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Abstract

In this article we propose an advanced technique for detecting low contrast geochemical anomalies using a set of features.
There are three principal elements in this technique: (1) a statistical measure of the contrast of the anomaly, denoted ast ; (2)
selection of a background population; and (3) reduction of the dimensionality of the feature space. In the frame of the model,
which describes the statistical distribution of geochemical background as a multidimensional normal distribution of logarithms
of concentrations, the index,t , is a powerful test statistic for the hypothesis of abnormality of an observation. Maps oft
anomalies can be rigorously interpreted on the basis of statistical inferences. Under all equal conditions this technique allows
the detection of geochemical anomalies with at least the same contrast (if the chemical elements in a background population are
correlated, then even the better) as using selective extractions of metals from soil or other techniques for data processing. The
advantages of the proposed technique are demonstrated both theoretically and on examples of rare-metal and copper–nickel
mineral deposits.q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

At present, there is general agreement that many
mineral deposits that occur on the surface are almost
completely exhausted. Therefore, mineral prospecting
and exploration in the last decade has concentrated on
discovering buried and concealed mineral deposits.
One of the pertinent features of these deposits is
that, on the surface, they exhibit as low contrast
geochemical anomalies. That is, differences between

anomalies for each element and background concen-
trations are statistically insignificant.

In this paper we propose an advanced technique for
detecting multicomponent geochemical anomalies
using methods of multivariate statistics and multidi-
mensional heuristic methods. The main ideas of the
proposed technique are congruent with of those
presented by Garrett (1989a) for computer processing
of multielement geochemical data.

They also comply with the general tendency exhib-
ited during the 1980s and 1990s toward invoking the
multivariate methods into exploration geochemistry.
This tendency no doubt will continue in the future,
and exploration geochemistry will continue to be ‘a
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center of multivariate data analysis’ (Garrett, 1989a,
p. 591).

Three principal constituents form the basis of the
proposed technique: (1) a statistical measure of the
contrast of the anomaly, denoted ast ; (2) selection
of a background population; and (3) reduction of the
dimensionality of the feature space. The quantity,t , is
a function of the generalized or Mahalanobis distance
between an individual observation and a centroid of
the background population in the feature space. Maha-
lanobis distance, which was comprehensively
described by Garrett (1989c), has been repeatedly
used as a measure of multidimensional distinctions,
mainly in the context of classification of two or more
geochemical populations. As a measure of back-
ground-to-observation distinctions that is a multidi-
mensional analog of a univariate normal standard
deviation, the Mahalanobis distance was considered
by Campbell (1983) and Garrett (1989b,c) in their
research articles.

The measuret is a normal approximation of Maha-
lanobis distance and, as such, is almost independent of
dimensionality. With some insignificant variations it
can be handled like the standardized difference
between the individual observation and the back-
ground mean.

The problem of selection of a background popula-
tion has been discussed through the entire history of
geochemical exploration (Solovov, 1959; Hawkes and
Webb, 1964). As the term, ‘background’ is broad and
indefinite, the problem is unlikely to possess a full-
blown solution. We now hold the view that feasible
solutions can be achieved by combining the two
following methods: (1) heuristic determination of
the multidimensional data pattern with the use of
‘space-structure’ techniques, such as principal
component, factor, and cluster analyses (Bellehumeur
et al., 1994; Kramar, 1995; Grunsky and Smee, 1999);
and (2) the statistical rejection of outlying observa-
tions (Garrett, 1989b,c). Accordingly, our selection of
a background population is developed as a two-step
procedure.

