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INTRODUCTION AND ARCTIC OCEAN ICE-RAFTING
Core Fl-380, taken on ice island T-3, was recovered from a prominent

slope on the eastern margin of Alpha Ridge (Fig. 1), an irregular and broadly
fractured arch ~500 km wide and 900 km long and cited as “one of the few
large-scale geological structures on Earth whose tectonic evolution is still
unknown” (Weber and Sweeney, 1990, p. 330). The core includes the
normal M to A2 lithostratigraphic units (Holocene to Pliocene or Miocene?)
for this part of Alpha Ridge (Clark et al., 1980), with the exception that the
lowest part of the core contains phyllonite clasts (Fig. 2). The clasts range
from a few millimeters to 3 cm in size and are associated with fragments of
metaquartzite with a heavy iron-oxide crust. The clasts compose only a few
percent of the total volume of sediment (~2%) in the lower 60 cm of the

core. They occur in unconsolidated reddish silty sediment rich in quartz,
albite, oligoclase, and K-feldspars. This association differs from sediment
of the same stratigraphic interval that occurs in more than 200 cores recov-
ered from adjacent areas of the Alpha-Mendeleyev Ridge complex and is
analogous to the Northwind Breccia, a submarine talus derived from sub-
marine weathering of Northwind Ridge, 1000 km distant in the Arctic
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Figure 1. Location and general bathymetry of Alpha Ridge and other
Arctic Ocean structures. Specific core data include Fl-380, 84°37’02”N,
128°27’53”W, 2401 m, 345 cm; Fl-379, 84°38’11”N, 128°44’50”W, 2268 m,
342 cm; Fl-331, 84°16’01”N, 134°37’39”W, 2659 m, 348 cm; Fl-430,
85°59’27”N, 133°20’29”W, 1860 m, 324 cm; Fl-214, 80°17’26”N,
159°30’56”W, 3021 m, 335 cm. Site of possible early Canada basin
spreading axis is indicated.

Figure 2. Lithostratigraphy
and chronology of core
Fl-380 (345 cm) showing
position of clasts in basal
60 cm of core. A2 to M
stratigraphy is from Clark
et al. (1980) and Clark
(1996).



Ocean (Grantz et al., 1998). The Northwind Ridge talus accumulated during
deposition of lithostratigraphic unit A. However, Fl-380 sediment contains
fewer clasts, which are not as lithologically diverse as the Paleozoic and
Mesozoic clasts described from Northwind Ridge cores.

Glacial ice rafting was the most common mode of large size sediment
transportation and deposition in the central Arctic Ocean during the late
Pliocene and Pleistocene (Clark and Hanson, 1983; Bischof et al., 1996). To
date, the earliest central Arctic Ocean ice-rafted debris is that identified in
the upper part of lithostratigraphic unit A (Thiede et al., 1990; Clark, 1996).
The upper part of unit A correlates approximately with the Matuyama-
Gauss magnetic boundary (Clark, 1996), which is considered to be
ca. 2.6 Ma (Cande and Kent, 1992) (Fig. 2). This is approximately the same
time as initiation of significant ice rafting in the North Pacific (Rea et al.,

1995) and the North Atlantic (Shackleton et al., 1984). Older North Atlantic
Cenozoic ice-rafted debris is associated with more restricted ice sources and
accumulated in coastal areas, not the deep ocean (Larsen et al., 1994). The
clasts of Fl-380 occur 150 cm below unit A. Low sedimentation rates in this
part of the Arctic Ocean (Clark et al., 1986) suggest that the clasts accumu-
lated 1–2 m.y. prior to initiation of major glacial ice-rafting at 2.6 Ma.

MINERALOGY AND Ar AGES OF CORES
The mineralogy of clast-bearing basal sediment of Fl-380 was com-

pared to that of equivalent stratigraphic units in other Alpha Ridge cores
(Table 1). Sediments of all cores at similar stratigraphic intervals contain
predominately quartz, microcline, albite, and oligoclase. However, chert,
not present at the base of Fl-380 or adjacent Fl-379, occurs in Fl-430,
~220 km from Fl-380 and Fl-379, and also is a common constituent in the
same stratigraphic interval of Fl-214, taken ~800 km from the site of
Fl-380. Another minor difference includes the presence of tourmaline in
Fl-214 but not in Fl-380, and the presence of zircon, sphene, and biotite in
Fl-380 but not in Fl-214, the most distant core from the Alpha Ridge. If
the clasts of Fl-380 were locally derived, mineralogy of most distant cores
should show the greatest differences. While there is an overall similarity
of major mineralogy in all cores, the mineral assemblages of Fl-380 and
adjacent Fl-379 suggest a granitic, igneous-metamorphic source.

