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Abstract

The impact of long-lasting non-point emissions on groundwater and streamwater in remote watersheds has been studied at
numerous sites. In spite of substantially decreasing emissions in the last decade, recovery has not yet been observed in all cases.
This trend might be masked by the considerable short-term variability of the chemical hydrographs. In this study, artificial
neural networks are applied to investigate the SO4 dynamics in the runoff of a small forested catchment susceptible to SO4

deposition. Empirical models are fitted to the short-term dynamics at a time step of one day. About 75% of the variance of the
SO4 data is explained by the instantaneous discharge, short-term history of discharge and the moving average of SO4 concen-
tration in throughfall. In contrast, neither air temperature as an indicator for biological activity nor a snowmelt indicator based
on the temperature sum increase the performance of the model. The model is used to investigate long-term trends in sub-regions
of the phase space spanned by the identified input variables. According to the model, decreasing emissions have a significant
effect on runoff SO4 concentration only during the first severe storms at the end of the vegetation period. This suggests to focus
on these events as indicators for recovery of the topsoil layers.q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Small catchments have been studied intensively in
order to assess their future development under human
influence. Now numerous long-term hydrochemical
data series are available. Here, time series of sulfate
concentration in the runoff of a small-forested catch-
ment are studied. Although sulfate emissions
decreased substantially in the last two decades (Stod-
dard et al., 1999), there is no clear trend of sulfate
concentration in the catchment’s runoff. The
pronounced short-term dynamics of the data set are
likely to represent a variety of interrelated processes
at different scales that might mask long-term trends.

Often deterministic, physically based models are
used for analyzing data sets of that kind. To avoid
over-parameterization (Beven, 1993), only a very
limited set of processes selected in an ad hoc manner
can be considered. However, it has been stated that
independent falsification or validation of a model, and
thus unequivocal process identification by modeling is
not possible (Oreskes et al., 1994). Furthermore, there
seems to be a lack of consistency in approach (Hauhs
et al., 1996). Facing the apparent complexity of envir-
onmental systems, the physical basis of the equations
used within lumped models needs to be challenged
and has been shown to be deficient (Neal, 1997).
Obviously, the substantial heterogeneity encountered
within natural systems has to be taken into account,
e.g. by complexity theory based approaches or fractal
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analyses (cf. Kirchner et al., 2000). In addition, it has
been suggested to return to purely empirical models
that are adequate for the information content in field
data (Peters, 1991). Revealing the internal structure of
the given data set by empirical models helps to iden-
tify processes in a top–down approach as part of an
iterative process (Christophersen and Neal, 1990).

Here an artificial neural network is applied. It
allows for analyzing multiple non-linear relationships
and for performing sensitivity analyses for individual
parameters. Long-term trends can be investigated by
analyzing shifts in the regression planes revealed by
the model.

2. Data set

A long-term monitoring program started in 1987 in
the 4.2 km2 Lehstenbach catchment in the Fichtelge-
birge mountains in Southern Germany (North East
Bavaria) (Sager et al., 1990; Lischeid et al., 1998a).
The thickness of the regolith overlying the granite
bedrock is about 30–40 m. Among the soils, dystric
cambisols predominate. One third of the catchment is
covered by peaty soils and bogs. The catchment is
drained by a dense and irregular network of brooks
and ditches.

The altitude of the catchment is 690–877 m asl.
Long-term mean annual precipitation sums to
1100 mm, but has been considerably less in the
years of the study (Table 1). Annual mean tempera-
ture at the mountain top is 4.5–58C. The catchment is
nearly completely covered by a spruce forest (Picea
abies(L.) Karst.).

Discharge at the catchment outlet is measured
continuously. Samples are taken biweekly at least.
The total number of analyses available is 384 covering
the November 1987–March 1998 period.

Throughfall has been investigated biweekly at up to

seven different plots in the catchment with 15 repli-
cates each. Additionally, bulk precipitation has been
measured at three different plots. Groundwater has
been sampled every 4–8 weeks at six wells in the
catchment since 1987, and at additional eight wells
since 1996 by a submersed pump.