Reduction of dimensionality of a feature space is a
common problem of multidimensional classification.
A review of relevant research could be found in the
paper by Garrett (1989a). There are two formal
reasons for its necessity (Aivazian et al., 1989).
First, if the number of variables (elements) is less

than the number of observations, the background
covariance matrix becomes degenerate. Second,
along with increasing dimensionality for the finite
number of observations when all the other factors
are equal, the Mahalanobis distance decreases, passes
through a minimum, and then increases infinitely. A
set of most significant elements, known a priori from a
theory or experience often solves the problem, parti-
cularly in two opposite cases of small scale, regional
prospecting and very-large-scale, detailed exploration
(Beus and Grigorian, 1977; Garrett et al., 1980).
However, as is shown below, the a priori significant
sets are not necessarily the best for the selection of
low-contrast anomalies, significantly better results
can be achieved with the sets selected automatically.
The algorithms described here use a stepwise variable
selection procedure similar to that of Beauchamp et al.
(1980) and select variables that are significant with
respect to maximizing thet -anomaly contrast either
simultaneously with the anomaly detection or in the
predefined observations.

This article is arranged as follows: In Section 2 we
briefly review the problem of detection of geochem-
ical anomalies. An indext and alternative indexes of
contrast for multicomponent anomalies are described.
Theoretical advantages of indext , as compared with
alternative indexes, are proven. In Section 3, the tech-
nique of multicomponent anomaly detection is
explained. It consists of three procedures: (1) Select-
ing the background population; (2) estimating para-
meters of the multidimensional geochemical
background; and (3) selecting the set of features that
provides the highest-contrast detection of anomalies.
In Section 4 we arrange a competition between index
t and alternative indexes using geochemical data
from two buried mineral deposits. The advantages
of indext , which is capable of enriching the practice
of multicomponent anomalies detection, are demon-
strated.

2. Measures of contrast of anomalies

2.1. Index of contrast of monocomponent anomaly

The representation of geochemical fields as
‘normally’ distributed backgrounds that are compli-
cated with anomalies is a popular assumption in
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state-of-the-art geochemical exploration. Concentra-
tions or logarithms of concentrations of constituents
of samples taken from a background area are consid-
ered as independent quantities with equal and normal
distribution. Abnormal observations are those that
significantly differ from an average background
concentration. This representation is the foundation
for a conventional method of detecting monocompo-
nent anomalies that is known as the ‘rule of three
sigma’. As a measure of abnormality of an observa-
tion, x, these methods utilize a quantity

g� �x 2 �xb�
sb

; �1�

where x is a logarithm of the concentration of the
chemical element and�xb and s2

b are estimates of
mean value and variance, respectively, of a back-
ground distribution.

Geometric interpretation of the contrast of anom-
aly, g, is a distance between pointsx and �xb that is
measured by units of standard deviation,sb, on a scale
of logarithms of concentrations. If�xb and s2

b are
obtained over the sample of size,nb, in the back-
ground area,g follows the Student distribution with
nb 2 1 degrees of freedom. For large values ofnb, the
distribution of Eq. (1) differs slightly from the normal
distribution with zero mean and unit variance. Below,
the fact thatx belongs to the normal distribution with
parameters,m , s 2, we will denote asx [ N�m;s 2�:

The procedures that operate with the index,g, can
be viewed as statistical tests of the hypothesis thatx
belongs to a given normally distributed population.
Also, a criterion in the form,ugu $ gp (wheregp is a
threshold), is the most powerful criterion for testing
this hypothesis. This classic approach has the follow-
ing features: (1) it is based on a model that reflects
reasonable assumptions on how substances are
dispersed through the lithosphere; (2) it utilizes a
quantitative measure of abnormality; and (3) it allows
rigorous (in the context of the model) estimates of
differences between observations.

We acknowledge that small-scale geochemical
exploration performing over large areas deals with a
very complicated mixture of different populations. In
this case any accomplished statistical procedure might
fail. However, in the case of large-scale exploration,
which is usually conducted over areas of moderate
size, geochemical data are relatively more uniform,

and some additional gain from a classic approach
could be extracted.

The ensemble of the features mentioned above
provides an exploration geochemist with an accom-
plished instrument based on a metrological founda-
tion. This, from a metrological point of view, puts
geochemical exploration at the same level as geophy-
sical exploration. Of course, a population of indepen-
dent quantities with equal and (log)normal
distribution does not represent an ideal model for
background distribution. However, this model can
be physically interpreted because these distributions,
along with the Pareto distribution, are the only ones
explained by physical processes. As the academician
Andrei Kolmogorov told M. Karger in a private talk:
“A poor model is better than none if we want to have a
productive discussion”.

