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Abstract

The simplest way to derive an estimate for the sustainable yield of a borehole is to study the behaviour of drawdowns
observed during a hydraulic (also known as a pumping test) of the borehole, through an appropriate conceptual model. The
choice of this model is probably the most difficult choice that the analyst of such a hydraulic test has to make, since a wrong
model can only lead to the wrong conclusions and failure of the borehole.

This paper discusses a semi-analytical and two numerical methods that can be used to simplify the analyses of hydraulic tests in
fractured rock formations. The first method, called the Method of Derivative Fitting (MDF), uses a new approach to identify the
conceptual model needed insuch analyses.This isachieved by characterizing the various flowperiods in fractured rock aquifers with
numerical approximations of the first logarithmic derivative of the observed drawdown (the derivative of the drawdown with respect
to the logarithm of the time). Semi-analytical expressions are used to estimate the influence that boundaries may have on the
observeddrawdownand the sustainable yieldofa borehole — the rateatwhich a borehole can be pumpedwithout lowering the water
level below a prescribed limit. An effort has also been made to quantify errors in the estimates introduced by uncertainties in the
parameters, such as the transmissivity and storativity, through a Gaussian error propagation analysis. These approximations and the
MDF, called the Flow Characteristics Method (FCM) have been implemented in a user-friendly EXCEL notebook, and used to
estimate the sustainable yield of a borehole on the Campus Test Site at the University of the Orange Free State.

The first numerical method, a two-dimensional radial flow model, is included here because it allows the user more freedom
than the FCM, although it requires more information. One particular advantage of the method is that it allows one to obtain
realistic estimates of the storativity and transmissivity of Karoo aquifers in particular, which is required in the estimation of the
sustainable yield of a borehole.

There is no doubt that a three-dimensional numerical model, the second numerical method discussed here, is the best method with
which to analyse a hydraulic test in a fractured aquifer. The method was consequently used to evaluate the accuracy of the imple-
mentationof theMDFin theExcelnotebookand itsapplication to theboreholeon theCampusTestSite.Thegoodagreementbetween
the sustainable yield estimated with the three-dimensional numerical model and the FCM indicates that the FCM can be used with
confidence to estimate the sustainable yields of boreholes in fractured media.q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

South Africa can no longer satisfy the demand for
potable water from surface sources alone. This has led
to the drilling of numerous boreholes in the past few
years, principally to supply in the needs of rural
communities. Since the communities are spread all
over the country it is simply not economical to
study each aquifer in detail to ensure that the bore-
holes will not fail. However, the country also cannot
afford the costs associated with the failure of a large
number of the boreholes, which is often the case. One
reason for this is that more than 80% of the aquifers in
South Africa occur in hard rock formations, while the
methods used to determine sustainable yields for the
boreholes have all been developed for porous aqui-
fers.

The motion of groundwater has been studied exten-
sively since World War II. However, the procedures
conventionally used in the analysis of hydraulic test
date mainly apply to homogeneous porous aquifers
(Gringarten, 1982), and are therefore inadequate for
the analysis of data from fractured-rock formations.
This applies in particular to the analysis of data from
hydraulic tests, commonly (but incorrectly) also
known as pumping tests (Domenico and Schwartz,
1990). Although the literature abounds with ‘recipes’
with which hydraulic tests can be analysed, e.g.
(Duffield and Rumbaugh, 1991; Kruseman and De
Ridder, 1991), very little attention is usually paid to

the basic physical principles involved in applying the
‘recipes’. Since these tests play such an important role
in groundwater investigations, it may be worthwhile
to briefly first review the basic physical principles on
which the tests are based before continuing with this
discussion.

Groundwater is a physical phenomenon and there-
fore subject to the laws of physics, particularly the
laws of mechanics and hydrodynamics that governs
the flow of fluids. If the geometry of the geological
formations (in which an aquifer occurs) is known, the
application of these laws allows one to describe the
flow of groundwater in the aquifer with a mathema-
tical equation. In groundwater flow this so-called
governing equation is usually a partial differential
equation. The flow of groundwater can therefore, in
principle, be evaluated by studying the mathematical
solution of the governing equation. However, there
are at least two constraints that must be satisfied to
do this:

(a) One must get rid of the indeterminate constants
(or functions in two or three-dimensions) intro-
duced by the integration of the differential equa-
tion.
(b) Differential equations that describes the motion
of one substance through another usually contain
one or more what Botha (1994) calls ‘relational
parameters’, that must be known explicitly before
the differential equation can be solved.
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Nomenclature

Latin symbols
a, b, c Parameters used to denote generic equation coefficients and distances
C Parameter in the Cooper–Jacob approximation of the Theis solution [l]
d Thickness of the aquifer [L]
Dzf Partial derivative of the functionf with respect to the variablez
f(x, t) Strength of sources or sinks in the aquifer [T21]
K (x, t) Hydraulic conductivity tensor [L T21]
Q The discharge rate [L3 T21]
Qobs Discharge rate of a constant rate test [L3 T21]
Qp Prescribed discharge rate [L3 T21]
Qsus The sustainable yield [L3 T21]
r Radial co-ordinate [L]
rb Radius of a borehole [L]



In the case of groundwater flow the relational para-
meters depend implicitly on how the geometry of the
formations affects their interaction with the fluid
(Black, 1993; Botha et al., 1998). They will conse-
quently be referred to as aquifer or hydraulic para-
meters in the discussion that follows.

The previous constraints are usually satisfied in the
classical physical and engineering sciences by
prescribing suitable initial and boundary conditions
for the domain of interest, while the relational para-
meters are determined from laboratory measurements.
This approach is, unfortunately, not applicable in
geohydrology, because it is difficult to determine the
exact extent of an aquifer, while laboratory measure-
ments of the aquifer parameters are often inconsistent
with field data.

Another difficulty with the previous approach is
that there is not a ‘universal’ equation that can be
used to describe the flow of groundwater. Most
groundwater investigations are consequently based
on the classical differential equation for flow of a
constant density fluid in a saturated porous medium,
which assumes in the case of groundwater flow the
form (Bear, 1979; Botha, 1996).

S0�x; t�Dtw�x; t� � 7·�K �x; t�7w�x; t��1 f �x; t� �1�
wherew (x, t) is the piezometric head andf(x, t) the
strength of sources or sinks in the aquifer at the posi-
tion x � { x; y; z} and the timet. The two aquifer para-
meters,S0(x, t) andK (x, t) are, respectively, known as
the specific storativity and hydraulic conductivity of
the aquifer. Since the rocks on earth are mainly aniso-
tropic, the hydraulic conductivity is a tensor (as indi-
cated by the bold font used to denote it). Eq. (1) is
consequently a complex three-dimensional partial
differential equation. One or more of the following
simplifying assumptions are therefore often made
when applying Eq. (1) to estimate aquifer parameters
in practice:

(a) Both the aquifer parameters are scalars that do
not depend on space and time.
(b) Flow in the aquifer is essentially horizontal, in
other words satisfies the hydraulic approach (Bear,
1972).
(c) Flow in the aquifer is three-dimensional, but
symmetric in the radial direction, see for example
(Botha et al., 1998; Neuman, 1975).