Mean budgets for the catchment are given in Table
1. SO4 input via throughfall is more than fourfold SO4

bulk precipitation input due to occult deposition. On
the other hand, SO4 output is about 3/4 of SO4 input
via throughfall. Nitrogen output is 2/5 of N input via
bulk precipitation. Cl and Na output in runoff exceeds
the input because of salting of a public road in the
western part of the catchment. Increasing the ionic
strength by road salt application seems to have only
minor effects on SO4 dynamics, as time series of SO4

concentration of the western and the eastern main
tributary differ only slightly.

3. Artificial neural networks

Artificial neural networks (ANN) are now increas-
ingly used in a wide variety of problems, dealing with
pattern recognition in a broad sense. Examples of
applications of ANN in hydrological studies are
given by Maier and Dandy (1996), Clair and Ehrman
(1998), Shamseldin (1998), and Luk et al. (2000).
They make use of the capability of ANN to map
multivariate, non-linear relationships to an arbitrary
accuracy (Hornik et al., 1989).

3.1. Structure

In this study, a multilayer feedforward network is
used. It is composed of a number of nodes, which are
arranged in consecutive layers: an input layer, a
number of hidden layers, and an output layer. The
number of nodes in the input layer corresponds to
the number of input variables, and the number of
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Table 1
Mean budget for the Lehstenbach catchment November 1987–October 1996. Units are mm a21 and kmol ha21 a21, respectively. The data were
kindly provided by K. Moritz and J. Bittersohl of the Bavarian State Office for Water Management

H2O H1 Cl SO4 NO3 Ca Mg Na K NH4 Al

Bulk precip. 951 0.39 0.18 0.33 0.49 0.16 0.03 0.30 0.07 0.57 0.00
Throughfall 768 1.64 0.33 1.31 0.77 0.39 0.10 0.33 0.61 0.71 0.00
Runoff 450 1.18 0.91 1.00 0.38 0.47 0.19 1.13 0.12 0.02 0.23



nodes in the output layer to that of the output vari-
ables, respectively. The number of hidden layers, and
the number of nodes in these layers can be chosen
arbitrarily. Usually, the network topology is given
by a xi:xh:xo notation, wherexi, xh, andxo denote the
number of nodes in the input, hidden, and output
layer, respectively. Every node is connected with
every node of the subsequent layer by weighted
connections. Data processing is unidirectional from
the input layer towards the output layer (‘feedfor-
ward’).

For all nodes, an input function, an activity function
and an output function is defined. In this case, the
functions are the same for all nodes. Usually, the
input function netj is given by:

netj �
Xn
i�1

wij oi

where i and j are the indices for the nodes in the
preceding and actual layer, respectively,n the number
of nodes in the preceding layer,wij the weight of the
connection between single nodes, andoi the output
value of nodei.

The activity functionoj has to be a monotonous,
differentiable function. Here, usually the Fermi
function is used:

oj � 1
1 1 e2netj

2 uj

Introducing a biasuj allows for a constant offset of the
weighting function, thus shifting the most sensitive
part of the weighting function (that is, the part of
the steepest increase).

The software used in this study is the Stuttgart
Neural Network Simulator (SNNS), version 4.1,
developed by Zell et al. (1995). It is a tool for editing,
training, testing and visualization of neural networks,
written in ANSI-C. A variety of different network
types, learning algorithms, pruning algorithms, error
measures, and tools for analyzing the networks is
offered. A graphical user interface allows for conve-
nient editing of networks. Training and testing of
networks can be performed on-line as well as in a
batch mode.

3.2. Training

Weights and biases are optimized in a procedure

called ‘learning’ or ‘training’. For every input pattern
the output �oj� is compared with the output given
(tj � ‘teaching output’) and the weight matrix is
corrected iteratively.

