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Abstract

Hydrologic data sets are often of short duration and also suffer from missing data values. For estimation and/or extrapolation,

the presence of missing data not only affects the choice of a particular method of analysis but also the resulting decision making

process. Existing methods are based on the single-valued data approach and thus do not involve the effect of seasonal grouping

(or segmentation) in hydrologic data prediction. Based on concepts and properties of groups and arti®cial neural networks, this

paper develops a segment estimation model for in®lling of missing hydrologic records. Ef®cacy of the proposed model is

demonstrated through applications to a number of natural watersheds. The group-based neural network models are shown to

retain relevant properties of the historical stream¯ows both at the auto- and cross-variate series levels. Further, the group-based

neural network models are found to closely in®ll the missing peak ¯ows and also the moderate ¯ows. The results suggest that

in®lling of data gaps of stream¯ows based on the concept of neural networks and group-valued data approach is a reasonable

alternative, and warrants further investigations. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Effective planning, management, and control of

water resource systems require considerable data on

numerous hydrological variables such as rainfall,

stream¯ow, and temperature. Invariably, the data

sets are recorded in time and are referred to as time

series. These series are analyzed using statistical

methods to evaluate the parameter of interest so as

to arrive at a suitable decision support system for

management and control purposes. However, a major-

ity of the time series often exhibits some form of

de®ciency due to the presence of gaps, discontinuities,

and inadequate length. Such de®ciencies in hydrolo-

gical time series are attributable, among other, to the

malfunctioning of monitoring equipment (electric or

mechanical), effects of natural phenomena (e.g. earth-

quakes, hurricanes, landslides, etc.), data transmis-

sion, storage, and retrieval processes. Time series

methods, among other, do not tolerate missing obser-

vations and therefore, numerous data in®lling proce-

dures have evolved in various scienti®c disciplines to

deal with incomplete data sets.

There are two basic problems when dealing with

inadequate hydrological time series. In the ®rst case,

the time series are of adequate time length but suffer

from the presence of data gaps. In this case, data
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in®lling has been referred to as data augmentation. In

the second case, the historical time span of the data

series is inadequate and thus efforts are made to

extend the historical time span to a desired one.

This latter case of data in®lling has commonly been

referred to as data extension.

In order to design water resources systems that

provide satisfactory performance in the future, all

relevant characteristics of the time series should be

taken into consideration while modeling the hydrolo-

gical data. For example, monthly stream¯ow time

series exhibit the presence of heterogeneous relation-

ships among data points (Panu and Unny, 1980) and

also exhibit nonlinear relationship among data paints.

This paper develops a segment estimation model for

in®lling of missing hydrologic records that takes into

account the nonlinear characteristics of hydrologic

data. By incorporating seasonal segments as integral

components of the model structure, the proposed

model overcomes the problems that invariably arise

from ignoring the role of heterogeneous relationships

among data points. Ef®cacy of the proposed model(s)

is examined in relation to their in®lling ability of

missing stream¯ows.

2. Groups and groupings in hydrologic data

Groups are considered to possess certain character-

istics that distinguish them uniquely as separate enti-

ties. That is, the variables (or elements) that form a

group represent a certain uniqueness of the group. In

time series, time dependent observations, which form

groups collectively, re¯ect the unique characteristics

of such groups. In this paper, for example, hydrologic

observations corresponding to seasonal periods of dry

and wet are considered to form groups (Khalil et al.,

1998a,b; Unny et al., 1981; Panu et al., 1978; and

others). On the other hand, the term grouping refers

to the formation of cluster in-groups.

3. Assessment of existing stream¯ow data in®lling
techniques

A concise and comprehensive review of existing

techniques of data in®lling is provided by Khalil et

al. (1998a). Majority of data in®lling procedures and

techniques are based on single-valued approach with

the exception of the group-valued approach proposed

by Panu and associates (Panu, 1991; Panu and Afza,

1993; Goodier and Panu, 1994; Khalil et al., 1998a,b).

A brief but relevant discussion of various pertinent

data in®lling procedures can be found elsewhere

(Panu et al., 2000).

3.1. Single-valued data approach

In this approach, all models have one thing in

common that each data value within a historical

record is used as an informative unit by itself and

thus effectively ignores the information that may

propagate if similar data values are treated as groups.

This means the properties of the data series are not

changed with time for both the mean and variance

(second order stationarity). Additional discussion of

relevant procedures, such as those of the bivariate,

multivariate, mixed-variate regression methods, and

autovariate time series and multivariate time series

methods has been provided by Panu et al. (2000).

3.2. Group-valued data approach

In this approach, the data with similar attributes are

collected together to form groups. Each group is

considered to satisfy the requirement of weak statio-

narity. The formation of a group by the use of data

values of same properties assures group homogeneity

(Panu et al., 1978). This homogeneity helps in the

extraction of satisfactory information for better esti-

mation accuracy of data (Unny et al., 1981). It is in

this regard that there are some advantages of forming

seasonal groups towards the development of data

in®lling models. Such advantages include among

others: (a) the stability of con®dence limits over the

duration of the group; (b) the estimation of correlation

coef®cient and other similar parameters of interest

over the homogeneous sub-set rather than across the

entire set of data; and (c) the formation of data groups

does not require the assumption of stationarity as

presently used in statistical formulations. In essence,

it would require stationarity of the other kind, for

example, separate stationarity for each type of groups

within the data set (Khalil et al., 1998a,b; Goodier and

Panu, 1994; Panu and Afza, 1993). The pattern recog-

nition (PR) based methods are capable of dealing with

groups and their properties for enhanced data in®lling
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of missing values. For brevity, such methods are

brie¯y presented below.

3.2.1. PR based methods

The variability of duration in a data gap is incon-

sequential for the single-valued data approach

because a single value is estimated at each time

step. The resulting error of estimation in single-valued

approach increases after the very ®rst in®lled value.

