А. И. Белковский, А. А. Краснобаев, И. Н. Локтина, Б. А. Калеганов, Я. А. Белковская

СОСТАВ, ВОЗРАСТ ДОМИАСКИТОВЫХ СИЕНИТОВ И ПРОБЛЕМА ВОЗРАСТА СИЕНИТ-МИАСКИТОВОЙ ФОРМАЦИИ УРАЛА

A. I. Belkovskiy, A. A. Krasnobaev, I. N. Loktina, B. A. Kaleganov, Ya. A. Belkovskaya

COMPOSITION AND AGE OF PRE-MIASKITE OF SYENITE-MIASKITE FORMATION IN THE URALS

Original data on absolute age of pre-miaskite syenites of the Ufaley metamorphic block are presented. It is suggested that the Urals syenitemiaskitic formation has Vend-Cambrian age

Домиаскитовые сиениты и сопровождающие их фениты широко развиты по западной периферии Уфалейского метаморфического блока (Средний Урал), где они образуют согласные пластовые (0.3—0.5×25—30 км) тела среди апогаббровых амфиболитов и бластомилонитов основного состава [2]. Контактовые фации представлены полосчатыми, полосчато-теневыми и теневыми сиенит-мигматитами, являющимися промежуточными образованиями следующего ряда горных пород: сиенит — сиенитмигматит — фенитизированный апогаббровый амфиболит апогаббровый амфиболит. Микроструктуры сиенитов — гипидиоморфнозернистая, аллотриоморфнозернистая, гранобластовая, пойкилобластическая; текстура — грубополосчатая, обусловленная чередованием лейкократовых прослоев с прослоями, сложенными амфиболом + гранатом, магнетитом + амфиболом, амфиболом + гранатом + магнетитом или одним амфиболом. Количественные соотношения минералов непостоянные (об. %): полевые шпаты 65—80 (олигоклаз, олигоклаз-андезин, альбит 50—60 и до 35-40, микроклин от 3-5 и до 35-45), амфибол 3-5 и до 10-15, гранат 0—5, биотит 0—3, магнетит 0—1 и до 5, вторичный кварц 0—5. Акцессорные минералы представлены моноклинным пироксеном, кристаллическим и метамиктным цирконом, ильменорутилом, ортитом, эпидотом (по ортиту), ильменитом, сфеном (отдельные кристаллы) и сфеном II (мелкокристаллическим, по ильмениту), апатитом, светло-фиолетовым и бесцветным флюоритом, пиритом, халькопиритом, молибденитом. Кремнезем, щелочи и коэффициент агпаитности изученных пород соотвествуют параметрам известково-щелочного сиенита (таблица 1, анализ 5). Известково-щелочные сиениты близкого минералогического состава широко распространены среди гнейсов и мигматитов озера Реньярв на Кольском полуострове [5], сиенитов зоны Инакафи на Южном Мадагаскаре [13]. Они так же широко развиты в центральной щелочной полосе северной части Ильменских гор на Южном Урале, где отмечены как амфиболовые и пироксенамфиболовые фениты [7—8].

Плагиоклазы сиенитов — олигоклаз и олигоклаз-андезин — в виде удлиненных лейст с тонкими полисинтетическими двойниками по (001) замещаются альбитом Ан₅₋₁₀. Калиевые полевые шпаты представлены несдвойникованным, облачно угасающим микроклином с пертитовыми вростками альбита и решетчатым микроклином. Обе разновидности микроклина замещаются мелкозернистым гранобластовым альбитом. Удлиненные (0.1—0.5 и до 2 мм) кристаллы амфибола образованы гранями (110), содержат многочисленные пойкиловростки (0.1 × 0.15 мм) олигоклаза и олигоклаз-андезина. Плеохроизм резкий — от черного или густо-сине-зеленого по N_g до желто-зеленого по N_p. По оптическим свойствам, химическому составу и рентгеновским константам изученный материал [3] относится к малотитанистому феррогастингситу с крайне низкими концентрациями шестерного алюминия (таблица 1, анализы 1—5). Количественным спектральным анализом в нем установлены повышенные содержания оксида цинка и скандия (табл. 2).

