See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/294792312
New prospects in interpretation of converted seismic waves

Article - January 2000

CITATIONS READS
0 13
1 author:

V. Yu. Burmin
A ., Russian Academy of Sciences

85 PUBLICATIONS 198 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

et S€ismic information, earthquake, seismicity, data processing View project

et €arthquakes, focal mechanisms, nodal planes, block structure View project

All content following this page was uploaded by V. Yu. Burmin on 12 June 2017.

The user has requested enhancement of the downloaded file.

ResearchGate


https://www.researchgate.net/publication/294792312_New_prospects_in_interpretation_of_converted_seismic_waves?enrichId=rgreq-e69f7582e65a09d7f5d8446739caaa61-XXX&enrichSource=Y292ZXJQYWdlOzI5NDc5MjMxMjtBUzo1MDQ1MTQyMzYxNjIwNDlAMTQ5NzI5Njk3NTg2Mg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/294792312_New_prospects_in_interpretation_of_converted_seismic_waves?enrichId=rgreq-e69f7582e65a09d7f5d8446739caaa61-XXX&enrichSource=Y292ZXJQYWdlOzI5NDc5MjMxMjtBUzo1MDQ1MTQyMzYxNjIwNDlAMTQ5NzI5Njk3NTg2Mg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/seismic-information-earthquake-seismicity-data-processing?enrichId=rgreq-e69f7582e65a09d7f5d8446739caaa61-XXX&enrichSource=Y292ZXJQYWdlOzI5NDc5MjMxMjtBUzo1MDQ1MTQyMzYxNjIwNDlAMTQ5NzI5Njk3NTg2Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/earthquakes-focal-mechanisms-nodal-planes-block-structure?enrichId=rgreq-e69f7582e65a09d7f5d8446739caaa61-XXX&enrichSource=Y292ZXJQYWdlOzI5NDc5MjMxMjtBUzo1MDQ1MTQyMzYxNjIwNDlAMTQ5NzI5Njk3NTg2Mg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e69f7582e65a09d7f5d8446739caaa61-XXX&enrichSource=Y292ZXJQYWdlOzI5NDc5MjMxMjtBUzo1MDQ1MTQyMzYxNjIwNDlAMTQ5NzI5Njk3NTg2Mg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/V_Burmin?enrichId=rgreq-e69f7582e65a09d7f5d8446739caaa61-XXX&enrichSource=Y292ZXJQYWdlOzI5NDc5MjMxMjtBUzo1MDQ1MTQyMzYxNjIwNDlAMTQ5NzI5Njk3NTg2Mg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/V_Burmin?enrichId=rgreq-e69f7582e65a09d7f5d8446739caaa61-XXX&enrichSource=Y292ZXJQYWdlOzI5NDc5MjMxMjtBUzo1MDQ1MTQyMzYxNjIwNDlAMTQ5NzI5Njk3NTg2Mg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Russian-Academy-of-Sciences?enrichId=rgreq-e69f7582e65a09d7f5d8446739caaa61-XXX&enrichSource=Y292ZXJQYWdlOzI5NDc5MjMxMjtBUzo1MDQ1MTQyMzYxNjIwNDlAMTQ5NzI5Njk3NTg2Mg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/V_Burmin?enrichId=rgreq-e69f7582e65a09d7f5d8446739caaa61-XXX&enrichSource=Y292ZXJQYWdlOzI5NDc5MjMxMjtBUzo1MDQ1MTQyMzYxNjIwNDlAMTQ5NzI5Njk3NTg2Mg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/V_Burmin?enrichId=rgreq-e69f7582e65a09d7f5d8446739caaa61-XXX&enrichSource=Y292ZXJQYWdlOzI5NDc5MjMxMjtBUzo1MDQ1MTQyMzYxNjIwNDlAMTQ5NzI5Njk3NTg2Mg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Voic. Seis., 2000, Vol. 21, pp. 617-626 ©2000 OPA (Overseas Publishers Association) N.V.
Reprints available directly from the publisher Published by license under
Photocopying permitted by license only the Gordon and Breach Science
Publishers imprint

Printed in Singapore

New Prospects in Interpretation of Converted
Seismic Waves

V. Yu. BURMIN
Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, 123810 Russia

(Received February 1, 1999)

It is shown that travel times of converted shear and direct compressional waves in a
vertically varying elastic earth can be used to find the distributions of shear and compres-
sional velocities simultaneously.