However, in the group-valued data approach, the

variability in duration of a data gap plays a signi®cant

role (Panu, 1991). It is noted that the estimation error

over the duration of a seasonal segment is time invar-

iant (Panu, 1991; Panu and Afza, 1993; Goodier and

Panu, 1994). Additional considerations pertaining to

the de®nition of a gap (Panu, 1991) can signi®cantly

reduce the error of estimation in in®lling of missing

values. It is in this vein that Afza and Panu (1992)

proposed two types of models, namely the auto series

and cross series models of monthly stream¯ows to

investigate the role of seasonal groups and their char-

acteristics in the estimation of missing data values. In

these models, characteristics of groups of data of the

subject river (i.e. the river with missing values) and

the base river (i.e. the nearby river(s) without any

missing values of concurrent records) are utilized. In

the auto series models, the missing data values are

estimated based on the conditional projection of the

most probable ¯ow group (i.e. a ¯ow pattern). The

relationships among ¯ow patterns are considered to

follow the Markovian dependence (Panu, 1991;

Afza and Panu, 1992). In the cross series models,

the ¯ow pattern is projected into the data gap condi-

tionally based on the occurrence of a ¯ow pattern

during the data gap in a participating base river. The

con®guration of the projected ¯ow pattern in the data

gap is obtained based on the assumption of joint

multivariate normality (i.e. mean vector and covar-

iance matrix). The elemental values of the projected

¯ow pattern are obtained based on the multivariate

probability distribution (Johnson and Wichern, 1988).

Based on such considerations, the missing values

can be in®lled as a group (i.e. a vector) rather than as

individual values (Afza and Panu, 1992). Convention-

ally, the regression and maintenance of variance

extension (MOVE) models (Hirsch, 1982) compute

parameters from the sample data consisting of all

available data irrespective of the existence of different

seasons (or data groups). Three sampling schemes

were utilized (Afza and Panu, 1992) in the evaluation

of the effectiveness of data groups for in®lling

purposes. The calibration of regression and MOVE

models in the ®rst, second, and third sampling

schemes were, respectively, based on sample data

consisting of all available data and thus these models

are called AREG and AMOVE; sample data from

seasonal groups and hence models are referred to as

SREG and SMOVE; and sample data from speci®ed

sub-groups within a seasonal group and therefore

models are denoted by SSREG and SSMOVE.

These models were evaluated for the autovariate

series and cross-variate series cases. In all such

sampling schemes, the cross-variate series models

performed better than the autovariate series models

(Panu, 1991; Afza and Panu, 1992). Goodier and

Panu (1994) have reported additional modi®cations

of these models for the mixed multivariate scenario

with satisfactory results.

These models deal only with completely missing

seasonal segments, and thus do not evaluate the case

of partially missing segments. Also grouping of the

monthly ¯ow into a six-month period may not strictly

be similar, and a multivariate model of lesser dimen-

sion (three or four months within the group) can be

more reliable. Another improvement may be achieved

by combining the two algorithms (i.e. the stochastic

structures dealing with the autovariate-structure and

the cross-variate-structure) together to form a model

that deals with both type of relationships between two

nearby rivers having the same seasonal properties.

3.2.2. Arti®cial neural networks based methods

The literature related to the use of arti®cial neural

networks (ANN) with missing or incomplete data is

sparse. Only a limited number of reports and research

publications are available. Karunanithi et al. (1994)

used ANN to predict river ¯ows, and compared the

results with those obtained from parametric models. It

was further observed that the results obtained from

ANN-based models were more favorable. Besides

applications in water resources, the use of ANN-

based models by Gupta and Lam (1996) has been

reported for estimating missing values in a multivari-

ate data set. The results of ANN-based models were

found to be more accurate than those obtained by

iterative regression analysis. Further, the focus of
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some contributions has been on improving the learn-

ing capabilities of ANN-based methods from incom-

plete training data sets, and also for handling inputs

with missing attributes (Ishibuchi et al., 1993;

Pedreira and Parente, 1995). For stream¯ow predic-

tions, Elshorbagy et al. (2000) found that ANN-based

models performed better than those based on linear

and nonlinear regressions.

3.3. Concluding remarks on data in®lling procedures

With the exception of the group-valued data

approach (i.e. PR based methods), the previously

proposed procedures implicitly or explicitly invoke

the assumption of linear relationships between vari-

ables. Tong (1983) described the drawbacks of linear

models and pointed out their inadequacy in the predic-

tion of the occurrence of sudden bursts of stream¯ows

with large amplitudes at random time intervals. Tiao

and Tsay (1989) also described some of the dif®culties

that may occur with linear relationships in multivari-

ate models. Due to these dif®culties, many nonlinear

statistical models have been developed (Granger and

Newbold, 1986; Tong, 1990). Despite the signi®cant

progress achieved during the last decade, it is still

dif®cult to formulate reasonable nonlinear models

(Tong, 1983), because of simpli®cation made in the

modeling stage.

Recent advances in ANN are encouraging (Tong,

1983; Granger and Newbold, 1986; Tiao and Tsay,

1989; Tong, 1990). The success of ANN in modeling

dynamical systems in other ®elds of sciences suggests

that the ANN approach may prove effective and ef®-

cient in the development of data in®lling procedures

in hydrological data series.

4. Signi®cance of neural networks in monthly
stream¯ow data

Monthly stream¯ows are often short and exhibit a

nonlinear multi-variable nature and this can make it

dif®cult for linear models (e.g. multiple regression,

seasonal ARIMA, and PR based techniques) to accu-

rately in®ll the data gaps. Alternative methods that

can deal with this complexity are the focus of consid-

erable research. ANN, coupled with seasonal group-

ing, appear to be one such alternative to the linear

statistical methods in identifying and studying the

intricate nature of such time series.

The use of an ANNs to manage the stochastic varia-

tions of the hydrologic data has been proposed by

many researchers (Hsu et al., 1995; Raman and

Sunilkumar, 1995; Kang et al., 1993). Some studies

in which ANN models have been applied to solve

problems concerning missing data and data forecast-

ing in hydrology have been reported (Tanaka, 1996).

As an example, Hsu et al. (1995) proposed a very

comprehensive study for developing and applying

an ANN algorithm to a rainfall±runoff time-series.

Using a combination of linear least squares and

multi-start simplex optimization, Hsu et al., used a

new algorithm named ªlinear least squares

simplexº (LLSSIM) for identifying the structure

and parameters of a three layer feed-forward

ANN model. Comparing this algorithm with a

linear auto-regressive moving average with

exogenous input (ARMAX), the ANN model was

found to provide a better representation of the

system than the ARMAX time series approach.