The training of the network aims to minimize the
sum of squared errors. As a measure of comparing the
performance of different simulation runs the model
efficiency reff (Nash and Sutcliffe, 1970) is used. It
is defined as

reff � 1 2
s 2

xx0

s 2
xx

wheres 2
xx0 is the mean squared error of the simulation,

and s 2
xx the sum of squared differences between

measured values and their mean. If the relationship
between measured and simulated data happens to be
linear, reff can be interpreted as the explained part of
the total variance of the data set.

A variety of different methods exist to solve the
principal problems of the training procedure. First,
the aim is to map the essentials of the total ensemble
(‘generalization’) rather then specific features of the
random sample available for the training of the
network (‘overtraining’). Second, there is only a
trial-and-error approach to distinguish between a
local and the global minimum of the error plain.
Third, different training algorithms differ substantially
with respect to the convergence velocity.

In a first phase, different learning functions were
tested (Quickprop, Resilient Propagation and Back-
percolation; see Zell et al., 1995 for details). In this
study, the Resilient Propagation (Rprop) method
yielded superior performance and was used for the
subsequent training runs. Like the well-known Back-
propagation algorithm (Rumelhart and McClelland,
1986), it is a gradient descent method. In contrast to
the latter, the basic idea is to decrease the update value
of the weightwij when the partial derivative of the
error function changes its sign, and to increase it
otherwise (Riedmiller and Braun, 1993).

Following the usual cross validation approach, the
total data set is subdivided into a training, validation
and test data set. Every 1000 training cycles the
network error (sum of squared errors) is determined
both for the training and the validation data set. If the
network error is not inferior to that of the preceding
test, the weight matrix is altered by random factors in
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the [0;2] range. Otherwise, the weight matrix is saved
and training continues. Performance of the network
applied to the test data set after the training should
not be substantially less than for the validation data
set.

The total number of training cycles per training run
was 5× 105

: In most cases, however, model efficiency
of the network increased by less than 0.02 after the
first 105 training runs. Effects of different random
initializations of weights and biases were accounted
for by 10 replicates of every training run.

3.3. Preprocessing the data set

How to divide the total data set into the three
subsets is extensively discussed in the literature
(Baum and Haussler, 1989; Maier and Dandy,
1996). In practice, the limited size of most data sets
suggests that the major part be taken for the training
data set. The data were therefore split up randomly in
a 2:1:1 ratio for the training, validation and test data
set, respectively. This procedure is repeated ten times
each for every model.

Input variables are selected partly based on expert’s
knowledge, partly on availability. A preceding bivari-
ate fitting revealed that instantaneous discharge
explains most of the variance of the SO4 time series
in the catchment’s runoff. Fitting a logarithmic func-
tion to the data yields a model efficiency of about
0.49. However, the large scatter of this relationship

(Fig. 1) is a challenge for a more sophisticated
approach.

In addition to mean discharge, air temperature is
chosen. To account for the short-term memory of
the system that is not accounted for explicitly by the
type of neural network used, in addition to the
temperature of the day of streamwater sampling (d),
mean temperature values of preceding days (d2 1),
(d 2 2), (d2 3), (d2 5), (d2 10) and (d2 30) are
chosen as well as the mean of the preceding 5
(m 5d) and 30 (m 30d) days period, respectively (cf.
Luk et al., 2000).

To investigate the impact of snowmelt on SO4

dynamics, summed daily mean temperature values
since last exceedance of 08C are used as a snowmelt
indicator. Snow cover data that are available for the
1996–1998 period confirm that low positive values
are indeed closely related to snowmelt.

The first visual inspection of the data revealed that
SO4 concentration of the catchment’s runoff during
the first discharge peaks after the end of the vegetation
period seemed to be higher than during subsequent
stormflow events. Thus another indicator is intro-
duced to provide the network with necessary informa-
tion, called ‘accumulated runoff’. Even during
extended baseflow periods, discharge was never less
than 0.2 mm day21. On the other hand, discharge
peaks usually substantially exceed 0.5 mm day21.
Thus 0.5 mm day21 is chosen as a threshold value to
distinguish baseflow from stormflow conditions.
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Fig. 1. Measured (diamonds) and fitted (solid line) SO4 concentration versus daily mean discharge at the catchment’s outlet.