INTRODUCTION

The method of converted earthquake waves is a popular technique used in seismology to
find earth structure, especially in the upper layers [2], [3], [5], [9]. Nevertheless, there
is no rigorous theory as yet for inverting traveltime differences between compressional
and converted shear waves to determine the velocity structure. The conventional use of
converted earthquake waves is to determine depths to discontinuities where the conversion
takes place, given mean compressional and shear velocities. M. Hasegawa’s formulas [3],
[91, [10] or other simple relations are cornmoniy used for that purpose. The compressional
and converted shear waves corresponding to a single observation site but to different
points at the discontinuity of conversion are used to find the depth to the discontinuity,
which means that compressional waves travel along different rays to the discontinuity. The
fact that the distance between the conversion points remains unknown is a source of
uncertainty for finding seismic velocity above the discontinuity.

I propose to determine the velocity and thickness of a layer by using those points in
the traveltime curves of compressional and converted shear waves that correspond to the
same conversion point and have the same ray parameter, i.e., which travel along the same
ray below the conversion point. To be able to deal with this case I derived Fredholm
integral equations of the first kind which relate compressional and shear velocities to a
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618 V. Yu. BURMIN

traveltime difference between converted shear and direct compressional waves propagating
in a vertically varying elastic earth. This gives velocity structure both for compressional
and shear waves.

BASIC EQUATIONS

Suppose a source of elastic motion is at a point in an elastic earth. A P wave is assumed
to be incident on a discontinuity from below and to excite a converted SV wave which is
recorded by seismometers at the ground surface along with the P wave. The assumptions
are as follows: (1) the ground surface is plane in the volume where conversion and
recording take place; (2) the seismic velocity is bounded on a finite interval of depth [0,
z] and is a twice piecewise smooth function of depth v = w(z).

We now write down equations for determining the differences between the respective
epicentral distances and travel times for converted SV and P from the conversion
discontinuity z = z to the recording site in a parametric form

Ax(p);< P } P [ 47, (1)
l ;@) -pH'"? (W (2)-pH"”?
z'r 2 2
At(p)=1< 2”‘@ - 2""(2) 4z, @
@ @-pH" (4, @) -pH"”*

where u,(z) = v,7'(2) and u(z) = v,"'(z) are reciprocals ‘of P and SV velocities,
respectively; p is the ray parameter for P and SV; 0 < p < up(z'+0). The values of
x,(p), x(p) and 1,(p), 1,(p) are assumed to be relevant to one and the same conversion
discontinuity, but to different recording sites for direct P and converted SV.

Direct P and converted SV penetrate through the 07 layer, that is, seismic rays have
no turning points in this layer. That means that the travel times and epicentral distances
would remain the same, when the 0z layer is divided into elementary layers, and these
are reshuffled. Consequently, the functions vp(z) and v(z) cannot be found from traveltime
differences of converted SV and direct P uniquely, because the same travel times of shear
1,(p) and compressional #,(p) waves correspond to different velocity functions v,(z) and

v,(z) that have the same measures H(x) and G(u), where [6]
H()=mes{z:z<z", v, (2) <u,},
Gu) =mes{z:z<z~, vs'l(z) <uj},

The functions H(u) and G(#) have the following properties by definition: (a) they are
nondecreasing, (b) vanish when —o < u < ™ = u(z —0); (c) ar~ equal to & = 7~ when
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u(0) = u; < u < oo. Here, u” and u, are the lowest and greatest values, respectively,
of u(z) = vQ‘l(z) in the layer above the conversion discontinuity, the convention being
= {P, §}.
Let us write equations (1) and (2) as Stieltjes integrals:

0 o

1 dHw [ 46w 3
Ax(p) -Pj: W2-p)in N ] @-pH7’ ®
T wdH@ [ w?dG) 4
Ar(p) = I (uz_pz)l/z_j (uz_pz)uz’ @

where 0 < p < uQ(z'+O) = uQ' <uy < uQO; Q = {P, S}; dH(w) = 0, dGu) = 0.
The problem we are concerned with here is as follows: use equations (3) and (4) to
find H(u) and G(u), hence the depth to the conversion discontinuity, and the lowest and
greatest velocities of the relevant waves in the layer above the discontinuity.
Multiply both sides of (3) by 1/(w*—p»)'? and (4) by wp/(W?—p*)'?, and then
integrate the resulting expressions over p between p, and p,. The result is