However, it is envisioned that the inclusion of

seasonal segmentation technique in ANN based

rainfall±runoff modeling could signi®cantly

improve the prediction accuracy.

Raman and Sunilkumar (1995) presented another

comparison between the AR and ANN models in

simulating the monthly ¯ows for the case of two reser-

voirs. Again, the ANN models provided more promis-

ing results than the AR model. French et al. (1992)

were capable of forecasting the complex temporal and

spatial distribution of rainfall using ANN. Kang et al.

(1993) used ANN for the daily and hourly stream¯ow

forecasting. Wong et al. (1994) successfully predicted

the missing pH values in the Great Lakes data

using the cluster techniques in identifying the

most correlated parameters. Tanaka (1996) used

stochastic neural networks and the EM algorithm

(Streit and Luginbuhl, 1994) in the estimation of

missing data in a plant model. None of the

previous studies have investigated the stopping

criteria and over®tting error. Such an error may

contribute to an erroneous estimation of missing

data values. Lachtermacher and Fuller (1994) were

aware of this problem in their neural based time

series forecasting model.

Based on the argument that the number of
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parameters in a regression equation should, at the

most, be equal to one fourth of the number of obser-

vations (McCuen, 1993), Tokar (1996) used a simple

rule (as described later in Eq. (8)) in rainfall/runoff

modeling, and also applied the rule to ANN techni-

ques to compute the maximum number of nodes in a

network. In addition, the neural networks were

found to provide better prediction than regression

techniques for classifying the daily data into wet,

dry, and average days. It is with this view that the

internal structure (i.e. the intra-structure) of groups

is examined with a view to describing this struc-

ture through the use of ANN, PR, and AR proce-

dures. The stochastic interrelationship (i.e. the

inter-structure) among various groups is explored

in an effort to develop a stochastic methodology

for in®lling one or more of either full or partial

missing segments.

5. Development of data in®lling models based on
neural and group concepts

Based on the consideration of structural composi-

tion of neural networks and the group-valued data

approach, data in®lling methods (or models) are

proposed for the cases: (i) a single data series with

gaps; and (ii) a data series with gaps along with the

availability of one (or more) concurrent but complete

data series from neighboring stations. Two types of

methods, namely, the autovariate time series (i.e. the

series with gaps) and the bivariate time series (i.e. the

series with gaps and another series with complete but

concurrent records) are proposed.

In the autovariate-series case, the relationships

among groups within the data series with missing

values are utilized. In the bivariate-series case, the

relationships among groups of two (or more)
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concurrently occurring data series (one series with

missing data values and another series with complete

data values) are utilized. Further, in the bivariate-

series case, one or more data series with complete

records may be available at an upstream/downstream

location, or at a tributary of the same river, or at a

tributary of an adjacent river. Concurrent as well as

complete data series need not be of stream¯ows but

could be of rainfall, temperature, evaporation, etc. In

this paper, the concurrent but complete data series

considered are only of stream¯ows.

The structural composition of groups and relation-

ships within groups are characterized through consid-

eration of neural concepts. The structural complexity

of groups is speci®cally addressed through the use of a

speci®c set of neurons in the input and output layers.

For example, the number of elements in the input-

seasonal-segments and the number of elements in

the output-seasonal-segments, respectively, specify

the number of neurons in the input-layer and output-

layer. Additional complexity in seasonal segments

within a hydrological year and over the entire data

series is considered through the speci®cation of a

number of hidden layers and the number of neurons

in each hidden layer. The optimal number of hidden

layers and the number of neurons in the hidden layers

are normally obtained through experimentation with

the data set.

In this paper, the notation followed to describe a

multi-layer neural network is NN (n, nhi, t), where n is

the number of neurons in the input-layer, nhi, is the

number of neurons in the ith hidden layer, and t is the

number of neurons in the output layer. The number of

neurons in the input-layer and output-layer depends

upon the number elements (i.e. months) de®ning a

seasonal segment (i.e. a group). The parameters of

the neural network (e.g. the number of hidden

layer(s), the number of nodes in the hidden layer(s),

the number of epochs used to stop the network) were

experimentally determined (Khalil et al., 1998b). The

parameters, which minimize the mean squared error

(MSE) between the actual and the in®lled values,

were retained in the models.

5.1. Multi-layer-feed-forward autovariate series

model

The formulation of an autovariate-series model

(ASM) to in®ll the missing seasonal gap(s) in a single

seasonal stream¯ow data set is conceptualized based

on the group-valued data approach, the autovariate

lag-one series model of the type suggested by Panu

(1991) and developed by Afza and Panu (1992). In

this paper, a Markovian relationship between the

seasonal segment prior to the missing seasonal

segment and the missing seasonal segment is assumed

(Fig. 1a). The governing equation for this type of

model can be expressed as:

Qi � f �Qi21� �1�
where, Qi is a vector of monthly stream¯ows at season

i, while Qi21 is a vector of monthly stream¯ows at

season i 2 1: The multi-layer-feed-forward autovari-

ate lag-one series model (MASM) is formulated as a

fully connected back propagation network, involving

input, hidden, and output layers. The number of nodes

in the input and in the hidden layers depends on the

number of months that de®ne a season in the auto-

variate data set of the subject river. The network is

based on a NN (3,7,3) con®guration (Khalil et al.,

1998b). A nonlinear logistic (sigmoid) function is

used for activation to map the nonlinearity of stream-

¯ow data.

