydrothermally grown crystals. There is no guarantee that these
inverse problems have unique solutions, but it is often possible
to put important constraints on the processes that might lead to
a particular pattern. Noise is a ubiquitous feature of many
natural systems, and many nonlinear systems are sensitive to
noise. Consequently, it is to be expected that many natural
patterns, including mineral zonation patterns, are significantly
affected by noise and system heterogeneities. The extent to
which processes leading to mineral zonation can be deduced
from quantitative characterization of mineral zonation patterns
depends on the degree to which the effects of noise and heter-
ogeneities are understood. In the case of crystal growth, fast
compositional changes at the outer margin of the diffusion
layer may render deterministic models for self-organization
inadequate. Noise need not be restricted to fluctuations in
concentration of the crystal forming components, but can also
be fluctuations in other intensive variables such as oxygen
fugacity, pH, and temperature. For example, the composition of
grandite garnets is expected to be sensitive to changes in all
these variables (Jamtveit et al., 1995). In hydrothermal systems
in particular, environmental fluctuations in both composition
and temperature may easily be envisaged as a result of changes
in fluid flow rates and flow paths, even on a short time scale
(Jamtveit, 1999). The models studied here have different de-
grees of sensitivity to noise. Noise disturbs the period of
oscillations in the calcite model. Low amplitude noise has a
large impact on the plagioclase growth model, so that two
crystals experiencing slightly different conditions would de-
velop qualitatively different zoning patterns.

It has been claimed that one way of distinguishing self-
organization from external fluctuations as the main cause for
mineral zoning, is to study neighboring mineral grains. If these
mineral grains all show similar zoning, it has been concluded
that external fluctuations are the probable cause of mineral
zoning. The lack of such intracrystalline correlation has been
taken as an indication of internal nonlinear behavior. The above
analysis shows that this is not always a reliable criterion,
because small amounts of noise can lead to synchronization, as
illustrated by the results obtained by adding noise to the garnet
model. In this situation, the external noise has a controlling
influence on the pattern details, but pattern formation would not
occur without the internal autonomous nonlinear dynamics of
the system. The addition of noise to published models generates
patterns that appear to be more realistic than those obtained
without noise. To the best of our knowledge, crystals that show
perfectly periodic zoning patterns have not been found in
geological samples. Noise can drive the system from one equi-

librium state to another. Guillouzic and L’Heureux (1997)
derived an equation for the transition rate from one determin-
istic attractor to another. This rate depends on the amplitude
and nature of the noise as well as the system itself.

Complex mineral zonation patterns can be statistically char-
acterized either as a purely geometrical object, or as a time
series. The Lyapunov exponent measurements described above
may give valuable insight into the dynamics of the processes
responsible for generating the pattern. Halden (1996) measured
the Lyapunov exponent (l) for zircon and apatite cathodolu-
minence zonation patterns and found that 0.0011, l ,
0.0149, which means that the patterns are weakly chaotic. This
result contrasts with the conclusions reached by Holten et al.
(1997), who found no indication for underlying chaos in their
analysis of zonation patterns from samples of garnet, vesuvi-
anite and plagioclase. The plagioclase and garnet models have
positive Lyapunov exponents in parts of the parameter space,
while the calcite and Wang and Wu (1995) models always have
negative Lyapunov exponents, since only periodic (or mono-
tonic) patterns are possible.

Zonation patterns can be characterized by fractal analysis or
by any other relevant statistical method. In practice, fractal
geometry is indicated by straight lines in log–log plots. How-
ever, the range of scaling obtained in this manner may be
insufficient to reliably establish fractal behavior, and linear
behavior over a short range on a log–log scale is often mis-
leading. If a periodic component is added to a fractal, an
incorrect effective Hurst exponent can be measured (see Fig.
2). Brownian processes cannot model large jumps in composi-
tion, but other fractal models can be used. The discrepancy
between complicated natural zonation patterns, and determin-
istic models for self-organizing oscillatory patterns is part of
the motivation for investigating models that couple external
fluctuations and the resulting zonation pattern, by adding noise
to four published models for oscillatory zoning of minerals.

A set of differential equations or an algorithmic model
provides, at best, an approximate description of the behavior of
a real system. Even if a theoretical model is accurate, there are
often large uncertainties concerning the conditions under which
the pattern was formed and the associated model parameters.
Data analysis is also an important source of uncertainty. For
example the concentration profiles obtained from mineral zo-
nation patterns usually contain far too few points to allow an
accurate determination of a Hurst exponent to be carried out or
for the dimensionality of an underlying nonlinear process to be
determined. In this article, we have focused on another source
of uncertainty—the coupling between the intrinsic nonlinear
dynamics of a system and fluctuation in its environment. It is
apparent that the interpretation of zoning patterns in terms of
physico–chemical processes and geological conditions still
presents a difficult challenge. A sound understanding of all of
the processes involved in the formation of zoning patterns and
the interactions between them is required if they are to be used
to reliably interpret the geological condition of their formation.
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