Py u: uf
_ [ Ax(pdp _ 4 dHu) dGu) d
o Jl(wz_pz)l/z JI Z(WZ_p2)1/2 I Wr-pHi2 J W -pHin P
P u: u:’
- At(p)pdp D udHu) u*dGu)
g(w) _WZJI wi-p)iZ - jtppz(wz_pz)uz J W -pHn _[ Wi -pH"” ’

where 0 < p, < p<p, <u, <wu<ul
Swap the integrals in the right sides of these equations:

0

,, 123

2}
fw) = uj )Jl (W pHui-p)~ ,;[ (u)ljl o —pz)(uz—pz))”z’
u, 4 u? P J
ZdH pap w2 sz pdp '
g(W) w J (u)j ((W _pz)(u 2))1/2 w I.u (u)i!l ((W2 _pZ)(uz_pz))l/z

“l'

The inner integrals in the last equations are

P 2 QiR 2_ QiR
w —_— -—
Kow,) = Pe PPy

} ((W pl)(u 2))1/2 B (W2 _p22)l/2 +(ll2-p22)l/2 ’

The functions fiw) and g(w) can be written in a form that easily lends itself to
numerical integration:



620 V. Yu. BURMIN

f(w) =fP(W) 'fs(w); gw) =gp(w)_gs(w)7

where
Xy
. P . P .1 (x)
fQ(w) =x(p,) arcsin WZ -x(p,)arcsin Wl - l arcsin de ,

Xy

goW) = w23 1(p) (W2 -p))2 -1(p) (W -p1) 2 + [ W2 -12(x)'2r (vdx

0={PS}.

The final forms of the equations from which to determine H(x) and G(u) are

o ]

ﬂw)=JKOw@dHﬁO—JKOm@dG@L (5
ﬁm=wzjﬁKwJMHW%[ﬁKWMMGM . (6)

A
We thus have a set of two Fredholm integral equations in two functions, H(x) and
G(u), which are to satisfy the conditions

dH(u) 20; dG(u) =0. (7
It 1s easy to see that H(x) and G(u) as solutions to (5) and (6) will minimize the

functionals
0 2

P, “: Uy
e dH(u) dGu) ®)
IHAX) =] —_<A - ,
(H, Ax) le () P,J,,‘ (uz_pz)uz+ J(uz_pz)l/z dp
p. u® u’® 2
2 (4 2 5 2
J(H _ _[WdH@W 1 u'dGQ) dp. 9)
(H,Ar) plP At (p) u.[. W-pHin HJ:_ wWl-phin

This means that least squares solutions will be considered as the solutions to (5) and (6).

The problem of determining u 2) = vp“(u) and u(z) = v,”'(u) from differences
between travel times of converted shear and direct compressional waves thus reduces to
a problem in quadratic programming on an infinite-dimensional space, minimizing the
quadratic functionals (8) and (9) under the linear restrictions (7).

The ray parameter p takes on values in [p,, p,], where p, = t'(x,,) = 0 and p, =
!'(Xma) <, when the travel time curves are convex downward; P = '(Xpay) = 0 and
P2 = I'(Xgy) < u°, when they are convex upward. The above range for the ray parameter
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should be wide enough. In that case the determination of seismic wave velocities will be
more stable. For this requirement to be satisfied, converted earthquake waves are to be
recorded in a wide range of either depth or epicentral distance.

Knowledge of derivatives of the P and SV travel times is required for calculating the
integrals on the left-hand sides of (5) and (6) and the kernel X, the derivatives being equal
to the respective ray parameters at the extreme points only of the travel time curves.

NUMERICAL SOLUTION

1. We proceed to solve (5) and (6) under the condition (7) by passing to a discrete
formulation, i.e., dividing [#,", 4] and [u;", u%] by N points into N—1 subsegments
[4;_,, uf] and [u ul. Con51der the jump functions AH; and AG; (j = 1,2,..., N) on

the segments [u,”, u °] and [, u]. In that case we shall have two sets of 2N equanons

that are linear i m 2N unknown AH and AG and nonlinear in the four unknowns u, °,

u, , and u: , which can be wrmen in the form
Ay-f=0; By-g=0; (10)

AH; 20, AG, 20; (11)
where
A={a;}; B={b}; fT={f}; ¢"={g};
={AHj}; i=1,2,...,N; j=1,2,....N

(W p])l/Z ( )1/2
W} -p)\ 2+l -pH\2’

=In

ij
i=12,...,N
€l ) w €l ) when [IT12en

J

i=N+1,N+2,..,N
j=12,..N ’
2)1/2

* 4] . = 0.
qu[up ,up], w, €[u; ,u;] when {

(W2 _pll)l/z

Wi -pD1 4 -p))