5.2. Multi-layer feed-forward bivariate series model

The bivariate series model (BSM) deals with in®ll-

ing of the missing values in the subject river (i.e. the

river with missing data values) and uses the prior

information obtained from one or more similar data

series from nearby rivers also called the base rivers

(Fig. 1b). The stream¯ows from base rivers exhibit

synchronous seasonality and are cross-correlated to

each other. A lag-zero BSM of the type suggested

by Panu (1991) and developed by Afza and Panu

(1992) is conceptualized to in®ll the missing seasonal

gap(s) in a seasonal stream¯ow data set. In this model,

the data series at base sites can be any other nearby

stream¯ow data, any precipitation data or any infor-

mation that strongly affects the stream¯ows at the

subject river. This model can be expressed as follows:

Qsi � f �Q1bi;Q2bi;Q3bi;¼;Qnbi;Pi� �2�
where, Qsi, is a vector of monthly stream¯ows of the

subject river in season i, Qjbi, a vector of the monthly

stream¯ows of the base rivers � j � 1; 2;¼; n�; and Pi
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is a vector of the precipitation data in season i

collected on the watershed of the river with data gaps.

The multi-layer-feed-forward bivariate series

model (MBSM) is formulated as fully connected

back propogation network consisting of an input

layer, hidden layer(s), and an output layer. Similar

to the MASM model, the number of nodes in the

input and the hidden layers depends on the number

of months that de®ne a season in both the subject river

and the base rivers. It is noted that nodes in the input

layer and the output layer, respectively, are corre-

sponding to the group-characteristics of the base

river and the subject river. The nodes in the hidden

layer re¯ect the degree of synchroneous in group-

characteristics of the base river and the subject river.

One can develop neural networks based on NN (3,7,3)

con®guration. As noted earlier, a nonlinear logistic

(sigmoid) function is used as an activation function.

6. Model performance indicators

To evaluate the adequacy of the proposed models,

the performance of the models should be analytically

measured, and related to stable statistics. Such testing

procedures for model reliability are presented below.

The relative mean error (RME) is obtained as

follows:

RME � 1

N

XN
i�1

uŷi 2 yiu
yi

�3�

where, yi is the observed value, ŷi the estimated value,

and N is the number of observations. A value of RME

near zero implies that the model is providing a good

estimate of the missing values. This equation can be

rewritten to test the model goodness-of-®t at seasonal

levels (i.e. dry, wet, and average seasons) as follows:

RME � 1

M

XM
i�1

uŷk
i 2 yk

i u
yk

i

�4�

where, M , N is the number of observations in the

speci®ed kth season.

The correlation coef®cient has commonly been

used as a goodness-of-®t statistic. However, the corre-

lation coef®cient is only a measure of the linear asso-

ciation between the variables. The standard error of

estimate can be applied to both linear and nonlinear

models. For a nonlinear information processing

system, Tokar (1996) suggested the use of the stan-

dard error of estimate, Se, for performance evaluation

of the neural networks. A measure (Noise to Signal

Ratio) involving the term Se is de®ned as follows:

Noise � Se=Sy �5�
The term, Sy is the standard deviation of the observed

values of the dependent variable and is obtained as

follows:

Sy �

����������������XN
i�1

�yi 2 �y�2

N 2 1

vuuuut �6�

In Eq. (5), Se is the biased standard error of estimate

and is obtained as follows:

Se �
�������������������
1

v

XN
i�1

�ŷi 2 yi�2
vuut �7�

The degree of freedom, v, in Eq. (7) is obtained as

follows:

v � N 2 �nNout 1 nNin 1 n 1 Nout� �8�
where, n is the number of nodes in the hidden layer,

Nin the number of the input nodes, Nout the number of

output nodes, N the number of observations, yi the

observed data, ŷi the estimated data, and �yi is the

mean of the observed data. When Se is signi®cantly

smaller than Sy, the model is considered to provide

good estimates of the missing values. If Se is nearly

equal to or larger than Sy, the model is considered

unsatisfactory. Eqs. (7) and (8) can be rewritten to

test the goodness-of-®t of models at the seasonal

level (i.e. dry, wet, and average seasons).

7. Evaluation basis of the proposed data in®lling
models

Based on the above statistical considerations, the

proposed group-based neural network models (here-

after referred to as ANN models), namely the MASM

and the MBSM, are compared to evaluate the best

reliable approach for the selection of a suitable data

in®lling model. To assess the suitability and the ef®-

cacy of the proposed ANN-based models, it is neces-

sary to compare the estimation capabilities of the
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proposed models with those of existing models. Test-

ing all the models of interest on the same data set

usually makes this comparison. Comparable models

such as those of the bivariate multi-dimensional

regression (MR) and the PR models are used for

comparative analysis. It is noted that PR models by

de®nition are multi-dimensional models.

7.1. Performance assessment of ANN- and MR-based

models

The MR-based models are statistical linear proce-

dures for estimating values of one or more dependent

variables from a collection of predictor (independent)

variables. These models can also be used for assessing

the effects of the predictor variables on the response

variable (Johnson and Wichern, 1988). Due to simpli-

city and importance of the application of the MR

procedures, especially in stream¯ow data estimation,

many researchers in estimating the missing data (Tang

et al., 1996; Beauchamp et al., 1989; Boakye and

Schultz, 1994) have used these procedures.

In order to evaluate the proposed ANN-based

models, the estimated values from the MASM and

MBSM are compared to the estimated values of the

MR models using the group-valued approach. One

such MR model is presented as follows:

Y
�n £ m�

� Z
�n £�r 1 1��

b
��r 1 1�£ m�

1 1
�n £ m�

�9�

where, m is the number of response estimated vari-

ables Y, n the number of observations, and �r 1 1� is

the rank of design matrix, Z. The unknown parameter,

b is estimated as follows:

b̂ � �Z 0Z�21Z 0Y �10�
1 is the residual whose sum of squares (1 01) is mini-

mized and has the form

1̂ 01̂ � Y 0Y 2 Ŷ 0Ŷ � Y 0Y 2 b̂ 0Z 0Zb̂ �11�
and Ŷ is the estimated values and has the following

form:

Ŷ � Zb̂ � Z�Z 0Z�21Z 0Y �12�
It should be noted that the multiple regression equa-

tion implicitly assumes that expectation of errors are

equal to zero, the errors are statistically independent,

the variance of errors is constant, and the errors are

normally distributed.

7.2. Performance assessment of MR-, PR-, and ANN-

based models

Based on concepts of PR and the information

contained in the seasonal segments, Goodier and

Panu (1994) developed models for in®lling of data

gaps in both ASM and BSM. The results of these

existing models are available for the case of two

six-month seasons in the English River (Goodier

and Panu, 1994). For comparative purposes, therefore,

the ANN-based and the MR-based models using

seasonal segments of six-month were also developed.