Daily mean runoff is then accumulated as long as it
exceeds the threshold value, and is set equal to the
daily mean discharge otherwise.

Sulfate concentration in the throughfall was
measured by bulk samples in biweekly intervals.
However, the number and location of single sites
has been subject to numerous changes. In addition,
sampling dates have not always been the same for
all sites. On the other hand, the model requires daily
input data. To represent the long-term trend of
throughfall concentration within the model, the yearly
mean concentration data were interpolated by a cubic
spline (Fig. 2).

3.4. Minimizing the network

To reduce the danger of overfitting, both the
numbers of input and of hidden nodes should be
minimized. This was done by a pruning approach.
First, 100 networks are trained with all of the 21
input variables described above. The single
networks differ only with respect to subdivision
of the total data set and initialization of the
weight matrix. In a second step, pruning of input
and hidden nodes is performed subsequently by
skeletonization (Mozer and Smolensky, 1989). Para-
meters of the skeletonization algorithm are the same
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Fig. 2. SO4 concentration in the Lehstenbach catchment’s throughfall. Shown are measured mean values for single years and interpolated data
for the model input, respectively.

Fig. 3. Number of cases (out of 100) where single variables are selected as relevant by the skeletonization procedure.



for all of the 100 networks. The results are used as a
ranking of relevance of input nodes.

In a second step, networks are trained using
only the most relevant input variables with differ-
ent numbers of hidden nodes. Again, 100 repli-
cates are used for every network topology. The
criterion for selection of the best among these
networks is minimum standard deviation of
network efficiency within and between the train-
ing, validation and test data sets with 100 repli-
cates each.

4. Results

4.1. Minimizing the network

Results of the skeletonization procedure are given in
Fig. 3. In more than 90 out of 100 networks, instanta-
neous discharge, accumulated runoff and throughfall
concentration are selected as relevant driving variables
by the skeletonization procedure. The snowmelt indica-
tor variable is selected in 79 cases, air temperature and
discharge of preceding days in 70 cases or less.
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Fig. 4. Model efficiency for different networks for the training, validation and test data set, respectively. Mean and standard deviation for 100
networks each are shown. The label at thex-axis indicates the network topology�xi : xh : xo�; with xi ; number of input nodes,xh; number of
nodes in the hidden layer, andxo; number of nodes in the output layer. Input variables are the firstn variables given in Fig. 3.

Fig. 5. Time series of discharge (upper panel) and measured (solid line) and simulated (× ) SO4 concentration (lower panel) of the catchment’s
runoff.



Performance of different networks is given in
Fig. 4. As expected, the network with 21 input
variables yields the highest model efficiency for
the training data set, but substantially lower effi-
ciency for the validation and test data set. This is
clear evidence for overtraining of the network.
Decreasing the number of hidden nodes down to
two does not have a significant impact on the
model performance.

Subsequently reducing the number of input vari-
ables according to the skeletonization ranking reduces
the model efficiency for the training data set, but tends
to increase it for the validation and test data set. The

number of input variables can be reduced down to
three (instantaneous discharge, accumulated runoff
and throughfall concentration) without any loss of
network performance for the validation and the test
data sets. The model efficiency for the 3:2:1 network
is about 0.75. Again, introducing more than two
hidden nodes does not improve the network signifi-
cantly. Omitting throughfall concentration as driving
variable, however, substantially deteriorates the
model. Here, increasing the number of hidden nodes
tends to improve the model with respect to the training
and validation data set, but only at the cost of substan-
tially increasing the standard deviation of model

G. Lischeid / Journal of Hydrology 243 (2001) 31–42 37

Fig. 6. SO4 concentration in the catchment’s runoff depending on instantaneous discharge and antecedent runoff sum predicted by the model.
Mean SO4 concentration in the throughfall is 0.5 mmolc l21, corresponding to mean concentration measured in 1988 (upper panel) and
0.1 mmolc l21, corresponding to mean concentration measured in 1998 (lower panel), respectively. See Fig. 2 for time series of SO4 deposition.
Grey plane, mean1 standard deviation; black plane, mean2 standard deviation (n� 100) for every grid point.



efficiency for the test data set. This is a clear evidence
for a decreasing generalization capability.