The advantage of these assumptions is that they
reduce the complexity of Eq. (1) considerably. For
example, the first two assumptions allow one to
reduce the dimensions of Eq. (1) by integrating it
over the vertical thickness (d) of the aquifer, to obtain
(Bear, 1979)

SDts�x; y; t� � T7 2s�x; y; t�1 F�x; y; t� �2�
wheres(x, y, t) is the drawdown of the water level in a
borehole with reference to its value at a timet0,
usually taken as zero. The parametersS�� S0d� and
T�� Kd�; d the thickness of the aquifer, are conven-
tionally known as the storativity or storage coefficient
and transmissivity of the aquifer, respectively, while

F�x; y; t� �
Zd

0
f �x;t� dz

Although Eq. (2) is mathematically considerably
simpler than Eq. (1), one still needs to prescribe suita-
ble boundary and initial conditions and know the aqui-
fer parameters and the strength of sources or sinks
explicitly before it can be solved. As mentioned
above this is not always achievable in practice. One
approach to circumvent this problem is to study the
behaviour of an aquifer inversely. In this approach the
water level in one borehole is disturbed and the subse-
quent response of the water levels in this and or adja-
cent boreholes measured. The measured water levels
are then fitted numerically (or graphically) to what is
known as aconceptual modelof the aquifer. Such a
conceptual model essentially consists of an analytical
solution of Eqs. (1) or (2), also known as atype curve,
or a numerical solution based on an assumed set of
hydraulic parameters, boundary and initial conditions.
This procedure is known as ahydraulic testin geohy-
drology, and theinverse problemin mathematics.

The inverse problem for Eqs. (1) or (2) suffers,
unfortunately, from at least two inherent difficulties.
The first is that the method is not well posed in the
sense of Hadamard (1932). In the normal formulation
of complexity theory, this means that the solution of
the inverse problem cannot be computed with a speci-
fied error. The possibility therefore exists that the
observed response of an aquifer can be fitted with
two or more sets of aquifer parameters, boundary
and initial conditions that differ completely from
one another.
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The second difficulty is: how does one choose the
conceptual model? The correct approach to answer
this question, at least from a physical point of view,
would be to study the physical dimensions and
geometry of the aquifer in detail. However, this is a
very extensive and costly exercise. A method,
commonly used to circumvent this difficulty, is to
compare the observed water levels with the analytical
solution of a known conceptual model, also known as a
type curve, see, e.g. Kruseman and De Ridder (1991).
Such an approach may be acceptable, when the aquifer
is single-layered, but can lead to completely wrong
results in the case of multi-layered aquifers, especially
when the water levels are measured in boreholes that
penetrate all the aquifers. Botha and Verwey (1992)
obtained a near perfect fit between the water levels in
a two-layered confined aquifer system and the type
curve of Neuman (1975) for a phreatic aquifer.

2. Water levels and the geometry of an aquifer

A physical phenomenon, such as the flow of
groundwater, is always related to the three basic
constituents of the Universe — space, time and
matter. The governing equations of such phenomenon
are therefore nothing more than an abstract descrip-
tion of how these three constituents interact with one
another to produce a specific phenomenon. The possi-
bility consequently exists that one may not be aware
of some vital interactions in a physical phenomenon,
by concentrating on the governing equation alone and
neglect them in applications of the equation. For
example, Eqs. (1) and (2) are nothing more than a
combination of the general law of mass conservation
from physics and Darcy’s law from fluid mechanics.
The law of mass conservation is a universal law.
However, Darcy derived his law from observations
on water percolating through a column of sand with
its characteristic geometryof voids and grains —
commonly known as aporous medium. The law
may therefore not be applicable to media with differ-
ent geometric properties. Since the geometry of a
porous medium is so simple, it is often neglected in
the analysis of hydraulic tests (Black, 1993).

The geometries of aquifers that occur in hard-rock
formations can be conveniently divided into two
classes. The first class, calledfractured aquifers, are

commonly associated with igneous and metamorphic
rocks. These very dense rocks can only store signifi-
cant quantities of water if permeated by large numbers
of arbitrarily orientated intersecting fractures, unless
they are weathered. Since the behaviour of these aqui-
fers can only be studied with special methods, such as
percolation theory (Berkowitz and Balberg, 1993;
Stauffer and Aharony, 1992), they will not be
discussed further here.

The second class of aquifers occur mainly in
layered sedimentary rocks, such as the Karoo forma-
tions in South Africa. These formations, which still
display the geometry of a porous medium, but with
large variations in porosity, are sometimes intersected
by bedding-plane fractures. Botha et al. (1998) conse-
quently refer to them asmulti-porous fractured aqui-
fers. The bedding-plane fractures often have
significant apertures (,1–10 mm) and underlay
large areas. The flow field in these aquifers and the
drawdown in boreholes, therefore, differ considerable
from that observed in a porous aquifer. An example of
this difference is illustrated in Fig. 1. This figure
compares the drawdown observed in a typical Karoo
borehole near the town of Philippolis south-west of
Bloemfontein, with the drawdowns computed from
the type curve of Gringarten and Ramey (1974) for
a horizontal fracture and the Theis curve for a conven-
tional porous aquifer.

3. Model identification

3.1. General

It follows from the preceding discussion that it is
very important to know the geometry of an aquifer
before selecting a type curve (or the numerical
model) with which to analyse the data from a
hydraulic test. However, this can be a daunting
task and not very practical in those cases where
one is only interested in supplying small commu-
nities with water from a few boreholes. This led
the authors to introduce the Method of Derivative
Fitting (MDF) for the analysis of constant rate tests,
which is the conventional type of hydraulic test used
in developing water supply schemes for rural
communities in South Africa. This method will
now be described in more detail.
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3.2. The method of derivative fitting

The time derivative of the pressure (p) has been
used for years in the oil industry to analyse the data
from well tests (Bourdet et al., 1984; Horne, 1997).
The advantage of this approach is that small variations
in the pressure can be more easily recognized in a
graph of the time derivative of the pressure, than in
a graph of the pressure. This approach can of course
also be applied to the piezometric head,f (t), which is
related to the pressure by the equation

f�t� �
Zp

p0

dp
rg

1 z

wheret is the time andza suitable reference elevation,
or to the drawdown defined as

s�t� � f�t�2 f�t0�
with t0 as a suitable time. This is the Method of Deri-
vative Fitting (MDF) referred to above.

One way in which to apply the MDF is to simply fit
the derivative of a conventional type curve directly to
the first divided differences of the observed draw-
down,s, defined by the equation

Dsi

Dti
� s�ti11�2 s�ti�

ti11 2 ti

However, this means that one has to select a suitable
type curve a priori, which may not be obvious, as
pointed out above. To circumvent this difficulty the
flow characteristics of a number of aquifers in South
Africa were analysed. This analysis indicated that
there are essentially three types of flow that occur in
the hard-rock formations of South Africa: radial flow,
flow in vertical and horizontal fractures and flow in a
dual porosity medium.