The MR-based models (ASM and BSM) at the Sioux

Lookout station of the English River (as the Subject

River) and Umferville station of the English River (as

the Base River) were developed. A neural network

NN (6,7,6) of the English River was developed to

map the same problem using the ANN-based models

(MASM and MBSM). The results of the PR-based,

MR-based and ANN-based models are then compared

and the goodness of ®t for each season is computed.

The graphical assessment for the ANN-based

models is evaluated by comparing the estimated

value of the missing data with that of the observed

values during the dry, semi-dry, semi-wet, wet, and

combined all seasons. Also the estimated value from

the existing MR-based and PR-based models are

plotted in the same ®gures for comparative purpose.

In addition, the statistics for dry, semi-dry, semi-wet,

wet, and combined all seasons are tabulated to assess

the best in®lling model.

8. Application of ANN-based models to stream¯ow
data sets

In applying ANN-based models to watersheds, the

issues addressed were: (1) the effect of seasonal cycles

on the estimation accuracy; and (2) the effects of

ANN-based models on the quality of in®lled data

using seasonal groups in case of (a) the multi-layer

autovariate time series, and (b) the multi-layer bivari-

ate time series.

The models are applied on several rivers to evaluate

their data in®lling ef®cacy in terms of statistical and

graphical assessment. Based on the consideration of
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the group-valued data approach and the relevant struc-

tural composition of ANN, two types of models are

evaluated in this paper namely the MASM and the

MBSM. The MASM and MBSM models are, respec-

tively, for the cases involving only one data series

with data gaps, and for the data series with data

gaps in which vicinity one or more concurrent but

complete data series are available. The complete

data series may be available at an upstream or down-

stream location, or in a tributary of the same river, or

in a tributary of an adjacent river. The concurrent

complete data series does not need to be stream¯ows

but could be data on rainfall, temperature, evaporation

etc. In this paper, only stream¯ows are considered as

concurrent and complete data series.

8.1. Selection of stream¯ow information

In order to apply the proposed models, there are

certain conditions required for the appropriate selec-

tion of stream¯ow data. Such aspects are: (1) avail-

ability of data with suitable lengths; (2) unregulated

and uninterrupted stream¯ow data to minimize the

effect of external in¯uence; and (3) nearby stream¯ow

data that is subject to similar physiographical proper-

ties as the subject river site. An extensive search was

carried out to ®nd suitable stream¯ow data across

Canada. Table 1 shows the names, locations, and

properties of the ®ve chosen sites (watersheds).

The reason for choosing the upstream/downstream

related sites are that such sites are expected to exhibit

a linear relationship between the subject and the base

sites. It is noted that although the occurrence of seaso-

nal groups in a bivariate data set is linearly related but

their underlying processes would have different

degree of nonlinear compositions de®ning the internal

structures of seasonal groups in each time series. The

degree of nonlinearity in two time series of a bivariate

data corresponding to two watersheds would be higher

when such watersheds belong to two different river

systems compared to two sub-watersheds of a river

system. It is in this vein that the selection of the

nearby sites for two different watersheds can provide

an indication of the manner in which nonlinearly

related data can affect the data in®lling process. Selec-

tion of a tributary (i.e. a sub-river) as the subject site

and the main river as the base site help to enhance the

symbiotic and highly nonlinear relation between such

data time series and how such a relationship would

in¯uence the data in®lling process.

8.2. Preparation of stream¯ow data for in®lling

purposes

All stream¯ow data sets used in this paper are

complete and thus exhibit no data gaps. However,

for testing of the various models, a variety of data

gaps were randomly created in desired stream¯ow

data. To evaluate the overall performance of any

proposed model, missing data of one seasonal length

was assumed to occur in any year. This assumption is

continued (i.e. repeated) for all the years until all

seasons are assumed to be successively missing and

then succeedingly in®lled with the models. However,

it is noted that the ®rst season in the data set for the

MASM model is not estimated because the model is

formulated to in®ll only for the forward shift (e.g.

season i 2 1 to season i).

For the training and testing phases of the ANN-

based models (or the phases of calibration and veri®-

cation of parametric models), the data set for each site

or a site-pair (i.e. a subject site and the corresponding

base-site(s)) were divided into two parts. The ®rst part

comprising 80% of the data set was used in the train-

ing phase, while the other part comprising 20% of the

data set was used in the testing phase of the ANN-

based models employed in this paper. Thus, 173, 134,

134, 173, and 403 monthly data points, respectively,

for site or site-pair 1, 2, 3, 4, 5 (Table 1) were

used during the training phase of the neural network

models. Although, a larger data set is always

desirable, however, small data sets comprising of

100 or less data points have been successfully

employed for various synthesis and forecasting

purposes (Gupta and Lam, 1996; Chow and Cho,

1997; Loke et al., 1997; Elshorbagy et al., 2000).

Maier and Dandy (2000) concisely discuss various

modeling issues and applications of neural networks

in water resources.

8.3. Seasonality assessment of data sets

Seasonality was determined for the subject rivers

(Table 1) through the application of both correlation

and spectral analyses. The resulting correlogram and

periodogram are exhibited in Fig. 2. A strong indica-

tion of the presence of twelve-month seasonality is
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Fig. 2. Correlograms and Periodograms of the rivers: (a) English River, (b) Oslinka River, (c) Graham River, (d) Halfway River, and

(e) Nagagami River.
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Table 1

Geographical location across Canada of subject and base rivers used in the formation of various site-pairs (CCF means cross correlation coef®cient between the subject and the base

rivers and ACF means the auto-correlation coef®cient for the subject river)

Stream¯ow station Station

number

Latitude

(N)

Longitude

(W)

Remark on location CCF Period of

records (years)

Mean

(m3/s)

Area

(km2)

ACF General

remark

Site-pair

number

English River at

Sioux Lookout

05QA002 49 52 30 91 27 30 Down-stream 0.90 1963±1981

(18)