The technique for detection of multicomponent
anomalies, which is described below, holds all these
features.

2.2. Index of contrast of multicomponent anomaly

Let X � �x1; x2;…; xp� be ap-dimensional observa-
tion. If it is taken from a normally distributed back-
ground population with parameters,mb � �m1;…mp�
(vector of mean values) andSb (covariance matrix),
thenX [ N�mb;Sb�:

The multidimensional analog of the quantity
yielded by Eq. (1) is the generalized Mahalanobis
distance:

D2 � �X 2 �Xb�S21
b �X 2 Xb�T; �2�

whereXb � � �x1; �x2;…; �xp� is a vector of estimates of
mean values, andSb is an estimate of a covariance
matrix. This is a distance between pointsX and Xb

in the p-dimensional feature space that is measured
by the units of standard deviation along a straight line
that connectsX and Xb: If the features in the back-
ground population are independent, then Eq. (2) takes
the maximal value,D2 � P

g2
i : In all other cases

D2 ,
P

g2
i :

If D2 � 0; then

T2 � D2nb�nb 2 p���n2
b 2 1�p�21 �3�

hasF-distribution withp andnb 2 p degrees of free-
dom (Kendall and Stuart, 1968). With this basis, a
criterion for testing the hypothesis thatX is taken
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from a background population can be established.
However, because each background sample (e.g.
each pair of number,nb, p) requires the individual
value ofF-distribution this criterion can be inconve-
nient for mass data processing, especially, if
geochemical data have to be integrated with other
data, e.g. with digital maps.

Normal approximation of Eq. (2) proposed by
Kelley (1948) avoids this drawback:

t � �wnb2pT2=3� 1
p

1
T4=3

nb 2 p

 !21=2

; p . 3;

tp � t 1 0:08t5�nb 2 p�23
; p # 3;

�4�

wherewk � 3=
��
2
p

2 2=�3k�; k � p;nb 2 p:
If the observation,X, is taken from a background

population, the distribution of quantities in Eq. (4) is
very close to the normal distributionN(0,1). Owing to
this feature, the same criteria of abnormality that are
applied for analysis of the fields ofg values could be
applied for analysis of the fields oft values. The only
difference is in interpretation of negative anomalies:
negativet values correspond to observations that are
close to a background mean.

2.3. Other indexes of multidimensional contrast

Many researchers (Beus and Grigorian, 1977;
Garrett et al., 1980) overcome the obstacles arising
in detecting multicomponent geochemical anomalies
using indexes of the form of

G �
Xp
1

f �gi�; �5�

wheref (gi) is a monotonous function ofgi.
In particular, Russian geochemists have employed

the following ‘multiplicative’ and ‘additive’ indexes:Xp
1

g2
i � G1;

Xp
1

gi � G2;
Yp

1

exp�xi� � n: �6�

It is seen that in Eq. (6) different features have equal
weights in sums and products. This means that these
indexes are appropriate only in the case when the
features are mutually independent in the background
population.

Let compare the properties of quantities from
Eqs. (4) and (6) in the case of two features that are

strongly correlated with each other:

X �
1:75

1:75

 !
; Xb �

0

0

 !
;

Sb �
1 0:99

0:99 1

 !
; nb � 100: (7)

Taking into account that if the features are indepen-
dent, then for the background population we have,

nb 1 1
nb

G1 [ x2
p;

1��
p
p G2 [ N�0;1�;

and we receive for Eq. (7),G1�nb 1 1�=nb � 6:06 and
G2p21=2 � 2:47: Comparing these numbers with the
95% critical values of distributions’ chi-square and
N(0,1) (5.99 and 1.96, respectively) we find that the
‘observation’X is recognized as abnormal from the
point of view of indexesG1 and G2. In reality one
feature in Eq. (7) actually duplicates the other that
providesugu , 1.96. This observation cannot be recog-
nized as abnormal, because it is in accordance with
the value oft p � 1:24:

It follows from the above consideration that, if the
features are correlated in the background population,
the index, t , has advantages over the indices of
Eq. (6). These advantages are not only theoretical.
The index,t , provides real benefits in practice. This
is illustrated by the examples presented in Section 4.