Radial flow can be characterized by the Theis equa-
tion

s�r ; t� � Q
4pT

Z∞

u

exp�2x�
x

dx� Q
4pT

W�u�

u� Sr2

4Tt

 ! �3�

whereQ is the discharge rate,T the transmissivity and
S the storativity of the aquifer. The first derivative of
this equation with respect to the logarithm of time,
henceforth referred to as the log derivative,

s0�r ; t� � 2s
2 ln �t� �

Q
4pT

exp 2
Sr2

4Tt

" #

will therefore approach a straight line parallel to the
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Fig. 1. The drawdown observed in borehole A05 at Philippolis by (Botha et al., 1996) fitted to the type curve of Gringarten and Ramey for an
aquifer intersected by a horizontal fracture and the Theis curve for a horizontal porous aquifer.



time axis on a log–log graph ofs0(r, t) as t ! ∞; as
illustrated in Fig. 2.

Flow in fractures and dual porosity media can be
characterized similarly. For example, the drawdown
in an aquifer intersected by a horizontal fracture will
show three but sometimes four characteristic periods
(Gringarten and Ramey, 1974) in the absence of
storage flow, as illustrated in Fig. 1. At a very early
time the drawdown often resembles storage flow in
which case it can be described by a linear function of
the time. This period is followed first by one in which
the drawdown can be described by a function oft1/4

(only if the horizontal fracture has significant
storage), and then one in which the drawdown can
be described as a function of

�
t
p

: During the last
period the dominant flow, conventionally referred
to as linear flow, is from the aquifer matrix to the
fracture. This period is followed by one in which the
drawdown can again be described by a linear func-
tion of t. However the period will be present only if
the areal extent (radius) of the fracture is larger then
the thickness of the aquifer. This period is followed
by one in which drawdown behaves as a function of
ln� �

t
p �: The type of flow during this period will be

called pseudo-radial flow in the discussion that
follows. An infinite conductive, vertical fracture
behaves in exactly the same way, except that it
never displays the third period where the drawdown

behaves as a function oft. The log derivatives of the
four periods in Gringarten and Ramey’s model for a
horizontal fracture,s0(r, t) will hence all display
straight lines on a log–log graph ofs0(r, t) as a func-
tion of time, with slopes 1/4, 1/2, 1 and 0, respec-
tively, as illustrated in Fig. 2.

The previously described flow periods are slightly
modified in the case of a finite conductive fracture in
that a period in which water flows from both the
fracture and the matrix to the borehole appears
between the storage flow and linear flow periods.
During this bi-linear flow period the drawdown
should behave as a function oft1/4 (Cinco et al.,
1978), as illustrated in the inset of Fig. 1.

One assumption in the model of Gringarten and
Ramey (1974) for a horizontal fracture is that the
flow from the matrix to the fracture is constant.
This assumption will only be satisfied in situations
where the piezometric level in the rock matrix does
not change much with time. The flow from the matrix
to the fracture, however, will in practice be deter-
mined by the piezometric level in the aquifer,
which tend to increase steadily from the borehole
towards the boundaries of the aquifer (Botha et al.,
1998). There is thus a possibility that an aquifer
intersected by a horizontal fracture may be able to
supply water to a borehole at a steady rate for a
prolonged period of time. The water level in such a
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borehole will display a constant value if the borehole
is pumped at a rate less than or equal to the rate at
which the aquifer can supply water to the fracture, as
illustrated in Fig. 3.

A borehole in a dual porosity aquifer will with-
draw its water first from the highly permeable
fractures and then the less permeable matrix. The
water level in such a borehole therefore at first tend
to decline normally, but then tend to stabilize,
before it continues to decline again. Both the first
and last legs of the drawdown curve can be
described by a conventional Theis type curve-the
first with hydraulic parameters representative of the
fractured medium and the second with hydraulic
parameters representative of the rock matrix
(Moench, 1984). The first derivative of the draw-
down in dual porosity flow should therefore display
a clear minimum.

The advantage of the MDF method-its ability to
delineate small changes in the observed water
levels-unfortunately, also means that it is very sensi-
tive to noise in the observed water levels. The method
should therefore only be applied to observed draw-
downs free of noise in theory.

There are a number of approaches that can be
used to reduce the influence of noise in the observed
data. One is to compute the derivative from a least
squares approximation of the first divided difference,
which assumes in the case of the log derivative the

form

2s
2 log�t� �

n
Xn
i�1

log�ti�s�ti�2
Xn
i�1

log�ti�
Xn
i�1

s�ti�

n
Xn
i�1

�log�ti��2 2
Xn
i�1

log�ti�
" #2

wheren is a suitable number of data points (usually
3, 5 or 7) that have to be determined experimentally
to achieve the best smoothing. Another approach,
suggested by Horne (1997), is to use data points
that are separated by at least 0.2 of a log cycle, rather
than adjacent data points.

3.3. Boundary conditions

As mentioned above a differential equation can
only be solved in general if one prescribes suitable
boundary conditions — conditions that exist at the
point, line or surface that bounds the domain of
the differential equation, but does not form part of
the domain. However, there is a tendency in the
groundwater literature to follow the petroleum litera-
ture and regard discontinuities in the coefficients of
the differential equation also as ‘internal boundaries’.
One reason for this is probably because the disconti-
nuities that arise in grondwater flow are always related
to an abrupt change in the lithology of the rocks that
host an aquifer, or the presence of a fracture or a fault.
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It must be kept in mind though that these discontinu-
ities always occur within the domain of the differen-
tial equation and therefore do not form boundaries.
The theory of differential equations consequently
only allows one to prescribe continuity conditions
and not boundary conditions, for discontinuities. It
may therefore be more appropriate to describe them
with the termgeometric boundaries, if one wants to
introduce another term.

There are essentially two types of boundaries that
may affect the behaviour of the drawdown in an aquifer
during a constant rate test — Dirichlet or prescribed
head boundaries and Neumann or prescribed flux
boundaries. However, the exact shape of aquifer bound-
aries can vary enormously in practice. The following
discussion will therefore be restricted to the few that
have been observed in South African aquifers.

(a) A constant or variable head boundary. This type of
boundary, also referred to as a recharge boundary,
occurs where an aquifer is adjoint to or intersected
by a body of surface water, such as a river or dam. The
water level of a borehole in such an aquifer will in
general approach a limit during a constant rate test,
while its first and higher derivatives will tend to zero.

(b) A closed impermeable boundary. This type of
boundary occurs where the aquifer is completely
bounded by impermeable formations. The character-
istic dolerite ring dykes of the Karoo formations are
prime examples of an impermeable boundary. The
water level of a borehole in such an aquifer will ulti-
mately behave as a linear function of the time with
slope 1 during a constant rate test, as shown by the
analytical solution of Muskat (1937), or a water
balance of the aquifer (Horne, 1997).
(c) Linear and intersecting linear impermeable
boundaries. The linear dolerite dykes that occur so
frequently in the Karoo Sequence are prime examples
of this type of boundary. Since the intersecting dykes
can form complex patterns it is not possible to
describe their influence on the drawdown in general
terms. However, there are a few common situations
where the method of images (Bear, 1979) can be used
to derive expressions for the drawdown in a borehole.