120 13 900 0.79 Subject site 1

English River at

Umferville

05QA001 50 04 15 91 56 40 Up-stream 57.1 6230 Base site

Osilinka River 07EC004 56 07 35 124 47 47 Nearby sites, two

different rivers

0.99 1981±1995

(14)

35.3 1960 0.71 Subject site 2

Mesilinka River 07EC003 56 14 38 124 38 36 44.5 2980 Base site

Graham River 07FA005 56 27 31 122 21 22 Sub-river from the

main Halfway River

0.93 1981±1995

(14)

25.4 2200 0.75 Subject site 3

Halfway River 07FA003 56 30 30 122 14 28 35.6 3780 Base site

Halfway River 07FA006

07FA001

56 13 40 121 28 50 Down-stream 0.961 1977±1995

(18)

75.8 9400 0.77 Subject site 4

Halfway River 07FA003 56 30 30 122 14 28 Up-stream 35.6 3780 Base site

Nagagami River 04JC002 49 46 44 84 31 48 Nearby sites, two

different rivers

0.95 1951±1993

(42)

24.7 2410 0.62 Subject site 5

Kabinakagami River 04JA002 49 44 39 84 06 13 48.0 3780 Base site



apparent in the ®ve stream¯ows. Two six-month

seasons (i.e. two seasons of six-month duration) are

also indicated for all stream¯ows presented. Based on

95% con®dence intervals, the presence of three

seasons of four-month duration is evident in the

Osilinka, Graham, and Nagagami stream¯ows. The

periodograms also show evidence of four three-

month seasons, especially in the three previously

mentioned rivers. A weak indication of the presence

of four seasons of three-month length is indicated in

the English River as shown in Fig. 2a. This is probably

due to the storage capacity of such a large watershed.

An experiment to in®ll the missing data using two

seasons of six-month length was also conducted for

this site. The results of this experiment will then be

compared to an analysis using the PR models

presented by Goodier and Panu (1994). Using an itera-

tive method (Khalil et al., 1998b), the starting and

ending months for the four seasons of three-month

length were determined to be November±January,

February±April, May±July, and August±October for

all the sites except the Nagagami River. The seasons

are classi®ed as semi-dry, dry, wet, and semi-wet,

respectively. The seasons for Nagagami River were

detected to be January±March, April±June, July±

September, and October±December. The seasons

are classi®ed as dry, wet, semi-wet and semi-dry,

respectively.

8.4. Multivariate-normality assessment of data sets

The grouped data should be tested for multivariate

normality using the multivariate p-dimensional normal

density. The p-dimensional normal distribution of such

a random vector has the form called Mahalanobis

distance (MD) (Gnanadesikan, 1997). The MD is
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Fig. 3. A plot of Mahalanobis distance and x2 distribution for testing multivariate normality of the four seasonal segments of the English River

with its base river: (a) Season-1 to Season-1, (b) Season-2 to Season-2, (c) Season-3 to Season-3, and (d) Season-4 to Season-4.



distributed as x2
p (i.e. the chi-square distribution) with p

degrees of freedom and S as the covariance matrix. By

comparing the theoretical value of thex 2
p statistic to that

obtained by calculating the MD of the actual data, the

multivariate normality can be assessed. As real data is

rarely normal, especially for a set of natural stream-

¯ows, a Box and Cox power transformation is used in

order to transform the data to normality.
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Multivariate normality testing was carried out for

each of the four seasonal segments at all sites, due to

the underlying requirement of multivariate normal

data sets by the MR and PR models. It was determined

that stream¯ow data normality was best achieved

through the use of a natural logarithm transform

(Panu and Unny, 1980; Unny et al., 1981). The sample

x 2-statistics and the MD were computed using the

SPSS computer package (SPSS, 1995) for the English

River (Fig. 3). There is an apparent indication of the

presence of multivariate normality for all seasonal

segments of the English River and similar results

with respect to multivariate normality were obtained

for the remainder of the rivers (Khalil et al., 1998b)

presented in this paper. A general ¯ow chart utilized

in various applications of models to a speci®c site or

site-pair is given in Fig. 4a.

8.5. Training of neural network based data in®lling

models

Training comprises of presentation of grouped data

pertaining to input and output to the network and

obtaining the inter-connection weights for the back

propagation network. Initially, the transfer function

parameters are de®ned and the network is assigned

arbitrary values between 0 and 1 to the inter-connec-

tion weights. The input-vector and corresponding

output-vector were normalized to fall within the inter-

val of 0 and 1. The error is computed as the difference

between the actual and the desired output (i.e.

observed data).

One epoch represents presentation of complete

training data sets once to the network. In this paper,

such a data set comprised of 80% of the data set for a

particular site or the site-pair. A part of the training

data set (approximately 15%) was used for perfor-

mance evaluation during the training process of

both MASM and BASM models. These neural

models were presented with all the input-vectors

and their corresponding output-vectors till the

desired level of performance was achieved on

the portion (usually 15%) of data set not used in

the training process.

The structural composition of a neural network and

the associated consideration of improvement of neural

network generalization are brie¯y described in

Appendix A. The neural network algorithm used in

this paper for brevity is summarized in Fig. 4b. To

improve the generalization property of the neural

network models, the cross validation techniques

were used. During the training process, as indicated

earlier, only a portion of the data set (i.e. 80%) and of

which 15% data set was used to evaluate the perfor-

mance of the model during the training process. The

reason for doing this was to validate the model on a

portion of the data set which is different from the data

set (i.e. the remainder of the data set, approximately

20%) later used for testing the ef®cacy of the models

in estimating missing values.
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Table 2

Comparative summary statistics of the ANN-based models (MASM and MBSM) during the testing phase

Scenario English River at Sioux Lookout Oslinka River Graham River Halfway River Nagagami River