3. Technique for detecting anomalies oft

3.1. Step 1: preliminary selection of background
observations

The problem of detecting geochemical anomalies
has two specific features. First, we do not know a
priori whether a territory under investigation contains
any anomalies. Second, if an anomaly does exits, we
do not know the position of the boundaries between
the anomaly and the surrounding sites that are not
abnormal. This is an ill-posed problem, which people
solve ‘unconsciously’ in 2D or 3D space. If we study a
spatial distribution of one feature at the flanks of a
well-developed deposit, we can pinpoint with high
confidence the sites without signs of mineralization.
The samples collected away from the deposit we
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recognize as representing a background population
and ‘unconsciously’ detect anomalies. In the other
case, when multicomponent anomalies have to be
detected in a poorly investigated territory, we need
some kind of tool to create an opportunity to represent
a set of multidimensional observations in a form
convenient for visual analysis. This can be achieved
by reducing the original dimension of this set down to
2 without significant distortion of a sample pattern in
the feature space.

Linear projection onto the principal components is
the classic method for the reduction of dimensionality
(Kendall and Stuart, 1968). This transformation line-
arly projects the sample onto the principal axes of the
ellipsoid of dispersion. Projection fromp-dimensional
space onto the firstl components has the following
unique features: (1) among all linear projections it
minimizes the sums of squares of lengths of perpen-
diculars, reducing points inp-dimensional space down
to l-dimensional subspace; and (2) it preserves in the
best manner the angles between points and distances
from them to the center of the population (Kendall and
Stuart, 1968).

In practice, it is known that if the sum of variances
of the first two principal components is more than
80% of the total variance, then the projection onto
the plane of these principal components properly
reflects the multidimensional pattern of a sample. If
this quantity is less than 60%, then this projection is

inappropriate for our purposes. Projections of this
exact type, those that do not contain enough informa-
tion are commonly encountered in geological studies
(Howarth, 1973).

The algorithm of nonlinear mapping described
below (Sammon, 1969) belongs to the family of
multidimensional scaling algorithms. Through slight
distortion of mutual arrangement of points in a popu-
lation, the algorithm reflects the main features of a
complex multidimensional pattern.

Let

xi � �xi1;…; xip�T; i � 1;n; �8�
be a set of points inp-dimensional space. The points
in Eq. (8) have to be mapped into the points on a
plane. This is represented by

yi � �yi1; yi2�T; i � 1;n: �9�
The mapping is performed by the algorithm:

arg min�D�; D �
X

i

X
j

�dp
ij 2 dij �2=dp

ij =
X

i

X
j

dp
ij ;

�10�
where dp

ij ; i . j � 1;n; is the distance (d) between
points, measured by any metric;dij is the Euclidean
distance between points as determined by Eq. (9).

The method of rapid descent is used to reach the
minimum value of Eq. (10). We used projection on the
first of the principal components as an initial approx-
imation for Eq. (9) to avoid a local-minimum trap.
The number of examples (Sammon, 1969; Howarth,
1973; Howarth et al., 1977; Karger and Krupnov,
1980; Nason and Sibson, 1991) shows that the
algorithm, Eq. (10), provides results that are at least
not worse than the projections onto the principal
components.