To illustrate the method of images consider first the
case of a borehole situated at a distancea from a single
impermeable boundary, as shown in Fig. 4(a). Letqa be
the flux of water at the position of the boundary towards
the borehole in the absence of the boundary. It is not
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difficult to see that an imaginary image of the borehole
— a borehole with the same discharge rate but situated
at a distance,a, on the opposite side of the boundary will
cause a similar, but oppositely directed, flux of water
towards itself. The sum of the two fluxes will therefore
be zero at the boundary, thereby simulating the
impermeable boundary. The true drawdown in the real
borehole can therefore be expressed as the sum of the
unrestricted drawdowns in the two boreholes, that is

s�t� � sr�t�1 si�t�
where the subscripts r and i refer to the real and image
borehole, respectively. One can therefore expect that the
drawdown and the slope of its log derivative will tend to
double near the boundary.

A similar line of reasoning can also be used to derive
expressions for more complex impermeable (or
prescribed head) boundaries. The only difficulty is that
the response of some of these boundaries, such as the
two parallel impermeable boundaries in Fig. 4(c), can in
theory only be simulated with an infinite number of
image boreholes. However, the contribution of the indi-
vidual boreholes will decrease with their distance, so
that one need only to include those closest to the bound-
ary in computing the response of the boundary. A few
analytical expressions for the true drawdowns in aqui-
fers with impermeable boundaries are listed in Table 1.
These expressions are all based on the assumption that
the unrestricted drawdown in the boreholes can be
described by the Theis solution in Eq. (3) and therefore
only apply to radial symmetric flow. However, this does
not mean that the method of images applies only to
radial symmetric flow. Other types of flows can also
be handled by merely replacing the expression for the
unrestricted drawdown with one that describes the
specific type flow.

The behaviour of the first logarithmic derivatives of
the drawdown for some of the boundary conditions
and drawdown curves described above are illustrated
graphically in Fig. 5.

4. The analysis of constant rate tests

4.1. General

As will be shown below, the MDF can be used
directly to determine the sustainable yield of a
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Table 1
Analytical expressions for the drawdown in a borehole surrounded
by the various impermeable boundaries. The subscripts ofu give the
distances needed to compute the values ofu

Single linear boundary

s�t� � Q
4pT

�W�ur�1 W�u2a��

Two perpendicular boundaries

s�t� � Q
4pT

�W�ur�1 W�u2a�

1 W�u2b�1 W�u2c��

Two parallel boundaries

s�t� .
Q

4pT
�W�ur�1 W�u2a�

1 W�u2b�1 2W�u2a12b�
1 W�u2a14b�1 W�u4a12b�
1 2W�u4a14b��

Impermeable square boundary
with sides 2a and borehole at
its centre(Streltsova, 1988)

s�t� .
Q

4pT
�W�u2a�1 W�2u2a��

Tt

Sa2 ,
1
p

� �

s�t� .
Q

4pT
22:6082

6
p

exp 2
p2Tt

Sa2

 !
1

pTt

Sa2 1 2 ln
2a
r

� �" #
1
p

#
Tt

Sa2 , 1
� �

s�t� .
Q

4pT
22:6081

pTt

Sa2 1 2 ln
2a
r

� �� �
Tt

Sa2 $ 1
� �

Impermeable circular
boundary with radius R and
borehole at its centre(Muskat,
1937)

s�r ; t� .
Q

2pT
2r2 2 3

4
1 ln

1
r

1
2T

SR2 t
2T

SR2 t i 2:5
� �" #



borehole. However, there are situations where more
information is needed on the hydraulic parameters of
an aquifer, than what can be obtained from the MDF.
There is little doubt that a three-dimensional numer-
ical model will be the best choice for the analysis of
the multi-porous fractured aquifers in the Karoo
Sequence. Unfortunately, it is not always possible to
justify the use of such a model in practice, because of
the large amounts of data required by the models. Two
methods that proved to be very useful in such situa-
tions will therefore be briefly described in this section.

The first method, referred to as the basic model
below, is based on the Cooper–Jacob approximation
of the Theis solution. The second method — a numer-
ical method — was developed specifically with the
geometry of Karoo aquifers in mind (Botha et al.,
1996a,b, 1998). The last method has been implemen-
ted in a user-friendly computer package RPTsolv,
copies of which are available on the website of the
Institute for Groundwater Studies.

4.2. The basic model

It is not difficult to show that the Theis solution for
an infinite homogeneous aquifer in Eq. (3) is a parti-
cular solution of Eq. (2). Type curves for an aquifer
with an infinite domain must consequently reduce to
this equation at large times. Meier et al. (1998) have
shown that in many of these cases the Cooper–Jacob
approximation of Eq. (3) can be used to compute an
effectiveT-value for the aquifer from the drawdown
data at a sufficiently late time,t0 say, if expressed in
the form

s� 2:3
Q

4pT
log C �4�

whereC is a parameter that depends on the aquifer
type. Values ofC for a few of these aquifers are listed
in Table 2. However, thisT is not representative of the
fracture or the rock matrix, but the system of fracture
and rock matrix, except for the homogeneous porous
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Fig. 5. Graphs of the first logarithmic derivative of the drawdown in a borehole for a few types of geometries and boundaries.

Table 2
Values of the parameterC in Eq. (4) for a few typical types of aquifers, withXf the half width of the vertical fracture,Wd the width of the dyke or
fault andb a constant� 1/3 for an orthogonal fracture system and 1 for a linear system (Kruseman and De Ridder, 1991)

Ca c Aquifer

(2.25Tt0)/(r
2S) 2.25/r2 Homogeneous porous (Theis-

model)
(2.25Tft0)/(r

2Sf) 2.25/r2 Dual porosity (early time)
(2.25Tft0)/[r

2(Sf 1 bSm)] 2.25/r2 Dual porosity (late time)
(16.59Tt0)/[S(Xf)

2] 16.59/[(Xf)
2] Single vertical fracture

(40T3t0)/[S(WdTd)
2] (40T2)/[(WdTd)

2] Conductive dyke or fault zone

a The subscripts f, m and d refer to the fracture, rock matrix and dyke, respectively.



aquifer of course. This value ofT can be easily calcu-
lated from the log derivative of the drawdown in
Eq. (4), given by

2s
2 log t0

� 2:3
Q

4pT
�5�

An estimate of the storativity can likewise be obtained
form the log derivative of log(s) in Eq. (4)

2 log�s�
2�log�t�� �

1
ln�C� ;

1
ln�act0� �

1
bln�10�

so that

a � T
S
� 10b

ct0
�6�

4.3. RPTsolv

The first attempt to use a numerical model for the
analysis of hydraulic test data is probably that of
Rushton and Booth (1976). This work was later
expanded and improved by Rathod and Rushton
(1984, 1991). However, their numerical models are
cumbersome and do not address vertical flow,
which, as the preceding discussion shows, seems to
be a characteristic property of many aquifers in South
Africa.