RME Noise RME Noise RME Noise RME Noise RME Noise

MASM model

Semi-dry 0.51 1.11 0.41 0.26 0.46 0.24 0.84 1.30 0.55 0.82

Dry 2.66 3.08 14.93 4.61 11.18 4.06 13.27 3.41 8.16 3.24

Wet 0.50 1.28 0.68 1.30 0.62 1.27 0.65 1.21 0.74 1.24

Semi-wet 0.45 1.21 0.62 1.60 0.66 1.78 0.69 1.48 0.56 0.80

All seasons 1.03 1.67 4.16 1.94 3.23 1.84 3.86 1.85 2.50 1.53

MBSM model

Semi-dry 0.24 0.64 0.11 0.07 0.24 0.14 0.23 0.09 0.29 0.59

Dry 0.46 0.65 0.10 0.04 0.37 0.39 0.32 0.19 0.18 0.08

Wet 0.29 0.58 0.08 0.17 0.19 0.33 0.14 0.26 0.16 0.24

Semi-wet 0.46 1.19 0.11 0.31 0.25 0.51 0.37 0.58 0.24 0.55

All seasons 0.36 0.73 0.10 0.18 0.26 0.34 0.27 0.31 0.22 0.28



9. Performance assessment of data in®lling models

The proposed ANN-based models and the existing

MR-based and PR-based models are applied to

various cases involving the MASM and MBSM as

summarized in Table 1. The MASM and MBSM

models were ®rst assessed among themselves and in

turn were assessed in comparison with the existing

MR-based and PR-based models. For this purpose,

the data set (approximately 20%) which was not
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Fig. 5. Comparison between MASM and MBSM models: (a) English River, (b) Oslinka River, (c) Graham River, (d) Halfway River, and

(e) Nagagami River.
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Fig. 6. Four seasons comparative summary statistics between MASM and MR models in the (a) Dry Season, (b) Semi-Dry Season, (c) Semi-

Wet Season, (d) Wet Season, and (e) All Seasons.
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Wet Season, (d) Wet Season, and (e) All Seasons.



used for model calibration and validation was used.

Based on the results of these applications, the

proposed and existing models were assessed through

the graphical and statistical analyses. In all graphical

presentations, the abbreviations ER, OR, GR, HR, and

NR, respectively, represent the English River, Oslinka

River, Graham River, Halfway River, and Nagagami

River.

9.1. Comparisons between the MASM and MBSM

models

The test results of relative performance of MASM

and MBSM models are summarized in Table 2. As

expected in all rivers, the MBSM models perform

much better than the MASM models. The values of

cross-correlation between participating rivers for

MBSM models are higher (Table 1) than the values

of Lag-one auto-correlation for the MASM models.

Graphical comparisons in Fig. 5 between MASM and

MBSM models indicate that the bivariate techniques

are more suitable for stream¯ow data in®lling

purposes.

9.2. Comparisons of MASM and MR models

A graphical comparison in Fig. 6 between MASM

and MR models indicates that MASM is more

capable of handling the more variable character of

monthly stream¯ows forming the seasonal groups.

Due to small variation during the dry season, the

MR model was found to be better in estimating

the missing data than the MASM. In general, the

values of RME (Fig. 7) for MASM are smaller in

all seasons except the dry season. The values of the

RME for the all seasons of MASM ranges between

1.03 and 4.16, while the values of the RME for the

MR model ranges between 2.69 and 8.84. In other

words, MASM appears to be a promising estimator

of the missing values for the wet, semi-wet, and

semi-dry seasons in autovariate series.
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Fig. 8. Two seasons (Wet and Dry) comparative summary statistics in English River of ANN-based, MR-based, and PR-based models

(a) MASM, MR, and PR models, and (b) MBSM, MR, and PR models.
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Fig. 9. Comparison of ANN-, MR-, and PR- Models Using Two Seasons (Wet and Dry) in English River (a) MASM, MR, and PR models, and

(b) MBSM, MR, and PR models.



9.3. Comparisons of MBSM and MR models

A graphical comparison in Fig. 7 between MBSM

and MR models indicates that MBSM is slightly more

capable of handling the more variable character of

monthly stream¯ows forming the seasonal groups.

The MR model was found to be better in estimating

the missing data than the MBSM during the dry

season. In general, the values of RME (Fig. 7) for

MBSM are smaller in all the analyzed seasons except

the dry season. In other words, MBSM appears a

promising estimator of the missing values for the

wet, semi-wet, and semi-dry seasons in bivariate

series.

The MR model shows better estimation capabilities

for the missing data in rivers that have upstream/

downstream relationships (English River and Halfway

River). This may be due to the presence of linear

relationship between upstream and downstream

sites. However, the ANN based models show rela-

tively good estimation in the wet season for all sites

except for English River. In other words, ANN based

models have a higher capability of mapping during the

high ¯ows.

9.4. Comparisons of ANN-based, MR-based, and PR-

based models

The results of the PR based models for two six-

month seasons (Goodier and Panu, 1994) were avail-

able for the case of English River at Sioux Lookout.

For this river, the correlogram and the periodogram

showed no evidence of the existence of seasonality of

four seasons of three-month length. Three types of

model (ANN-based, MR-based, and PR-based

models) were applied in cases, i.e. the autovariate

series and bivariate series. ANN-based models of

NN (6,7,6) were used for comparison.

In the autovariate series case, the results of the PR-

based and ANN-based models are comparable. In

general, the PR-based models performed better for

all seasons. For example, the values of RME are,

respectively, 0.92 and 0.99 (Fig. 8a). However, for

the speci®c case of dry season, the ANN models

gave the best results. Again it is noted that the MR

model was the best estimator for the dry season.

In the bivariate case, it is apparent from Fig. 8b that

the ANN models are comparatively better than the PR

models and the MR models with values of RME of

0.08, 0.14 and 0.13, respectively. In general, the ANN

models are found to perform much better in all the

seasons. The MR models are found to be marginally

better than the PR models except for the semi-wet

seasons. Such observations are clearly apparent from

a graphical comparison in Fig. 9.

It is noted that the values of RME are slightly

improved in the MR models when the English River

is modeled using two six-month seasons. Such an

improvement is also noticeable (Figs. 7±9) for the

ANN models.

10. Conclusions

The concepts of ANN and seasonal groups and their

characteristics have been investigated for the estima-

tion of missing data values in monthly stream¯ows.

Five watersheds with varying degrees of physical

characteristics have been used to assess the ef®cacy

of proposed models for estimating data gaps in

monthly stream¯ow time series. The ANN techniques

and concepts have been shown to be good candidates

for the in®lling of the missing seasonal groups in

monthly stream¯ow data series.