Ксеноморфные зерна (от 0.1—0.2 и до 1.5 мм) и отдельные ромбододекаэдрические (1—3 мм) кристаллы граната обладают зональным строеним. Центральная часть кристаллов окрашена в красный цвет, периферия (0.1—0.15 мм) — розовая и бледнорозовая. Химизм, оптические свойства и рентгеновские константы его отвечает марганцевому гроссуляр-альмандину [3]. Моноклинный пироксен редок. Встречен в виде отдельных короткопризматических (3—3.5 × 1—1.5 мм) кристаллов, переполненных пойкиловростками олигоклаза [1]. Светло-зеленый и травяно-зеленый пироксен представлен Na-салитом (F 30 мол. %; ng 1.742—1.732; nm 1.725—1.715; np 1.707—1.697; +2V 60—64°; с : Ng 40—42°) и эгирин-салитом (F 35—36 мол. %; ng 1.748—1.746; np 1.711—1.709; +2V 66—68°; с : Ng 40—42°). Эгирин-салит

Компоненты	1	2	3	4	5	6
SiO ₂	56.24	63.20	61.16	64.01	61.39	64.32
TiO ₂	0.98	0.48	0.60	0.24	0.54	0.37
$A1_2O_3$	17.14	15.83	19.04	16.95	16.04	16.56
Fe ₂ O ₃	2.73	2.40	2.24	2.09	2.81	1.13
FeO	8.52	5.20	4.91	3.75	5.99	4.04
MnO	0.31	0.49	0.25	0.13	0.30	0.15
MgO	0.73	0.34	0.65	0.55	0.41	0.46
CaO	5.47	2.83	2.85	1.74	3.77	1.74
Na ₂ O	5.17	5.17	5.44	5.58	4.66	5.67
K ₂ O	1.75	4.20	3.09	3.93	2.95	4.76
P_2O_5	0.32	0.07	0.14	0.09	0.09	0.011
Nb ₂ O ₅	0.008	0.007	0.007	0.003	0.008	0.003
Ta ₂ O ₅	0.003	0.002	0.003	н. обн.	0.002	0.63
П. п. п.	0.61	0.43	0.35	0.61	0.62	99.91
Сумма	99.97	100.34	100.75	99.67	99.58	99.91
F	90.0	92.4	85.7	85.4	92.1	86.0
Na ₂ O+K ₂ O	6.92	9.37	8.53	9.51	7.61	10.43
$\frac{Na_2O+K_2O}{Al_2O_3}$	0.61	0.82	0.64	0.82	0.68	0.87

Химические анализы (мол. %) фенитов, сиенитов и сиенитпегматитов западной части Уфалейского метаморфического блока

Примечание: 1—2 — фенитизированные апогаббровые амфиболиты, образцы 1022 и 979; 3—4 — сиенит-мигматиты: 3 — амфиболгранатовые (амфибол 10—15 %, гранат 0—5 %, кислый плагиоклаз 35—40 %, микроклин-пертит 15—20, кварц 0—5 %), образец 941; 4 — амфиболовые (амфибол 15—20 %, плагиоклаз 60 %, микроклин-пертит 10—20 %, магнетит 1—2 %), образец 969; 5 — гнейсовидный известково-щелочной сиенит амфиболовый (амфибол 3—5 %; кислый плагиоклаз 50—60 %, микроклин-пертит 15—20 %, кварц 1 %), образец 980; 6 — сиенит-пегматит амфиболовый, образец 867. Дополнительно определено (мас. %): Li₂O — 0.01, образец 980; V₂O₅ — 0.024, образец 941; в остальных образцах ВаО, Li₂O, V₂O₅ — не обнаружены. Анализы выполнены в Центральной химической лаборатории ПО «Уралгеология», аналитик Н. Ф. Колосова. F = Fe₂O3 + FeO/Fe₂O₃ + FeO + MgO, мол. %; Na₂O + K₂O, мас. %; Na₂O + K₂O/Al₂O₃— мас. %.