Fig. 1 depicts the procedure for selection of back-
ground observations for the Pechenga copper–nickel
deposit (see Section 4.3). Because of the exploration
challenge, we were trying to achieve, in this case, the
main feature of a sample pattern that we were inter-
ested in was an elongation of a cloud of points that
was caused by the variation of observations due to a
transition from the sites uninfluenced by mineraliza-
tion to the contour of the ore zone. Therefore, the
background sample was composed of randomly
selected ‘waste’ observations.
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Fig. 1. Pattern of multidimensional sample of Pechenga deposit (the
result of nonlinear mapping from 18-dimensional feature space).
Asterisks — observations from the contour of projection of ore
zone onto the land surface; circles — observations located apart
from this contour; solid squares — observations composing the
background sample.



3.2. Step 2: estimation of parameters of a
multidimensional background

It frequently happens that geochemical observa-
tions occur beyond the limit of sensitivity of a given
analytical technique. There are a number of methods
for estimating the mean, variance, and covariance
(correlation) over truncated samples. However, if
the estimates of covariance are obtained separately
for each pair of features, then the combined covar-
iance matrix in general will not be positively defined.
An algorithm described below is close to the idea of a
‘bootstrap’ as well as to one of the algorithms
mentioned in the classical work of Afifi and Elashoff
(1969).

Let us assume that in a correlation matrix,R, there
are some elements that were obtained over truncated
samples. Letrij ; i ± j be a correlation coefficient
betweenith andjth features, which has maximal abso-
lute value among other coefficients.

x1i ;… x
W

ki;…; x
W

mi;…; xni; x1j ;…xkj;…; x
W

mj;…; xnj;

�11�
are the samples forith andjth features; circles marks
those values, which are beyond a limit of sensitivity.

Let us take two cases of truncation in Eq. (11): (1)
only one of two features has a truncated value (kth
observation); (2) both features have truncated values
(mth observation). Ifrij significantly differs from zero,
then in Case (1) the truncated value is replaced by its
most probable value:

xki � �xi 1 �xkj 2 �xj��sij =sjj �; �12�
wheresij =sjj is a regression coefficient. In Case (2), a
random number taken from a corresponding truncated
population, which has normal distribution, replaces
one of the truncated values, eitherxmi or xmj. The
other truncated value then is restored in accordance
with Eq. (12). After all truncated values in Eq. (11) are
restored, the same procedure has to be performed for
an other correlation coefficient, the absolute value of
which is the next after the maximum. This process of
regressive restoration is performed for all significant
correlation coefficients. For insignificant correlation
coefficients, all truncated values are replaced with
random numbers. Finally, the estimations for vector
�X and matrixSare calculated in the usual way.

If R contains both significant and insignificant
correlation coefficients andp is not too small, then
this algorithm provides unbiased estimates for trace
and determinant matrixR. Our simulation shows that
reasonable results can be achieved atp . 5;nb . 50:
This agrees well with the results of Haitovski (1968),
who tested similar algorithms.

We will not discuss in depth other routine proce-
dures that could be carried out at this step. We will
mention only the procedure of rejecting the outlying
observations, which, in particular, completes the
selection of the background population. This proce-
dure uses a computerized version of the algorithm that
was put forward by Garrett (1989c).

3.3. Selection of significant features

This section describes two modes of an algorithm
for selecting features that are significant for maximiz-
ing the contrast of detected anomalies. In the first
mode, the selection is performed simultaneously
with the detection of anomalies (wandering selec-
tion). In the second mode, a set of abnormal observa-
tions is defined a priori and selection of significant
features is performed with the goal of maximizing
contrast just in these predefined observations (pursued
selection).

3.3.1. Wandering selection of features
Let us assume that concentrations ofp chemical

elements (features) have been measured in samples
collected over some area that is geochemically homo-
geneous. In the course of detection oft anomalies,n(p)

samples were recognized as abnormal. Their average
contrast will be equal to

tp
i �

Xn�p�
1

tj

n�p�
: �13�

Then, eliminating sequentially one feature at a
time, we find n�p21�

i abnormal samples for each
(p 2 1)-dimensional set of features and calculate
their average contrast,t�p21�

i : The optimal subset is
the one that satisfies the following conditions:

t�p21� ; t�p21�
i $ t�p� and

n�p21� ; n�p21�
i $ n�p�:

�14�
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From this set, again we eliminate sequentially one
feature, and for each (p 2 2)-dimensional set we
find abnormal samples and calculate their average
contrast,t�p22�

i : We also stop at that set, which satis-
fies conditions similar to those of Eq. (14). These
procedures are repeated until the conditions of
Eq. (14) are not satisfied.