The ANN-based models produced relatively more

accurate estimates of the data gaps for most sites

except the English River and the Halfway River. As

measured by the RME, the average improvement

during the testing period was 54% for both types of

models thus indicating that ANN-based models are

more accurate in data in®lling for seasonal group

than the regression (MR) model.

The MR based model using the autovariate series

method had shown relatively poor estimation ability

for stream¯ow data in®lling. This poor estimation is

quite pronounced for the small watersheds (i.e.

Graham, Halfway, and Osilinka). However, the MR

based-model gave relatively better estimation for

stream¯ow data in®lling for the larger watersheds

(i.e. English and Nagagami). This observation can

be related to the low auto correlation coef®cient

within the lag-three months. Further, the larger water-

sheds are more stable and thus accidental events have

less in¯uence on the seasonal stream¯ows.

Comparing the results of MR-based, PR-based and

ANN-based models on the six months groups, the
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ANN-based models gave relatively improved results

during the testing phase in both MASM and MBSM.

The average improvement for ANN-based models

over MR-based models is 55%, and over the PR-

based models is 34%. The average improvement for

PR-based models over MR-based models is 45%. In

other words, the ANN-based models, in general, are

more accurate in data in®lling for seasonal grouping

than the other models, and PR-based models are more

accurate than MR-based models.

Based on the results and discussions presented

in this paper, the proposed methodology in general

and the ANN based models in particular, appears

promising for stream¯ow data in®lling. Further

investigation may be needed for in®lling missing

data using more than one base site and also using

prior information from mixed records such as preci-

pitation data, temperature data, and/or snowmelt data

from nearby sites.

Appendix A. ANN algorithm

A.1. Generalization improvement of the ANN

algorithm

To improve the generalization property of ANN-

based models, the cross validation techniques are

used. First the available data set is randomly parti-

tioned into a training set and a test set. The training

set is further partitioned into two subsets:

1. a subset used for training the model;

2. a subset used for evaluation of performance of the

model.

About 15% of the training set is used to evaluate the

network. The reason for doing this is to validate the

model on a data set different from the data which will

be used later in estimating missing values.

An experiment was conducted to estimate the

number of neurons, which gave the best generaliza-

tion ability. For the validation set, a plot of RME

versus the number of neurons as shown in Fig. A1.

The values of the RME are determined by subtracting

the estimated and the observed values of the data

series, and then dividing their absolute values by the

observed data. The plot shows that the minimum error

is achieved when using seven neurons in the ®rst

hidden layer. Table A1 summarizes the value of

RME for a number of neurons in the ®rst hidden layer.

Another experiment was done to evaluate the relia-

bility of using two hidden layers. The same subset is

used for training the network and using seven neurons

in the ®rst hidden layer and a different number of

neurons for the second hidden layer. Fig. A2 shows

that best generalization is achieved when using four

neurons in the second hidden layer. It is also apparent

that the second hidden layer did not signi®cantly

decrease the RME. Table A2 summarizes the values

of RME for the number of neurons in the second

hidden layer.

A value of one to ten for the relation between

the weight and the patterns (number of input data)

was suggested by Weigned et al. (1991) in the

following the heuristic rule to obtain good gener-

alization properties in a network:

1:1P

10
# n�I 1 1� ,

3P

10
�A1�

where P is the total number of patterns used for

training �P � 204�; n the number of neurons in the

hidden layers �n � 7� in this study, and I the

number of input neurons used �I � 3� in this

study. The chosen seven hidden neurons computed

before was found to satisfy the heuristic rule

suggested by Weigned et al. (1991).

An experiment was conducted to examine the

maximum number of epochs which will be used

to stop the model before ®tting the training data.

The RME is plotted against the number of epochs

used to train the model. The number of epochs for

which the value of RME is a minimum is deter-

mined. This is the number of epochs at which the
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model would have the maximum and the best

generalization ability. The subset used for evalua-

tion of the model and for the determination of the

maximum number of epochs can be re-used again

for training the ®nal model. Fig. A3 shows that

the best generalization error is encountered at

10,000 epochs corresponding to the RME of

0.3798. Table A3 summarizes the value of RME

for various number of epochs used in a hidden

layer consisting of seven neurons.

Using the optimal number of epochs as the upper

boundary for training the model, the sum square error

(SSE) of the model is also monitored while running the

model to minimize the over-®tting error. If the SSE

starts to increase or to decrease very slowly, it is desir-

able to stop the process to avoid over-®tting errors.
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Table A3

A summary of RME values for various epochs

No of epochs 1000 3000 5000 7000 9000 10 000 11 000 13 000 15 000 17 000

RME 0.4203 0.4297 0.4347 0.3880 0.3811 0.3798 0.4088 0.4098 0.4293 0.4805

No of epochs 20 000 50 000 60 000 70 000 80 000 90 000 10 000 11 000 12 000 13 000

RME 0.4776 0.4421 0.4394 0.4357 0.4319 0.4578 0.4706 0.4846 0.4988 0.5001

Table A1

Summary of RME for number of neurons in the ®rst hidden layer

No of neurons 1 2 3 4 5 6 7 8 9 10

RME 0.3059 0.323 0.3185 0.3020 0.3179 0.2522 0.2023 0.2963 0.3358 0.2324

No of neurons 11 12 13 14 15 16 17 18 19 20

RME 0.3319 0.2156 0.5141 0.2341 0.3656 0.2710 0.4097 0.3975 0.3883 0.4847

Table A2

Summary of RME for number of neurons in the second hidden layer

No of neurons 1 2 3 4 5 6 7 8 9 10

RME 0.2670 0.2447 0.2348 0.2005 0.2159 0.2087 0.2227 0.3214 0.3574 0.2384

No of neurons 11 12 13 14 15 16 17 18 19 20

RME 0.3181 0.2579 0.2613 0.5277 0.3614 0.2706 0.2704 0.3024 0.4919 0.2941

Fig. A2. Number of neurons versus the relative mean error. Fig. A3. Number of epochs versus the relative mean error.



By establishing the number of layers, neurons, and

epochs that would give the best model performance

for a given data, the development of the data in-®lling

process can be presented for the group-valued data

approach.
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