Таблица 2

Ком-ты	1	2	3	4	5				
SiO ₂	37.02	37.38	37.20	37.60	38.68				
TiO ₂	1.10	1.10	1.00	0.80	0.84				
A1 ₂ O3	12.86	11.81	11.29	11.21	10.90				
Fe ₂ O ₃	9.69	8.00	8.08	8.64	8.97				
FeO	21.13	22.17	24.00	24.13	22.52				
MnO	0.35	0.66	0.74	0.55	1.05				
MgO	1.84	2.95	2.38	1.15	1.45				
CaO	9.68	9.94	9.83	9.15	8.94				
Na ₂ O	1.77	1.81	1.73	2.31	1.54				
K ₂ O	1.89	1.92	2.00	2.10	2.10				
H_2O^+	2.36	1.89	1.72	2.31	2.42				
F	0.14	0.17	0.14	0.17	0.20				
$F_2 = 0$	0.05	0.07	0.05	0.07	0.09				
Сумма	99.78	99.73	100.06	100.05	99.52				
F	90.1	84.8	88.0	94.0	99.2				
f_o	0.29	0.24	0.23	0.24	0.26				
	Окончание таблицы 2								
Элементы	1	2	3	4	5				
Si	5.75	5.87	5.89	5.98	6.08				
Al ^{IY}	2.25	2.13	2.11	2.02	1.92				
Mg	0.42	0.68	0.56	0.27	0.34				
$\operatorname{Fe_2^+}$	2.74	2.90	3.17	3.20	2.86				
Fe ₃ ⁺	1.13	0.94	0.96	1.03	1.06				
Mn	0.04	0.09	0.10	0.07	0.14				
Ti	0.13	0.13	0.12	0.09	0.34				
Al ^{YI}	0.10	0.05	0.00	0.08	0.10				
Сумма	4.56	4.79	4.91	4.74	4.60				
Ca	1.61	1.67	1.67	1.57	1.51				
Na	0.53	0.55	0.52	0.60	0.47				
Κ	0.37	0.38	0.40	0.43	0.42				
n _g	1.720	1.716	1.718	1.725	1.731				
n _p	1.698	1.696	1.698	1.702	1.702				
n _g - n _p	0.022	0.018	0.020	0.023	0.023				
c:N _o	20	16	17	14	15				

Химические анализы (мол. %), кристаллохимические формулы (ф. е.), оптические константы роговых обманок фенитов, сиенит-мигматитов, сиенитов и сиенит-пегматитов

Примечания: Феррогастингситы из: 1 — фенитизированных амфиболитов, a_0 9.930; b_0 18.159; c_0 5,349 Å; β 105°09; V_0 931,0 Å³, обр. 1022; 2 — сиенитов, a_0 9.920; b_0 18.156; c_0 5.348 Å; β 105°03; V_0 930.9Å³, обр. 980; 3— 4 — сиенит-мигматитов, обр. 969 и 941; для образца 941 определено a_0 9.937; b_0 18.212; c_0 5.352 Å; β 104°52; V_0 936,1 Å³; 5 — сиенит-пегматитов, обр. 867. Анализы выполнены в Центральной химической лаборатории ПО «Уралгеология», аналитик Н. Ф. Колосова. Дополнительно определено (мас. %): в образцах 1—5 Sc₂O₃ 0.009; 0.008; 0.006; 0.011; 0.007; Li₂O 0.0038; 0.0056; 0.0040; 0.0045; 0.0048; Rb₂O и Cs₂O — менее 0.001 (Полевская химлаборатория ПО «Уралгеология», аналитик А. С. Болков). f_0 = Fe₂O₃/Fe₂O₃ + FeO, мол. %. Параметры элементарной ячейки определены методом монокристальной съемки в лаборатории рентгеноструктурного анализа ИГФМ НАН Украины, аналитик А. Л. Литвин [3].

замещается феррогастингситом, биотитом, аннитом и магнетитом. Mg-Fe-слюды в сиенитах так же являются редкими минералами. Обычное содержание их составляет первые десятые доли процента. Листочки (1—1.5×0.1—0.2 мм) ярко-красной или черной слюды плеохроируют от красновато-коричневого, коричневого или оливково-зеленого зеленого по N_o до светло-коричневого или светло-желтого по N_p. По химическому составу — это аннниты или Zn-анниты (таблица 3, анализы 4-5). Черные слюды замещают пироксены, роговые обманки, гранаты и магнетит. Последний встречен в виде мелких октаэдрических кристаллов, реже полигональных зерен размером от 0.1 до 2.5 мм. По химическому составу (табл. 3, анализы 8-10) и параметрам элементарной элементарной ячейки (а, 8.3999 А°, аналитик А. Н. Айзикович) относится к малотитанистому магнетиту, практически несодержащему структурных примесей — V, Ni, Co, Cr, Zn, Sc, Nb и Ta. Средний состав его близок к химизму магнетита, образовавшегося в условиях, переходных от амфиболитовой к эпидот-амфиболитовой фации с температурным интервалом 580-480 °С [4].