There are two approaches that one can use to study
vertical flow. The first is to use a full three-dimen-
sional model and the second to use a vertical two-
dimensional model. Since three-dimensional models
require vast quantities of data and sophisticated
computer equipment they are often not very suitable
to use in practice. This leaves one only with the two-
dimensional vertical model. However, it must be
remembered that the flow of groundwater is essen-
tially a three-dimensional phenomenon. This means
that one must get rid of one of the horizontal direc-
tions to apply a two-dimensional vertical flow model.

There are essentially two methods that can be used
to reduce the dimensions of a three-dimensional
model. The first method, which Botha (1996) calls
thephysical approach, is to simply discard the direc-
tion one is not interested in. However, this approach
should only be applied if the phenomenon is naturally,
or artificially, restricted to two dimensions. The
second alternative is what Botha calls themathema-
tical reduction of dimensions. What is done in this

case, is to integrate the mathematical model for the
phenomenon over the dimension to be neglected
(Bear, 1979, 1977). This approach allows one to
express the vertical flow model in the form (Botha
et al., 1998; Verwey et al., 1995)

rS0�r ; z; t�Dtw�r ; z; t� � r7·�K �r ; z; t�7w�r ; z; t��

1
Q�t�
2pd

d�r 2 r0� �7�

wherew (r, z, t) is the piezometric pressure head,K (r,
z, t) the hydraulic conductivity tensor andS0(r, z, t) the
specific storativity at the point (r, z) and timet in the
aquifer, withd the constant thickness of the aquifer,
Q(t) the discharge rate of a borehole situated atr � r0

andd(r ) the Dirac delta-function.
Eq. (7) differs considerably at first sight from the

equation conventionally used to describe the flow of
groundwater in a horizontal plane

S�x; y; t�Dth�x; y; t� � 7·�T�x; y; t�7h�x; y; t��
1 Q�t�d�x 2 x0�d�y 2 y0� �8�

whereh(x, y, t) is the observed water level,T(x, y, t)
the transmissivity tensor andS(x, y, t) the storativity of
the aquifer. However, a closer examination shows that
the only differences are that Eq. (7) is based on the
piezometric head, hydraulic conductivity and specific
storativity and not the water level, transmissivity and
storativity as in Eq. (8). The two equations are conse-
quently equivalent from the mathematical point of
view. The computer program Gcon, developed by
(Botha et al., 1990) for horizontal flow was conse-
quently adapted to solve Eq. (7).

5. Estimation of the sustainable yield of a borehole

5.1. General

As mentioned above the major objective of
constant rate tests is often to determine thesustainable
yieldof a borehole. This quantity is here defined as the
discharge rate that will not cause the water level in
the borehole to drop below a prescribed limit (e.g. the
position of a major water strike).

It is not difficult to derive an expression for the
sustainable yield in those cases where the drawdown
in the borehole is radial symmetric, in other words
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satisfies Eq. (2), with a forcing function that assumes
in radial co-ordinates the form

F�r ; t� � Qd�r�
since one can then express the ratio of the drawdowns
at a certain time (t0 say) and the corresponding pump-
ing rate,Q, in the form

s�t0�
Q
� cW�T;S� �9�

wherec is a characteristic parameter of the type curve
that representss(t0).

Let tl now be the operation time in which the draw-
down of a borehole shall not exceed the prescribed
limit, sp say, when pumped at a discharge rate ofQp,
the sustainable yield. Also letsobs(tl) be the drawdown
observed in the borehole during a constant rate test
with a discharge rate,Qobs say, at the timetl. It then
follows from Eq. (9) thatQp is related toQobs through
the equation

Qp � Qobs
sp

sobs�tl� �10�

provided thatsobs(tl) is known.
A major difficulty experienced with the practical

application of Eq. (10), is that constant rate tests are
usually restricted to a few days, while one would
prefer to compute the sustainable yield over a much
longer period, say two to five years. This would not be
a problem if one had an explicit expression for the
drawdown. However, this is rarely the case in prac-
tice, with the result that one usually has to extrapolate
sobs(tl) to the required time. Extrapolation is generally
not a very stable numerical procedure. However, as
will be shown below the method is able to yield reli-
able estimates of the sustainable yield.

5.2. Extrapolation of the observed drawdown

The simplest approach to calculate the required
value of sobs(tl) is to compute values forS and T
from Eqs. (5) and (6) above and then use Eq. (4) to
predict the value ofsobs(tl) at the appropriate time.
This approach will be ideal for the aquifers listed in
Table 2, provided one is certain that the drawdown
will not be influenced by boundaries or the geometry
of the aquifer, in other words that the flow at these late
times will remain radial and infinite. However, the
discussion in Section 3 shows that this will probably
be rarely the case in South Africa.

A more general extrapolation procedure is to
computesobs(tl) from the Taylor series expansion of
the observed drawdown curve and its first few deriva-
tives

sobs�tl� � sobs�t0�1 �tl 2 t0�Dtsobs�t0�

1
�tl2t0�2

2
Dttsobs�t0�1 … �11�

wheret is used to denote eithert or the logarithm oft,
with Dts(t) and Dt ts(t) the first and second deriva-
tives ofsobs(t0) at a timet0 near the end of the constant
rate test. One source of critique against this approach
is that the Taylor series is an infinite series and that the
derivatives are not bounded. However, as shown by
the list of the first two derivatives of drawdowns in
Table 3, it is only in the case of an aquifer that inter-
sects a closed or one or more impermeable boundaries
that the derivatives may be unbounded and the method
cannot be applied directly. The derivatives in all the
other cases are bounded and, more importantly, alter-
nate in sign. This means that in these cases one can
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Table 3
The first two ordinary and logarithmic derivatives, denoted, respectively, by (Dts, Dtts) and (Dts, Dt t . s), for the most common types of the
drawdowns observed during constant rate tests in South Africa. [note that ln�z� � log�10� log�z�]

Type of flow

Radial Closed boundary Horizontal fracture Other

s(t) a 1 b ln(at) a 1 bt a1 b ln� ���
at
p � a 1 btn

Dts b/t b b/(2t) bnt(n21)

Dtts (2b/t2) 0 2b/(2t2) bn(n21)t(n22)

Dts b bt b/2 bntn

Dt ts 0 bt 0 bn2tn



actually compute the error in the approximation from
the first derivative neglected in Eq. (11).

There are especially two difficulties associated with
the application of the Taylor series in estimating the
sustainable yield of a borehole. The first is that it is
difficult to calculate reliable derivatives from noisy
drawdown data and the second that the test may not
have been performed long enough to display the influ-
ence of boundaries on the drawdown. There is not
much that one can do to correct for noise in the draw-
down data, except to fit a curve to the drawdown data
as in Fig. 1, or use suitable averages. However, there
are a few methods that can be used to estimate the
effect of boundaries, one of which will now be
described in more detail.

5.3. Boundary effects

Although the effect of boundaries on the long-time
drawdown of a borehole has been known for many
years, boundary effects are not usually included in
the estimation of the sustainable yield of boreholes
in Southern Africa, except for the recent release of
DWA (1997). The most common practice is to assume
that the aquifer has an infinite areal extent and that a
constant rate test can be analysed with the Theis solu-
tion in Eq. (3), even in situations where the existence
of impermeable boundaries have been confirmed by
field investigations. It was therefore thought worth-
while to develop a new method for the estimation of
the sustainable yield that takes the effect of imperme-
able boundaries into account.