Fig. 5 presents time series of measured and simu-
lated SO4 concentration in the runoff. Among the 100
3:2:1 networks that with the least variance of model
efficiency between the three subsets is selected. Model
efficiency is 0.77, 0.75 and 0.74 for the training, vali-
dation and test data set, respectively. In most cases,
the model nicely depicts the concentration peaks.
There is some evidence that the high SO4 concentra-
tion measured in the beginning of 1995 is an artifact.

4.2. Visualization of dependencies revealed by the
model

Besides identifying driving variables, the visualiza-
tion of the multivariate interdependencies is a further
step to studying the predominating dependencies.
Based on the criteria given above, the 3:2:1 model
has been selected as the ‘best’ model. Fig. 6 shows
the dependencies between the driving variables and
SO4 concentration in the catchment’s runoff, as
revealed by the model. The two planes indicate
mean̂ standard deviation of 100 networks for
every input tuple of input variables. In principle,
SO4 concentration increases with instantaneous
discharge but tends to level off for discharge
.3 mm day21.

Obviously the most pronounced effect of decreas-
ing SO4 concentration in throughfall is restricted to
high values of instantaneous discharge and low values
of accumulated runoff. This characterizes the first
storms at the end of the vegetation period. For these
storms, SO4 concentration decreased by a half due to
decreasing throughfall concentration. Correspond-
ingly, the prognostic value of the accumulated runoff
diminishes with decreasing throughfall concentration.

5. Discussion

5.1. Minimizing the network

The artificial neural network provides a tool to esti-
mate the minimum model complexity needed to map
certain patterns. In general, the simpler the model, the
more reliable and the easier to interpret are the results.

Often the complexity of a successfully trained
network is reduced by deleting redundant nodes or

links (pruning). Here the skeletonization algorithm
is used. Single nodes of the input layer are deleted
based on direct calculation of the influence of the
node on the output value for the given data set
(Mozer and Smolensky, 1989). The number of
selected nodes strongly depends on the parameteriza-
tion of the skeletonization procedure. However, the
ranking of input variables based on a sufficient high
number of replicates is much less dependent on the
parameterization.

Interpretation of the results of the skeletonization
procedure is corroborated by intercorrelations
between single variables. Due to substantial autocor-
relation, this is especially true for thetemperature
(d 2 x) and discharge(d 2 x) variables. Comparing
the 21:x:1, 6:x:1 and 3:x:1 models (Fig. 4), however,
reveals that none of thetemperature(d 2 x) and
discharge(d 2 x) variables seems to be relevant for
the SO4 dynamics.

5.2. Driving variables

5.2.1. Discharge
Although discharge explains about half of the

variance of the SO4 concentration in the catchment’s
runoff, the remarkable scatter is a challenge for a more
thorough analysis. For example, SO4 concentration
during the highest discharge peaks observed is close
to the minimum SO4 values (Fig. 1). This scatter
might be due to the enormous spatial heterogeneity
of sulfur pools and residence times in the catchment.
On the other hand, part of the scatter might be
explained by differing antecedent flow conditions
which is emphasized, e.g. by Huntington et al.
(1994), Soulsby (1995), and Montgomery and
Dietrich (1995).

The suitability of discharge values of preceding
days as an indicator for antecedent hydrological
conditions obviously is inferior to that of the accumu-
lated runoff sum. Although this indicator has been
introduced in an ad hoc manner, it is justified not
only by the performance of the model. As discussed
below, the relevancy of this indicator is consistent
with the understanding of the runoff generation
process in the catchment.