Крайне низкие содержания щелочных клинопироксенов, полное отсутствие нефелина и низкие концентрации щелочей (Na₂O + K₂O) однозначно отличают изученные породы (таблицы 1—3) от щелочных сиенитов Ильменогорско-Вишневогорского комплекса [8]. Редкометальная минерализация уфалейских сиенитов, сиенит-мигматитов представлена акцессорным дипирамидальным низкогафниевым цирконом (первые десятые доли процента), ильменорутилом, редкоземельная анизотропным и метамиктным алланитом -(Ce).

В сиенитах широко распространены согласные и секущие жилы амфиболовых сиенит-пегматитов (таблица 1, анализ 5). Сиенит-мигматиты и апогаббровые фениты отличаются от сиенитов более высокими содержаниями темноцветных минералов:

Комп.	1	2	3	4	5	6	7	8
SiO ₂	37.24	37.32	37.36	31.94	37.37	0.20	0.10	Сл.
TiO ₂	0.10	0.25	0.15	3.37	2.47	0.95	1.50	1.00
Al ₂ O3	20.39	19.35	19.35	14.71	17.50	0.75	0.35	0.35
Fe ₂ O ₃	2.97	5.08	4.00	-	-	68.65	70.24	67.89
FeO	23.55	19.02	21.81	36.31 ^x	27.78 ^x	28.16 ^x	27.92	29.10
MnO	4.60	7.84	6.80	0.06	0.67	0.22	0.14	0.36
MgO	0.47	0.26	Сл.	0.65	0.54	0.30	0.05	0.30
CaO	10.68	10.87	10.17	0.17	0.08	0.54	0.17	0.56
Na ₂ O	-	-	-	0.11	0.66	-	-	-
K ₂ O	-	-	-	7.83	7.53	-	-	-
Сумма	100.00	100.06	99.64	95.65	96.35	100.10	100.53	100.09
F	97.3	98.1	100.0	96.9	96.9	-	-	-
fo	0.23	0.19	0.14	-	-	-	-	-

Химические анализы (мас. %) гранатов, биотитов, магнетитов из фенитов и сиенит-мигматитов

Примечание: 1—3 — гранаты из: 1 — фенитов (образец 1022), 2-3 — сиенитов (образец 980); 3 — сиенит-мигматитов (образец 969); 4-5 — черные слюды: 4 — анниты фенитов (образец 979, дополнительно определено BaO 0.40 и Zn0 0.01); 5 — Zn-аннит фенитов (образец 982, дополнительно определено BaO 0.40 и ZnO 1.35 мас. %); 6-8 - магнетиты: 6 — сиенитов (образец 980); 7—8 — сиенит-мигматитов (образцы 969 и 941; ^х — все железо как FeO, микрозонд EDAX-9100, коллекция эталонов Teylor corporation, USA, Санкт-Петербургский университет, аналитик А. Р. Нестеров). Дополнительно установлено (мас. %) в: гранатах — Sc 0.0017, 0.0014, 0.0010 соотвественно; магнетитах — ZnO 0.07, 0.06, 0.14, V₂O₅ — 0.02, Сл, Сл. Анализы выполнены в Центральной химической лаборатории ПО «Уралгеология», аналитик Н. Ф. Колосова. Количественным спектральным анализом в магнетитах установлены следы Cr. Ni. Co. Nb и полное отсутствие скандия (Полевская даборатория, аналитик А. С. Болков). Компонентный состав. оптические свойства и рентгеновские константы гранатов следующие: образец 1022 — марганецсодержащий гроссуляр-альмандин Пир_{1.8}Альм3_{57.7}Спесс_{10.3} Са-комп_{30.2}; N 1.796; a, 11.632 Å; d 4.03 г/см³; образец 980 — Мл-гроссуляральмандин Пир₁₀Альм₅₁₄Спесс₁₇₃Са-комп₃₀₃; N 1.794; a₀ 11.640 Å; d 4.00 г/см³; образец 969 — Альм₅₆₀Спесс₁₅₂Са-комп_{28.8}; N 1.798; а. 11.634, дополнительно установлены фазы 11.685; 11.621; 11.599 Å (рентгеновская лаборатория ПО «Уралгеология», аналитик А. Н. Айзикович).