3.3.1. Pursued selection of features
When abnormal observations are known a priori,

the algorithm provides maximum average contrast,
t , in the given observations. In this case, the sequence
of steps, which is described above, will be performed
with exception of the second inequality in Eq. (14).

4. Comparison of indexes of contrast of
multicomponent anomalies for selected mineral
deposits

In this section we investigate how efficient the
proposed technique is in practice using two mineral
deposits as examples. One of them is a rare metal
deposit and the other is a copper–nickel deposit.
Both deposits are located on the Kola peninsula
(Russia) and are concealed under moraine overbur-
den. The thickness of the moraine deposits is
20–40 m at the rare metal deposit and 10–20 m at
the copper–nickel deposit. The humus layer of soil
was sampled in both cases and the,1 mm fraction
was analyzed by two procedures: (1) extraction of
mobile salt constituents with an acetate buffer
followed by determination for the sum of metals
(Nesvizhskaya et al., 1975); and (2) a direct current
(DC) arc emission spectrometric analysis for 32
chemical elements.

The competition between indices of contrast,
Eqs. (4) and (6), was performed on the basis of the
results obtained with the DC arc emission spectro-
metric analysis. Two criteria were applied for evalua-
tion in the competition: (1) the contrast of anomalies;
and (2) the accuracy of matching the contours of the
anomalies. Contours of an ore zone on the paleosur-
face were matched with the contours of anomalies
obtained by acetate extracts. To eliminate bias in eval-
uating the indices of efficiency of anomaly detection,
which are described in Section 4.1, the evaluations
were undertaken by an impartial referee.

4.1. Indexes of efficiency of anomalies detection

Let us assume that among the samples, which were
collected over some area,nA(a) samples were recog-
nized as abnormal at a significance level of a%. Some
number,nA(a )Ore, of them fall inside the contour of an
ore zone, andnA(a )Extr samples match anomalies in
aqueous extracts. The quantities

h�a�Extr � nA�a�Extr

nA�a� ; h�a�Ore� nA�a�Ore

nA�a� �15�

are the measures indicating how precisely the anoma-
lies match these contours. Lets assume that the values
of any index of contrast for a set of samples are
mutually independent, and that sampling spots are
randomly distributed over the ore zone and over the
contours of the anomalies in the aqueous extracts.
This assumption is not too violent from the ‘point of
view’ of the ore zone, which is the common origin of
all the contours that are considered. The assumption
realizes a binomial distribution of the overlap,h , of
these contours, and approximate boundaries of
(1 2 e )100% confidence interval forh can be
inferred:

Dh < �nAh 1 0:5l2

^ l
��������������������������
nA�1 2 h�h 1 0:25l2

q
��nA 1 l2�21 �16�

wherel is a (12 e )100% quantile of the distribution
N(0,1).

It is convenient to compare quantities in Eq. (15)
which are acquired for different indexes of contrast of
anomalies, using interval estimates from Eq. (16). It is
useful to complete the interval estimates with a test
detecting outlying values ofh . Let H � �h� be an
accuracy of matching for several indexes of contrast,
which are used for calculation of an average

�h �
X
H

nAh
X
H

nAh

 !21

:

The statistics,

hp � �h 2 �h�nA�nA�1 2 h� �h�21=2
; �17�

are standardized deviations ofh from the mean�h : If
these values are statistically indistinguishable, then
for all h it is true thathp [ N�0;1�; approximately.
If one of these values differs from others, then for that
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value,hp @ 0: Below, the parameter,hp
; will be used

with the same indices as in Eq. (17).