The extrapolation procedure described by Eq. (11)
will take care of those situations where the observed
drawdown displays the effect of an impermeable
boundary. The following discussion is therefore
mainly aimed at situations where it is known that an
impermeable boundary exist, but the boundary is situ-
ated too far from the pumped borehole to influence the
drawdown observed during a constant rate test.

The most accurate estimation of the boundary’s
influence on the drawdown will be obtained from a
numerical model of the aquifer. However, the infor-
mation available from an ordinary constant rate test
will rarely be sufficient to develop such a model. A
very simple approach to use in these situations is to
express the observed drawdown in the form

sobs�tl� � sa�tl�1 sb�tl� �12�

wheresa(tl) refers to the contribution of the aquifer
and sb(tl) to the contribution of the boundary. The
value ofsa(tl) is once again computed from Eq. (11)
andsb(tl) from the drawdowns given in Table 1.

5.4. The propagation of parameter uncertainties

One difficulty with the application of the solutions
in Table 1 is that one need to know the type of the
impermeable boundary, the distance(s) from the
boundary to the borehole and the hydraulic para-
meters of the aquifer. Since these quantities are
usually not known (with the possible exception of
the distances to the boundaries) they have to be esti-
mated in one way or another. It may therefore be
worthwhile to study the effect that uncertainties in
the parameters may have on the computed solution.

Kunstmann and Kinzelbach (1998) discuss a
number of computational methods to study the propa-
gation of parameter uncertainties in groundwater
modelling. One of the methods, Gaussian Error Propa-
gation, is particularly suitable for the analysis of
analytical equations. The application of this method
will now be illustrated by applying it to the solutions
in Table 1.

It follows from the preceding discussion that the
drawdown in the pumped borehole can be described
by an equation of the form

s� s�t;Q;T;S;a; b� �13�
provided that the behaviour of the aquifer satisfies
Eq. (2). Since the time,t, and discharge rate,Q, can
usually be measured accurately, the rest of the discus-
sion will be restricted to the transmissivity,T, stora-
tivity, S, and the boundary distances,a andb. Assume
now that these parameters are normally distributed
with mean values and standard deviations given,
respectively, by

� �T; �S; �a; �b� and �sT;sS;sa;sb�
The uncertainty in the drawdown,s in Eq. (13), can

then be expressed in terms of its standard deviation
through the chain rule of differentiation as

ss � ��DTsuT� �T�2s 2
T 1 �DSsuS� �S�2s 2

S 1 �Dasua� �a�2s 2
a

1 �Dbsub� �b�2s 2
b�1=2 (14)

where the symbolup indicates the value of the variable
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for which the derivative to its left, also known as the
sensitivity of the parameter, must be evaluated.

The sensitivities associated with Eq. (12) will in
general consist of two components-one associated
with the contribution of the aquifer and the other
with the contribution of the boundary. IfP is used
to denote any one of the parameters in Eq. (14), the
sensitivity of the parameter can be expressed as

DPs�tl� � DPsa�tl�1 DPsb�tl� �15�
or in a divided difference form

DPs�tl� .
sa�P 1 DP�2 sa�P�

DP
1

sb�P 1 DP�2 sb�P�
DP

The advantage of the sensitivity analysis is that it
allows one to establish a more risk-based estimate of
the drawdown at large times, given by

ŝobs�tl� � sobs�tl�^ nss

which yields on substitution into Eq. (10) the risk-

based sustainable discharge rate

Qsus� Qobs
sp

sobs�tl�^ nss

where n is a statistical parameter that indicates the
significance of the result. For example,n� 1 indi-
cates that there is a 68.3% chance that a new estimate
of ŝobs�tl� will fall in the range sobs�tl�^ ss; while
there is a 95.5% chance that the new estimate will
fall in the rangesobs�tl�^ 2ss; if n� 2:

The approximations described above to estimate
the sustainable yield of a borehole, henceforth
referred to as the Flow Characteristics Method
(FCM), has been implemented in a user friendly
Excel workbook, discussed in more detail below.
Since one cannot compute the sensitivities of an
sa(tl) derived from Eq. (11) for the parameters in
Eq. (13), these sensitivities are approximated with
the derivatives of the Theis solution, in Eq. (3), in
the present version of the workbook.

The sustainable yield of a borehole does not only
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depend on the flow characteristics and hydraulic para-
meters of an aquifer, but also the rate at which the
aquifer can be recharged by precipitation. This quan-
tity must be estimated independently of the workbook
and supplied as a parameter to the workbook.

The workbook allows the user to obtain two esti-
mates. The first estimate, known as the basic solution,
is based on the extrapolation of the observed draw-
downs in Eq. (11), subjectively adjusted for the
presence of impermeable boundaries. The second
estimate, the advanced solution, uses the principle of
error propagation discussed above to provide the user
with a more qualified and risk-based estimate.
However, the advanced solution can only be applied
if prior information is available for the values ofT and
S, and the distances to impermeable boundaries.

6. A case study: borehole UO5 at the campus test
site

6.1. Geology of the site

The Campus Test Site. Located at the University
of the Orange Free State, Bloemfontein, South
Africa, is underlain by a series of mudstones and
sandstones from the Adelaide Subgroup of the Beau-
fort Group of formations in the Karoo Sequence.
There are three aquifers present on the Site. The

top, a phreatic aquifer, occurs within the upper
mudstone layers on the Site. This aquifer is separated
from the middle and main aquifer, which occurs in a
sandstone layer between 8 and 10 m thick, by a layer
of carbonaceous shale with a thickness of 0.5–4 m.
The bottom aquifer occurs in the mudstone layers
(more than 100 m thick that underlies the sandstone
unit (Botha et al., 1998).

A major characteristic of the main aquifer is the
presence of a horizontal fracture that coincides
approximately with the centre plane of the middle
aquifer and which intersects borehole UO5 and the
other 11 boreholes with significant yields on the
site, see Fig. 6. The remaining 12 boreholes all have
insignificant yields. The fracture itself has an aperture
of approximately 10 mm but the adjacent 200 mm of
the sandstone is also highly permeable, see Fig. 7.
This observation and experience gained in drilling
boreholes at two other sites underlain by Karoo
formations led Botha et al. (1998) to the conclusion
that horizontal fractures serve as the conduits of water
towards boreholes in Karoo aquifers, but that the
water is stored in the Karoo formations themselves.
Since this geometry of the formations differs signifi-
cantly from that usually associated with the type
curves available in the literature, it stands to reason
that one cannot analyse the data from these aquifers
with the conventional type curves.
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Fig. 7. Photograph of the horizontal fracture on the Campus Test Site as it appears in a core sample.