Таблица 4

N⁰	№ авт.	Порода	K, %	Ar p, нг/г	t, млн
1	1022	Амфиболит	1.40	39.8	368±14
		фенитизированный			
2	979	То же	1.21	33.1	357±13
3	969	Сиенит-мигматит	1.42	38.5	354±15
4	941	То же	1.43	44.0	396±14
5	980	Сиенит	1.30	38.5	384 ± 15
6	867	Сиенит-пегматит	1.47	40.2	$369 \pm \! 12$

Результаты опредения абсолютного возраста сиенитов и сиенит-мигматитов пород западной части Уфалейского блока

Примечание: Образцы 1—6: 1 — в 2500 метров на юго-запад (ЮЗ 195°) от впадения реки Большой Егусты в реку Уфу; 2 — 3 и 5 — в 4000 метрах на юго-восток от впадения реки Большой Кизил в реку Уфу; 4 — в 1.5 км на восток от кордона Дальняя Тагашка; 6 — южный склон Мурашиных гор.

феррогастингсита, граната, аннита и магнетита (таблица 3, анализы 1—8). Роговая обманка в них так же представлена густо-синезеленым феррогастингситом, гранат — умеренно марганцовистым гроссуляр-альмандином. В апогаббровых фенитах феррогастинсит образует полные псевдоморфозы по обыкновенной роговой обманке, плагиоклаз при этом раскисляется от $A_{H_{32-24}}$ до олигоклаз-альбита_{14–12} и даже до альбита $A_{H_{10-5}}$, в незначительном количестве появляется микроклинпертит. Фениты такого состава постепенно «переходят» во вмещающие амфиболиты. Мощность их незначительна — первые метры.

К-Аг-методом были изучены мономинеральные пробы феррогастингситов из главных типов горных пород (см. табл. 4).

Радиологический возраст феррогастингситов из щелочных пород укладывается в довольно узком интервале — от 396 до 354 млн лет и оказался значительно «древнее» возраста щелочных нефелиновых сиенитов Ильмено-Вишневогорского комплекса — 284—282 млн лет [9]. В пределах Центрально- и Восточно-Уральского поднятий с юго-запада на северо-восток установлено закономерное уменьшение значений абсолютного возраста щелочных пород (К-Аг-метод): нефелиновые сиениты Бердяушского плутона 700 млн лет, апатитовые якупирангиты и флогопитовые пироксениты Суроямского блока 510—590 млн лет, нефелиновые сиениты Нязепетровского комплекса 300—

450 млн лет, нефелиновые сиениты Тахтинского комплекса (западная часть Уфалейского блока) 430-450 млн лет [2], известково-щелочные сиениты западной части Уфалейского блока 354—396 млн лет (материалы настоящей работы), Ильменские горы (К-Аг-метод) нефелиновые сиениты 446 (по породе в целом) и 245 млн лет (изохрона по минералам), Вишневые горы (К-Аг-метод) нефелиновые сиениты 440 (изохрона по породе в целом) и 244 млн лет (изохрона по минералам) (К-Аг-метод) 246 (по биотиту), 250 (по нефелину [6, 11-12]. Радиологический возраст сиенитов-нефелиновых сиенитов Урала в направлении с запада на восток «снижается» от 700 (Бердяушский плутон) до 280-250 млн лет (Ильмено-Вишневогорский комплекс). В общем виде возрастная зональность Урала впервые была установлена ранее [10]. Было отмечено: «обращает на себя внимание зональное распределение геохронологических данных с общей тенденцией уменьшения возраста магматических и метаморфических пород по направлению с запада на восток: от Тараташской глыбы к Восточно-Уральскому поднятию... ». Полученные новые данные в полной мере подтверждают выше указанную тенденцию. На Южном Урале по радиологическому возрасту и структурно-текстурным особенностям следует выделять два типа докебрийско-нижнепалеозойские шелочных пород: (700 -450 млн лет) трахитоидные однополевошпатовые сиенитынефелиновые сиениты с микропертитовым ортоклазом, сопровождаемые трахитовыми порфирами, шонкинитами, бостонита-(Бердяушский плутон, Суроямский, Нязепетровский и МИ Тахтинский комплексы) и палеозойские (440-250 млн лет) Na- и К-Na-сиениты-миаскиты, сиенит-пегматиты и нефелиновые пегматиты (западная часть Уфалейского метаморфического блока, Ильменогорско-Вишневогорский комплекс). По-видимому на Урале существует одна формация щелочных пород, в которой однополевошпатовые ортоклазовые трахитоидные сиенитысиениты нефелиновые времени сменяются BO олнополевошпатовыми микроклиновыми миаскитами (западная часть Уфалейского блока, Ильмено-Вишневогорский комплекс). В связи со сказанным возникает определенное сомнение в нижнепалеозойском возрасте миаскитов. В свете данных возрастных определений предложена двуэтапная модель формирования Ильмено-Вишневогорского комплекса [10], при этом остается совершенно неясным следующее — на каком этапе сиениты и миаскиты приобрели полосчатые текстуры. По существу такие породы являются щелочными бластомилонитами с крайне сложной геологической историей. В рассматриваемой формации