4.2. Rare metal mineral deposit

As a historical note, due to the security system
operating in the Soviet Union in the 1980s, the authors
were prohibited from knowing the name of the deposit
for which they had been provided samples and data.
The rare metal tin–beryllium deposit is located in the
Kola peninsula (Russia). It is confined to the granite
massive, which was intruded through sedimentary-
metamorphic rocks of the middle-Proterozoic age.
The vein-like, steep-dipping orebodies are located
among skarn limestones containing disseminated
mineralization. The orebodies are several meters
thick and several hundred meters long along the
strike. The investigation site is confined to the western
part of the deposit. The humus layer of soil was
sampled along the grid 100 m× 20 m: A sample of
,1 mm was analyzed by both DC arc emission spec-

trometric analysis (bulk fraction) and by the dithizone
method (Irving, 1980) for the sum of Cu and Zn
concentrations (acetate extract).

The local multicomponent geochemical back-
ground population was selected beyond the known
ore zones (Fig. 1) using a nonlinear mapping techni-
que described in Section 3.1. Despite the significant
thickness of the transported overburden, high concen-
trations of ore elements were detected both in the
acetate extracts and in the bulk samples. That is
why, in this study, we consider anomalies oft , G1,
G2, n , which were calculated for Cu and Zn concen-
trations in the bulk samples.

Fig. 2 shows anomalies that have been detected at
two significant levels:a � 5% anda � 1%:1 Visual
comparison of these maps reveals that the contour of
thet anomaly looks more ragged than the contours of
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Fig. 2. Rare metal deposit. Anomalies of Cu1 Zn in extracts and anomalies oft ,G1, G2, andn by concentrations of Cu and Zn in bulk samples.

1 To avoid overloading of plots not all confidence intervals are
shown. An asymmetry of confidence intervals is caused by errors of
normal approximation, which was used in Eq. (13).



theG1, G2, andn anomalies, and that thet anomaly
looks more similar to the contour of the sum of the
metals Cu and Zn in acetate extracts. The area of
greatest contrast and the most extended area oft
anomalies closely match the contour of ore zone
projected onto the land surface. At the same time,
the wide, smooth anomalies ofG1, G2, and n look
like they were obtained as the result of less-detailed
mapping.

Fig. 3 quantitatively confirms these visual impres-
sions. At the confidence level,a � 5%; the differ-
ences between compared values ofh , h p can be
considered statistically insignificant. However, at the
confidence level,a � 1%; the values ofh p (Eq. (1))
for t (circles in Fig. 2) stand apart from the cluster of
all other points on the plot. This means that high
values oft match more precisely the given contours
than the indexesG1, G2, andn . In other words, with
respect to all other indexes, indext first of all demon-
strates the closest matching to the field of concentra-
tion obtained from the acetate extracts, and, secondly,
it provides anomalies with maximum contrast over the
contour of the ore zone.

4.3. The Cu–Ni Pechenga deposit

The Cu–Ni mineral deposits of Kola Peninsula are
thoroughly investigated (Smirnov, 1977). The Cu–Ni
mineralization is associated with the basic and ultra-

basic intrusions; most of them are located among sedi-
mentary rocks of the upper parts of the Pechengskaya
series. Ore mineralization is confined to exo and endo-
contacts of big differentiate massifs. Mineral compo-
sition includes chalcopyrite, pentlandite, and
pyrrhotite, contaminated with sphalerite, galena,
rutile, graphite, and native copper.

The investigation site is confined to the central part
of the Pechengskaya mineral zone. The humus layer
of soil was sampled along a grid 100 m× 20 m: The
,1 mm fraction was analyzed as described above.
The sum of Cu1 Ni 1 Co concentrations was deter-
mined in acetate extract.

Concentration of the sum of metals in this case is 10
times less than in the previous example. The relative
area of anomalies delineated at a 1% confidence level
is also small (Fig. 5). The indexes,G1, G2, and n ,
calculated by Cu, Ni, and Co concentrations in balk
samples, also provide low contrast anomalies. That is
why, in this example, we were forced to expand the
spectrum of features for anomalies detection.