) . i=1,2,..,N .
4 €[u” 1) w, €, u;) when {j=N+1,N+2,...,2N

i=N+1,N+2,....2N
j-N+l N+2,...2N

)]/2

2
+(u; -
a;=-In

qu[u;,uso]; w, €[u,” ,u’] when {

b =w2u-21n( —pl)m (

H 177
! Wi -pDV2 (i -pH12
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i=1,2,....N

U, €lu, ,up); w4, ,uy] when {j=1,2,...,N
. . =N+1,N+2,...,2N
qu[up ,u:]; w, € [u, ,uso] when {l.=1 5 ) 1':], ,

(w i“Pl)”2 ( )”2

(W p2)1/2 ( )1/2
i=12,...,.N
J=N+1,N+2,...,2N

. . « 0 i=N+1,N+2,....,2N
u4€[u: ’u:o] w.E[ux ,u;] when {j N+1.N+2....2N -

Suppose u b - up and u, u are given, i.e., are known. Solution of (10) will yield the
distribution of P and SV velocities, hence the function k(z) = V(2)/v(2).

Solution of sets of linear equations (10) under the linear restrictions (11) and for given
values of up", up0 and u,", u is a problem in quadratic programming on a finite-dimen-
sional space [7]. When the matrices A and B are nonsingular, then this quadratic
programming problem has a unique solution, because the functionals I and J (convex in
y) are bounded from below and continuous on the convex set ¥ = {y|y = 0} [7].

The functions H(x) and G(u) in [u,”, u,"] and [4,”, u,] can be found from the relations

22
b,.j-—w,» u}-l

u; Elu,”, S] W, Elu, ,up] when {

H(u)=HII=ZAHJ; ue[ujpvujp¢l];
i

AH; 20, n=12,.,N; H, =H(@,)=0,

Gw) =G, =Y AG; u€uj,u.yl,

j=1
AG 20, n=1,2,..,N; G,=Gw')=0, H,=G,.

2. The standard procedure to deal with problems in quadratic programming is ti use
a conjugate gradient method. This method always converges in a finite number of steps,
but requires an initial, or zero, approximation [8]. This may be the mean seismic velocity
in the layer and the corresponding thickness.

Consider the problem of determining seismic velocity in a layer and the position of the
conversion discontinuity under the assumption that the P and SV velocities in the layer are
constant. In that case n = 1; u, = u; w, = w; u, w = const; Hu) = G(w) = Az and
equations (5), (6) will be written as

F(u) = {K@u) -K(u,w)}Az;

Jw) = {K(u,w)-K(w)}Az;
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g(u) = (WK (u,w)-u*Ku)}Az;

gw) = {wrK(w)-u’Ku,w)}Az.

We thus have four equations in three unknowns. It can however be shown that these
equations are not independent, one of them being a combination of the other three.

Numerical experiments showed that the best way to solve these equations was as
follows. The first two equations give

Az=05 Jw) - S
T | K@u,w)-K(w) K@) -K@u,w) |

Substituting Az into the other two equations, we get
w2K(u,w)-u*K@w) = G,;

wiKw)-u*Kwu,w) =G,,

where G, = g(u)/Az; G, = g(w)/Az.
We are going 1o solve these equations by simple iteration. To do this, we write «* and
w? in the forms

u? =[G, K(W) - G,K (u, w)]/det;

w? = [G,K(u,w) - G,K )]/ det,

where det = K*(u, w)—Ku)K(w).

Solving the last two equations will yield # and w. Substituting these into the equation,
we find Az. The method of simple iteration converges to the solution in the case we are
considering for practically any initial approximation, i.e., is stable enough.