6.2. Analysis of a constant rate test on borehole UO5
with the Theis curve

It is often tempting to ascribe differences in the
form of the drawdown observed during a constant

rate test on a borehole in Karoo formations and that
described by the Theis equation to measurement
errors, especially if the drawdowns are measured by
hand. These tests are consequently mainly analysed
with either the Theis type curve, or the Cooper–Jacob
approximation of the curve. The same method was
consequently also applied to the drawdowns observed
with pressure transducers during a constant rate test in
which borehole UO5 was pumped at a constant rate of
1.25 l s21, given in Table 4. This analysis yielded a
value of 19 m2 d21 for T and 8.6 forS. The value ofT
is not unrealistic and in fact agrees excellently with
the value derived from the data of the other boreholes
in Table 4. However, the value ofS is completely
unrealistic. Indeed, it can theoretically only be true
if the aquifer is more than 10,000 m thick.

The unrealisticS-value was investigated further by
computing theS-values for the other boreholes in
Table 4 also with the Cooper–Jacob approximation.
An interesting feature of these results, given in Table 5
is that theS-value decreases rapidly with the distance
between the pumped and the observation boreholes.
This behaviour can be briefly explained as follows. An
analysis of the results of a three-dimensional numer-
ical model of the Campus Test Site (Botha et al.,
1998) has shown that there is a continuous vertical
flux of water from the rock matrix towards the frac-
ture, or its plane in areas outside the fracture, on both
sides of the fracture. This flux, which assumes its
maximum value at the pumped borehole decreases
steadily with distance from the borehole towards the
boundary of the aquifer, but never vanishes, a type of
flow not considered in the derivation of the Theis
equation. The result is that the Theis equation tends
to overestimate the drawdown during early times and
underestimate it during late times, as illustrated in
Fig. 8. The only way that the Theis curve can ‘inter-
pret’ the additional water is to ‘view’ it as water
released from matrix storage, thereby yielding a larger
S-value closer to the borehole than farther away. The
Gringarten and Ramey model, on the other hand, fits
the observed drawdown almost perfectly.

The previous results cast some doubt on the
proposed use of the derivatives of the Theis curve to
represent the sensitivities of the drawdownsa(tl) in
Eq. (15). However, it must be remembered that the
high value ofS is the direct result of using the bore-
hole radius to compute the value ofS from the Theis
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Table 4
Drawdowns measured in a few boreholes during a constant rate test
on borehole UO5 at the campus site and their distances from UO5
(the distance given for UO5 is the borehole radius)

Time
(min)

Boreholes and distances

UO5,
0.08 m

UO6,
5.0 m

UP15,
22 m

UP16,
32 m

1.5 0.171 0.068 0.033 0.030
10.5 0.779 0.695 0.601 0.587
20.5 1.065 0.986 0.907 0.899
30.5 1.254 1.186 1.118 1.111
40.5 1.391 1.332 1.272 1.264
50.5 1.485 1.435 1.382 1.372
60.5 1.557 1.512 1.466 1.454
70.5 1.624 1.583 1.541 1.527
80.5 1.682 1.643 1.606 1.590
90.5 1.736 1.698 1.666 1.650
100.5 1.789 1.752 1.724 1.706
110.5 1.831 1.792 1.766 1.747
120.5 1.887 1.850 1.829 1.808
130.5 1.935 1.897 1.880 1.857
140.5 1.980 1.941 1.930 1.906
150.5 2.019 1.982 1.975 1.951
160.5 2.057 2.018 2.014 1.990
170.5 2.095 2.054 2.051 2.028
180.5 2.128 2.085 2.085 2.062
190.5 2.158 2.117 2.117 2.095
200.5 2.189 2.146 2.146 2.124
210.5 2.211 2.170 2.171 2.151
220.5 2.235 2.198 2.197 2.179
230.5 2.271 2.229 2.229 2.209
240.5 2.305 2.262 2.261 2.241
250.5 2.330 2.295 2.288 2.272
260.5 2.354 2.318 2.313 2.297
270.5 2.368 2.341 2.338 2.322
280.5 2.394 2.365 2.365 2.349
290.5 2.419 2.391 2.392 2.374
300.5 2.439 2.412 2.416 2.397
310.5 2.460 2.435 2.440 2.420
320.5 2.483 2.461 2.467 2.446
330.5 2.510 2.487 2.495 2.473
340.5 2.532 2.510 2.518 2.496
350.5 2.557 2.536 2.546 2.522
360.5 2.577 2.556 2.569 2.543
370.5 2.599 2.578 2.592 2.566
380.5 2.617 2.598 2.614 2.587
390.5 2.641 2.621 2.620 2.610



solution. A heuristic approach to circumvent the
unrealisticS-value is to view the influence that the
fracture has on the drawdown as a ‘skin-effect’
(Horne, 1997), and work with the ‘effective radius’
and ‘effective storativity’ of the borehole defined by
the equation

r2
eSe � r2

bS �16�
instead of the true storativity,S, and borehole radius,
rb.

6.3. Estimation of the sustainable yield

The application of the FCM to compute the sustain-
able yield of a borehole is illustrated in Fig. 9 with the
drawdown data of borehole UO5 in Table 4. The first
step in using the FCM is to supply the workbook with
the observed drawdowns to compute the first deriva-
tives of the drawdown as well as the second time
derivatives of the drawdown, required by Eq. (11).

The sheet in the workbook displayed in Fig. 9 is
then used to supply the workbook with a number of
parameters — the extrapolation time, specified maxi-
mum drawdown (that must not be exceeded at the end
of the extrapolation time) and average annual
recharge. The workbook then uses Eqs. (10) and
(11), supplemented with subjective information on
boundaries, to compute an average sustainable yield
and sustainable yield.

The advanced solution can be used in those cases
where distances to no-flow boundaries are known. In
this solution uncertainties in late-time storativity and
transmissivity and the distances to no-flow boundaries
are used to estimate a risk-based sustainable yield by
applying Gaussian Error Propagation, as defined in
Eq. 16. In the case of borehole UO5 the advanced
solution estimated the sustainable yield of the bore-
hole as 0.36 l s21 with a 95% confidence level.

As mentioned above, the main flow direction of
water in a Karoo aquifer is vertical from the rock
matrix to the fracture and then from the fracture to
the borehole. This suggests that a hydraulic test in
such an aquifer is best analysed with a three-dimen-
sional numerical model. Since the geometry of the
Campus Test Site is known (Botha et al., 1998), it
may be useful to compare the FC-estimate of the
sustainable yield for borehole UO5 above with that
obtained from a three-dimensional numerical model.