We considered five sets of features. They are
denoted by letters from ‘A’ to ‘E’ (Table 1). The
first two conventional sets represent the lists of typical
elements: the wide set of elements, ‘A,’ is usually
utilized in the course of prospecting for mineral
deposits at the Kola peninsula; the narrow set of
elements, ‘B,’ is typical for Cu–Ni mineralization.

Sets ‘C’, ‘D’, and ‘E’ were selected automatically
by algorithms. This is described above in Section 2.3.
The selection was conducted under the most favorable
conditions for each competing index of contrast. To
obtain set ‘C’ we applied the pursued selection, maxi-
mizing the contrast of anomaliesG1 (G2, and n ,
respectively) in the contour of ore zone. We applied
the same pursued selection maximizing the contrast of
t anomalies to obtain the set ‘D’. The last set, ‘E,’ was
obtained using wandering selection maximizing the
contrast oft anomalies.

Fig. 4 shows the contours of anomalies at the 5%
and 1% confidence levels. Fig. 5 demonstrates the
degree of matching various indexes of contrast calcu-
lated for different sets of features to the contour of the
ore zone. It is clearly seen that indext is superior. It
provides maximum values ofh (a )Ore for all a and for
all sets of features. Significantly bigger values of
h(a )Ore are taken ata � 1 for empirically selected
sets ‘D’ and ‘E’. The indexes,G1, G2, and n
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Fig. 3. Rare metal deposit. Accuracy of matching anomalies to
contour of ore zone and to contour of anomalies in extracts. Solid
signs —h (·)ore, h

p.(·)ore; empty signs —h (·)extr, h
p(·)extr; circles

— t , squares —G1, triangles —G2, diamonds —n .
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Table 1
Sets of features

Set Description Chemical elements included

A Wide set of typical elements Sr, Ba, Ti, Mn, Cr, V, Ni, Co, Cu, Zn,
Pb, Sn, Mo, Zr, Ca, Mg, Al, Fe

B Narrow set of typical elements Cr, Ni, Co, Cu, Zn, Pb, Mo
C Features selected forG1 by the pursued selection Sr, Mn, Cr, Ni, Co, Ca, Mg
D Features selected fort by pursued selection Sr, Ba, Ti, Mn, Ni, Cu, Mo, Ca, Mg
E Features selected fort by wandering selection Sr, Ba, Ti, Ni, Co, Cu, Sn, Zr, Ca

Fig. 4. Anomalies of Cu1 Ni 1 Co in extracts and anomalies oft , G1, G2 andn by concentrations in bulk samples. A–E — labels of sets of
features (see Table 1).



(Eq. (6)), provide the best opportunities for prospect-
ing when they are calculated for sets ‘A’ and ‘B’. In
these cases, indexes (Eq. (6)) are comparable with
worse variants of indext (sets ‘A’, ‘B’, and ‘C’).

The differences betweenh (5)extr, and h p(5)extr

(Fig. 6) are not demonstrated clearly. We can say
that t anomalies more precisely match to anomalies
in acetate extracts if they are calculated using the
feature set, ‘E,’ selected by wandering selection. In
this caseh p�5�extr � 1:65:

These examples confirm the advantages oft with
respect to other indexes of contrast. If selection of
significant features is properly performed, then the

index t is an effective tool for delineating anomalies
of mobile salt constituents in soil and for localization
of lode mineralization on a paleosurface as well.

5. Conclusions

We conclude that it is reasonable to detect multi-
component geochemical anomalies using the statisti-
cal measure of contrast,t . It provides maximum
contrast for detection of anomalies. Other indexes of
contrast, which ignore the correlation between
features in the background population, represent
geochemical fields in a very generalized form, similar
to that obtained by a small-scale mapping. The advan-
tages of indext provide the maximum benefit in
prospecting with low-cost methods of soil analysis
for buried and concealed deposits. In the case
presented a combination of indext and the selection
of significant features permits the detection of low
contrast anomalies with at least the same success as
utilizing more expensive acetate extracts of mobile
salt forms.
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