5.2.2. Temperature
Corresponding to the SO4 model presented in this
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study, a neural network has been successfully applied
to NO3 time series in the catchment’s runoff based on
air temperature and discharge (Lischeid et al., 1998b).
This confirms the suitability of air temperature as a
surrogate for biological activity.

However, air temperature proved not to be a driving
variable for SO4 dynamics by this analysis. This does
not imply that biological turnover does not occur as
indicated, e.g. by34S data (Alewell and Gehre, 1999).
However, this pool can be considered as a transient
store due to steady state demobilization and minera-
lisation (Houle and Carignan, 1995; Mayer et al.,
1995).

On the other hand, air temperature might serve as a
surrogate for seasonality. Klemm and Lange (1999)
report on a clear seasonal pattern for atmospheric SO2

mixing ratios measured in the catchment. However,
its effect on stream water SO4 concentration seems to
be negligible. This might be due to long residence
time. Based on18O data mean residence time of the
catchment’s runoff is estimated to be about 3.6 years
(Zahn, 1995).

5.2.3. Snowmelt
The impact of snowmelt dynamics on SO4 is well

known. During the onset of snowmelt often very high
SO4 concentrations are observed in meltwater and
streamwater (Johannessen and Henriksen, 1978;
Helliwell et al., 1998). Thus, the intention was to
include this process into the analysis. Unfortunately,
snow cover data of the catchment are very rare. The
snowmelt indicator used here is based on the approach
used by Ostendorf and Manderscheid (1997) to simu-
late the runoff of the catchment. They determined by
inverse modeling a threshold temperature value of
118C (daily mean value) for the onset of snowmelt.
However, including the snowmelt indicator did not
improve the performance of the model. As the
network error is not systematically higher during
snowmelt periods (Fig. 5), it can be concluded that
even the snowmelt process itself does not have a
significant impact on SO4 dynamics in the runoff.

5.2.4. Throughfall
Model results indicate that SO4 concentration in the

catchment’s runoff is related to that in the throughfall
in the long-term at least. It cannot be excluded that
short-term effects of throughfall SO4 concentration (in

the range of hours to days) might have an additional
effect on solute concentration in the runoff. However,
its contribution presumably is rather small, as the
model presented here already yields an efficiency of
0.75.

5.3. Interpretation of the dependencies revealed by
the model

5.3.1. Functional trend analysis
Due to decreasing sulfate emissions, freshwater

sulfate concentration decreased substantially at
many North American and European sites in the
last two decades (Stoddard et al., 1999). Whereas
the time constant of SO4 sorption in the soil is
about some minutes, acidification reversal acts
on a time scale of decades due to extended SO4

stores in the soil (Mo¨rth and Torssander, 1995).
The higher the SO4 store, the less recovery is
likely to be seen. In the case of the Lehstenbach
catchment, mean depth of the regolith is approxi-
mately 30–40 m. The total sulfur store of the
regolith is estimated to exceed the annual output
by a factor of 70 at least (Manderscheid et al.,
2000). This explains why no linear trend is detect-
able in the catchment’s runoff so far.

Obviously, the interplay between different flow-
paths that predominate stormflow and baseflow,
respectively, explains much of the SO4 dynamics.
This has been confirmed for numerous headwater
catchments by chemical hydrograph analysis (Seip
et al., 1995; Caissie et al., 1996; Anderson et al.,
1997). However, chemical hydrograph separation
usually focuses on single short periods, assuming
hydrochemical constancy for at least one of the
mixing components. Indeed, the identification of
simple end members within soils and groundwater
has been shown to be highly questionable due to
within catchment heterogeneity (Neal et al., 1997).
Instead, the neural network approach allows for
more flexibility. If some of the driving variables exhi-
bit a clear trend, it provides a tool to investigate the
response of the system on a statistical base. This type
of a ‘functional trend analysis’ might be superior to
simple trend analysis when the response of the system
is restricted to a certain sub-region of the observed
phase space.
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5.3.2. Stormflow generation processes
Facing the quick response of discharge and runoff