In order to determine if there were more significant differences in
sediment of different cores, we separated K-feldspar grains from several
core intervals for single-crystal 40Ar/39Ar laser-probe ages. If Fl-380 grains
were derived locally, their ages should be different from grains from cores
farther away from Alpha Ridge. We analyzed 214 grains; only grains with
more than 99% radiogenic 40Ar* were considered. Grains obtained from
the base of Fl-380 and Fl-379 (Fig. 3) illustrate overlap in Paleozoic to
Middle Proterozoic ages and may have originated from similar sources. In
younger sediment deposited after initiation of major ice rafting (upper part
of A and younger, Fig. 2), a similar range in ages was determined (Fig. 4).
Although fewer grains were analyzed from more distant cores Fl-331 and
Fl-214, a similar overlap in age is apparent (Fig. 5). 

INTERPRETATION
What appears at first to be the easiest explanation for the occurrence of

clasts at the base of Fl-380, ice rafting, also raises important questions. Sea
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Figure 3. 40Ar ages for feldspars in equivalent pre-2.6 Ma sediment at
base of cores Fl-380 and Fl-379.



ice is known to raft silt and clay-size sediment great distances in the Arctic
Ocean (Bischof and Darby, 1997), but it is only under more unusual condi-
tions that sea ice can pick up and raft particles the size of the largest phyl-
lonite clasts at the base of Fl-380 (Reimnitz et al., 1992, 1994). In addition,
fast ice, thought to be important for this process, commonly melts in place
prior to spring breakup and drifting (Reimnitz et al., 1992). Glacial ice raft-
ing is a better explanation than sea-ice rafting because of the large size par-
ticles that usually are transported (Clark and Hanson, 1983). However, it is
important to note that the presence of either kind of ice in the central Arctic
Ocean during the earliest Pliocene or possibly late Miocene, the age of the
sediment-bearing clasts in Fl-380, has been questioned by many Arctic
workers who argue that the Arctic Ocean was ice free at this time (Funder
et al., 1985; Raymo et al., 1990; Cronin, 1991; Gladenkov et al., 1991;
Brigham-Grette and Carter, 1992; Dowsett et al., 1992). Although we are
uncertain about the ice cover from 3 to 5 Ma, we also note that Fl-380 was
taken from a steep slope of a ridge escarpment that rises at least 1500 m to
the top of the Ostenso Seamount, a good setting for the accumulation of
submarine talus (Fig. 6). The mineralogy and, to some extent, the isotope
ages are consistent with a local origin. If the clasts were derived from
bedrock of Alpha Ridge, then at least one part of the ridge must include
metasediment. If so, Alpha Ridge may be a complex of both basaltic rocks
(Van Wagoner et al., 1986; Jokat et al., 1999) and metasediment. While geo-
physical evidence for an oceanic basaltic Alpha Ridge is substantial (Weber
and Sweeney, 1990; Jackson et al., 1986; Tarduno et al., 1997), a continen-
tal origin also has been repeatedly suggested (King et al., 1966; Coles et al.,
1978; Zonenshain and Natapov, 1989; Johnson et al., 1994). Although
evidence presented here does not solve the problem, it suggests that future
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Figure 4. 40Ar ages for feldspars from post-2.6 Ma sediment
in cores Fl-380 and Fl-379.

Figure 5. 40Ar ages for feldspars from pre-2.6 Ma sediment
in cores Fl-214 and Fl-331; both cores were taken at signifi-
cant distances from Fl-380 (Fig. 1).

Figure 6. Details of site of core Fl-380 (star symbol) on slope of
Ostenso Seamount of Alpha Ridge. Drift track of ice-island T-3 and
sites of other cores taken along track, none of which contain phyl-
lonite clasts, are also shown.



theories of the origin and structure of Alpha Ridge as well as the time of initia-
tion of Arctic Ocean ice rafting must consider the orphan metasediment
clasts at the base of core Fl-380.
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