единственным представителем массивных разностей щелочных пород являются вендские (594—590 млн лет) флогопитовые и магнетит-апатитовые якупирангиты Суроямского массива [11], которые, по-видимому, и определяют радиологический возраст формации в целом как венд-кембрийский. Они находятся в западной части ранее выделенной зоны [11]. Возможно предположить, что степень тектонической переработки магматических и метаморфических пород на Среднем и Южном Урале увеличивается в направлении с запада на восток — только этой особенностью представляется возможным объяснить фатальное уменьшение значений абсолютного возраста сиенитов и миаскитов, устанавливаемое различными методами. [12]. «Ранние» нефелиновые сиениты Ильменогорско-Вишневогорского комплекса (440 млн лет) оказались более «древними» чем домиаскитовые известкощелочные сиениты (390-350 млн лет). Эти данные указывают нам лишь на то, что реальный возраст миаскитов пока не установлен и не исключено, что он окажется древнее 440 млн лет.

Литература

1. Белковский А. И. Клинопироксены фенитов и карбонатитов Уфалейского метаморфического блока // Уральский минерал. сборник № 3. Миасс: 1994. С. 104—109.

2. Белковский А. И., Локтина И. Н. Раннепалеозойская ассоциация щелочных гранитов-нефелиновых сиенитов западного склона Среднего Урала // Докл. АН СССР. Т. 215. № 5. С. 1206—1209.

3. Белковский А. И., Литвин А. Л., Остапенко С. С., Петрунина А. А. Закономерности изменения состава и структуры феррогастингситов из сиенит-мигматитов и щелочных сиенитов Уфалейского комплекса // Афмиболы метаморфических комплексов Урала. Свердловск.: УНЦ АН СССР, 1981. С. 19—28.

4. Белковский А. И., Фоминых В. Г., Локтина И. Н. Типоморфный магнетит метаморфогенных мигматитов // Докл. АН СССР. Т. 204. № 4. С. 931—934.

5. Бондаренко Л. П., Дагелайский В. Б. Породы серии сиенитмигматитов района Поркозера и озера Репьярв (Кольский полуостров) // Тр. ЛАГЕД АН СССР. Вып. 9. Л.: Наука, 1960. С. 176—203.

6. Дунаев В. А., Панова М. В., Степанов А. И. К вопросу о возрасте нефелиновых сиенитов Бердяушского плутона // Тр. Ин-та геологии и геохимии УФАН СССР. 1972. Вып. 93. С. 15—23.

7. Иванов Б. Н., Баженов А. Г., Кутепова Л. А., Кошевой Ю. Н. Амфибол и пироксенсодержащие фениты и сиениты центральной щелочной полосы в северной части Ильменских гор // Петрография ультраосновных и щелочных пород Урала. Свердловск: УНЦ АН СССР, 1978. С. 86—96. 8. Левин В. Я. Щелочная провинция Ильменских-Вишневых гор. М.: Наука, 1974. 222 с.

9. Овчинников Л. Н. Обзор данных по абсолютному возрасту геологических образований Урала // Магматизм, метаморфизм, металлогения Урала. Т. 1. Свердловск.: ГГИ УФАН СССР, 1963. С. 57—82.

10. Овчинников Л. Н., Дунаев В. А., Краснобаев А. А., Степанов А. И. Возрастная зональность Урала по радиогенным данным // Докл. АН СССР. 1965. Т. 180. № 1. С. 185—188.

11. Свяжин Н. В., Жилин И. В., Петров В. И., Селиверстов Г. Ф. Щелочные породы Нязепетровского района на западном склоне Урала // Магматические формации, метаморфизм, металлогения Урала. Т. IV. Свердловск: ГГИ УФАН СССР, 1971. С. 421—429.

12. Чернышева И. В., Кононова В. А., Крамм У., Гауэрт Г. Изотопная геохронология щелочных пород Урала в свете уран-свинцового метода по цирконам // Геохимия. 1987. № 3. С. 323—338.

13. *Megerlin N*. Sur 1es syenites de la region de Ianakafi (Sud de Madagadcar) // Compt. rend. Semaine geo1, 1967. Tananarive, 1968. S. 39-41.