chemistry to rainfall, macropore flow (Hornberger et
al., 1991; Leaney et al., 1993) or direct infiltration into
the streams and bogs might contribute substantially to
the runoff generation process. However, in the first
years of the study SO4 concentration in the catch-
ment’s runoff significantly exceeds mean concentra-
tion (volume weighted) of the throughfall in high flow
periods (Fig. 5) and is in the range of soil solution data
of about 0.2–0.6 mmolc l21 in the topsoil (Lischeid et
al., 1998a). It is concluded that stormflow stream
water represents soil solution chemistry of the contri-
buting area rather than precipitation chemistry. This is
corroborated by the observation that stormflow runoff
usually is predominated by pre-event water (Goodrich
and Woolisher, 1991; Anderson et al., 1997).

5.3.3. First storms at the end of the vegetation period
The most dramatic change in the system’s response

to decreasing sulfur deposition is seen during the first
storms at the end of the vegetation period. Soil hydro-
logical and hydrochemical data give strong evidence
that these discharge peaks are generated by saturation
of the riparian zone close to the streams. With increas-
ing rewetting of the catchment, that is increasing
accumulated runoff, an increasing portion of the ripar-
ian zone becomes saturated during storms. However,
the riparian zone close to the stream is that with the
least residence time, and soil solution here adapts
most quickly to changing emissions.

Several authors report on flushing effects, washing
out SO4 that accumulated in precedent dry periods
(Rice and Bricker, 1995; Evans and Davies, 1998).
One reason discussed in the literature is re-oxidation
of sulfur when the groundwater level decreases, which
is leached when the water level rises again (Dillon and
LaZerte, 1992; Caissie et al., 1996). In the Lehsten-
bach catchment, however, groundwater oxygen data
indicate that sulfate reduction is restricted to a limited
number of sites in the catchment.

Instead, soil solution becomes more or less immo-
bile in the unsaturated topsoil layer during dry peri-
ods. Due to plant root water uptake, SO4 concentration
increases. The first storms after extended dry periods
flush out this water. Thus, streamwater quality during
these first storms can be used as an early warning
indicator for the changing soil chemical status.

The model does not allow explicitly for extrapola-
tion beyond the space of the data offered to the model.
However, analysis of the processes that produce the
pattern revealed by the model suggests that when
recovery of the topsoil layers continues, the first
storms at the end of the vegetation period will even
exhibit less SO4 concentration than subsequent
storms. This has already been observed in some low
order streams in the catchment in the last two years.
On the other hand, in two out of six wells installed in
1987 groundwater exhibits a slight, but highly signif-
icant steady increase of SO4 concentration. It cannot
be excluded that streamwater recovery observed
during storms is compensated for in the long-term
by a further increase during baseflow conditions.

6. Conclusions

The results of the study presented here demonstrate
the potential of artificial neural networks to analyze
hydrochemical time series. They allow for investigat-
ing the driving forces of the SO4 dynamics in a small
catchment’s runoff and its response to long-term
changes of one of the driving forces.

In the catchment studied, a recovery of streamwater
due to decreasing sulfate emissions is clearly visible
only in a certain sub-region of the phase space. The
changing soil chemical status is most clearly reflected
during the first discharge peaks at the end of the vege-
tation period. The conceptual model developed based
on these results is consistent with additional data from
a comprehensive monitoring measurement program.
It is recommended to focus on these events in order to
assess beginning long-term changes of a catchment’s
geochemical status.

Efficient empirical data analysis techniques like
artificial neural networks are recommended for the
analysis of long-term time series. It is felt that asses-
sing the catchment’s future hydrochemical develop-
ment focusing on these data might be a strategy
superior to conventional trend analysis.
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