The end values of [u, upo] and [u;, u,o] should be specified to solve the problem.
These are usually not known. The method we use here is as follows. Since the desired
distributions of P and SV velocities in a layer are functions of the coordinate z: u, = u(z)
and u,(0) = uQ°, uyz) = uQ'(Q = {P, S}), we will extend the functions u, = u(z) so
as to make the new functions i, = l(z) to become identical with ug = uy(z) everywhere
on the segment [0, z'], except perhaps at a finite number of points on the segment. To be
specific, we shall preserve monotonicity for &, = #,(z) by extending u, = uy(z) at the
ends of the segment [0, 7] Setting uy = Uy, = uy(0) and & = Uy, = py < uy(2).
Here, u,, corresponds to the maximum value of the index of refraction u(z) at the top
of the 07" layer and can usually be specified a priori; u,,, is not below the derivative of
P travel times at the rightmost point of it or, e.g., when the crust is studied, not below
the reciprocal of mantle velocity just below the Moho. In that case the integrals (3) and
(4) will not be affected and, when the problem has a unique solution, the resulting
distribution #(z) will be different from the true distribution in layers of zero thickness
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only. The end values of u,, and u_, are revised by iteration during the numerical
solution of the problem. This is done as follows. At the first step the problem is solved
for the end values ¥ = u;, and 4’ = u,,,. The next #" and u, will be those end values
u; and u; for which AH,, AH; and AG,, AG; do not vanish (are above zero to within a
specified error). The problem is again solved, but this time for the new end values ¥ =
u; and u, = w;. The procedure is repeated, until the end values of AH,, AHy, and AG,
AGy, are different from zero.

Note that the left and right sides of (5) and (6) contain the ray parameter for direct
compressional wave, which is numerically equal to the derivative of 7(x). The experimen-
tal travel time curve is known to within some uncertainty as a discrete set of points; in
that case it should be fitted with a curve which is convex upward or downward, depending
on which branch of the travel times of the refracted wave (before or after the inflexion
point, direct or reversed branch) is under consideration. A convex cubic spline 7(x) should
be taken to do the job [4].

In order to find the integrals on the left-side parts of (5) and (6) we should determine
the points in the travel time curves of P and SV which have identical values of the ray
parameters p; and p,. This can be done by using interpolation relations for the cubic
spline itself and its first derivative in terms of its second derivative at grid points [1].

Now we turn to examine the results of this mathematical modeling. Our example will
be concerned with the determination of P and SV velocities in the crust for a model close
to the standard. The theoretical travel times of P and SV when reduced to 9 km/s are
shown in Fig. 1. The curves are for seismic waves going upward from a seismic source
situated at a depth of 250 km, the conversion taking place at the Moho, at a depth of 43
km. The derivatives of travel times at the ends equal the reciprocals of apparent velocities
(about 12 and 10 km/s, respectively). The compressional velocities in the crust as derived
from the differences of P and SV travel times are shown in Fig. 2. The original velocity
curve represents a two-layered crust with P-wave velocity being 6 km/s in the upper layer
and 6.75 at the top and 6.84 km/s at the bottom of the lower layer. The S-wave velocities
were derived from P-wave velocities by dividing them by 1.78. The end values of the
velocity were 4 and 8 km/s for P wave and 2.3 and 4.6 km/s for S waves. Each velocity
interval was divided into 49 subsegments. The integrals in the left sides of (5) and (6)
were found using the Simpson formula.

Figure 2, a presents velocity curves reconstructed on the assumption that compression-
al and shear velocities were unknown throughout the crust. One can see that the mean
thickness and velocity in a layer were determined well enough, but the velocity curve does
not in the least reflect the velocity jumps within the layers.

Figure 2, b presents velocity curves reconstructed on the assumption that compression-
al velocity was known in the upper layer but unknown in the lower. In that case the
resulting velocity distribution in the layer is close to that given in the model.
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Figure 1 Travel times of direct compressional (/) and converted shear (2) wave.

6 7 kmJ/s

Figure 2 Reconstructed velocity distributions for a two-layer model (a) and one layer from a
two-layer model (b) in the crust from the travel times shown in Fig. 1: I - original velocity
distributions, 2 - reconstructed distributions.
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It can be concluded from these results that, when treated in the class of monotone
positive step-functions, the problem of determining compressional and shear velocities
from travel time differences of converted shear and direct compressional waves has a
unique solution, because it does not depend on the choice of the end values, #,,, and .
It should however be pointed out that the determination of compressional velocity alone
with a fixed ratio between compressional and shear velocity is more stable than the
simultaneous determination of compressional and shear velocities.

CONCLUSION

It is shown that compressional and shear velocities can be determined simultaneously from
travel times of converted shear and direct compressional seismic waves in a vertically
varying earth.

Travel times of P and SV waves can be obtained by observing earthquakes with
identical hypocentral depths, but at different epicentral distances at a single recording site.
The greater the range of the ray parameters, the more stable is the determination of the
velocity distribution in a layer of interest. Observation of this kind would give a travel
time curve for the vertically varying velocity structure beneath the recording site only
(under the seismograph station). When a sufficient number of recording sites are
available, a 3-D distribution of seismic velocity in a layer of interest can be derived.
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