The numerical model used for this purpose was
based on the somewhat simplified geometry of the
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Table 5
Cooper–Jacob estimates of theT andSvalues for the boreholes in
Table 4

Borehole Distance from UO5 T (m2 d21) S

UO5 0.08 19 8.6
UO6 5 18 2.7× 1023

UO15 22 17 1.7× 1024

UO16 32 17 8.5× 1025
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Fig. 8. Comparison of the drawdown in UO5 given in Table 4 and its least squares fit to the first three periods of Gringarten’s model for a
horizontal fracture and the classical Theis solution.
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FC-METHOD : Estimation of the sustainable yield of a borehole
Borehole: UO5 at 1.25 L s–1

Extrapolation time in years = (enter) 2
22 22.45

1051200 Extrapol.time in minutes
Effective borehole radius (r) = (enter)

Sigma_s from risk analysis

0.1

From r(e) sheetEst. re

t (end) and s (end) of pumping test =

Q (L s–1) from pumping test = 30.701.25 Qualified guessEst. re

sa (available drawdown), sigma_s = (enter) 17

s_available working drawdown(m)Annual effective recharge (mm) = 6.00

(a) Barrier (no-flow) boundaries

s_Bound (t = Extrapol.time) (m) =
Bound. distance to no-flow b (m) : (enter)

Bound. distance to fix head a (m) : (enter)
(b) Fix head boundary + no-flow

Average maximum derivative = (enter)
2.64390.5 End time and drawdown of test

with standard deviation =

(Late T-and S-values a priori + distance to boundary)

Bound. distance a(m) : (enter)
Bound. distance b[meter] : (enter)

(Code =9999 = dummy value if not applicable)1. BOUNDARY INFORMATION (choose a or b)
S-late = (enter)
T-late (m2 d–1) = (enter)

ADVANCED SOLUTION

Average Q_sust (L s–1) =

Q_sust (L s–1) =

sWell (Extrapol.time) =

0
1.8 1.8 Estimate of average of max deriv

Average second derivative = (enter)

19.76T-early (m2 d–1) =

Estimate of average second deriv
Derivative at radial flow period = (enter)

T-late (m2 d–1) =

1 Read from derivative graph

1.10E-03
10.98 Est. min S-late=1.10E-03T and S estimates from derivatives

(To obtain correct S-value, use program RPTSOLV)

0.28

S-late = S-estimate could be wrong

BASIC SOLUTION
(Using derivatives + subjective information about boundaries)

No boundaries

14.99

Maximum influence of boundaries at long time
(No values of T and S are necessary) Closed no-flow2 no-flow1 no-flow

0.00 0.00 0.00 7.94

0.00 0.00 0.00 0.00

9999 9999 9999
9999

400
800

9999

9999 9999 9999
9999

9999
9999 9999 0.45

9999 9999
9999

9999
9999

Single Intersect. 90Closed Square

1.00E-03

(Using derivatives+ knowledge on boundaries and other boreholes)

2 Parallel

Single Fix 90 Fix+no-flowClosed Fix // Fix+no-flow

11.00

21.16
0.35

8.81 39.68

Best case
0.85 0.50

Worst case
0.19

(If no information exists about boundaries skip advanced solution and go to final recommendation)

0.41

s_Bound (t = Extrapol.time) (m) =

Abstraction rate (L s–1) for 24 h

Enter selected Q for risk analysis = (enter)

FINAL RECOMMENDED ABSTRACTION RATE

No-flow : Q_sust (L s–1) =
Fix head + No-flow : Q_sust (L s–1) =

SOLUTION INCLUDING BOUNDS AND BH’s
s_(influence of BH1,BH2) =

Q_sust with 95% safety =
Q_sust with 68% safety =

COMMENTS

abstracted per month (m3) =
Total volume of water that can be

BH1
BH2

2. INFLUENCE OF OTHER BOREHOLES r (m)Q (L s–1)

0.36

0.36

u_r W(u,r)

0.48

933

(Go to Risk sheet and perform risk analysis from which sigma_s will be estimated : only for barrier boundaries)

0.00

0.52

0.00

0.00E+00
0.00E+00

Fig. 9. Estimation of the sustainable yield of borehole UO5 with the FC-method as obtained from the EXCEL Workbook.



aquifer illustrated in Fig. 10 and the computer pack-
age Processing Modflow for Windows —Pmwin
(Chiang and Kinzelbach, 1998). The spatial and
temporal distributions of the piezometric heads,
required by the three-dimensional model, were
approximated with the drawdowns in Table 4.

The hydraulic parameters that are important in the
study of a three-dimensional model for a fractured
aquifer such as the one on the Campus Test Site are:
the specific storativity (Ssm), horizontal and vertical
hydraulic conductivities (Khm andKvm) of the matrix,
the horizontal and vertical hydraulic conductivities
(Khf andKvf) of the fracture and its specific storativity
(Ssf). Since the flow in the fracture is in the horizontal
direction and its ability to store water is insignificant,
the last two parameters do not have a significant influ-
ence on the water levels and can be ignored in the
model of the Site.

The first step in analysing the flow of water in an
aquifer with a numerical model is to develop a suita-
ble mesh or grid for the aquifer. The finite difference
mesh used in the present model consisted of 66 rows,
93 columns and 23 layers of nodes. The horizontal
extent of the model was chosen large enough to
avoid boundary effects. The 12th layer of the model
represented the fracture. The other layers represented
the sandstone matrix above and below the fracture.
The two layers directly above and below the fracture

were each assigned a thickness of 0.5 m and the other
layers a thickness of 1 m. This fine vertical discretiza-
tion was necessary to account for the vertical draw-
down in the rock matrix.

As mentioned above, the aperture of fracture zone
was taken as 0.2 m, while its horizontal extent was
estimated as 120 m× 120 m; based on the geological
profiles of the boreholes. The three observation bore-
holes (UO6, UO15 and UO16) were also placed in the
mesh at distances of 5, 22 and 32 m from UO5 within
the fracture. It was also assumed that the aquifer is
recharged at a rate of 15 mm a21.

The model was calibrated with the inverse model
PEST98 of Doherty et al. (1994). The estimated para-
meters, obtained from this calibration, are listed in
Table 6. The estimated value for the hydraulic
conductivity of 3600 m d21 for the fracture zone is
in excellent agreement with theT-value of
720 m2 d21 obtained from tracer tests (Van Wyk,
1998). This estimate is reliable, however, the other
values are correlated, because of the approximation
of piezometric heads with water levels. The estimated
parameters of the model are listed in Table 6, while
the fit between the computed and observed drawdown
is compared in Fig. 11. These parameters and a
recharge rate of 15 mm a21 was next used to compute
a sustainable yield over a period of one year with
Pmwin, This yielded a value of 0.4 l s21, which is

G.J. van Tonder et al. / Journal of Hydrology 241 (2001) 70–9088

500 m

125 m

Aquifer

FractureAreal Extend
of Fracture

20 m

Fig. 10. Simplified geometry of the aquifer on the Campus Test Site used in the numerical model to estimate the sustainable yield of borehole
UO5.



very similar to the value of 0.36 l s21 estimated with
the FC-method.

The multiplication ofSsm in Table 6 and the thick-
ness of the aquifer (20 m) shows that the storativity of
the rock matrix is 1:1 × 1023

; the same value obtained
by Kirchner et al. (1991) in their study of Karoo aqui-
fers.

7. Conclusions

There is no doubt that a hydraulic test in a fractured
aquifer should be analysed with a three-dimensional
numerical model from the theoretical point of view.
However, the data required for such a model may not
always be available. In such cases one may use either
the numerical vertical flow model RPTsolv or the
semi-analytical Method of Derivative Fitting
described in this paper. The Flow Characteristic
Method, which is based on extensions of the latter

method is particularly useful when one is interested
in estimating the sustainable yield of a production
borehole. The Excel Workbook, which was developed
specifically for this method and which is freely avail-
able on the website of the Institute for Groundwater
Studies, simplifies the computations considerably.
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